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INTRODUCTION 
 
Educational resources are essential in mathematics teaching, as they play 
a mediating role between the teacher and the student. Their design and their use 
have been at the focus of many studies, and this has affected our choice for the 
theme of this volume. Pepin and Gueudet (2020) define curriculum resources in 
mathematics as: 

all the material resources that are developed and used by teachers and students in 
their interaction with mathematics in/for teaching and learning, inside and outside 
the classroom. Hence, curriculum resources would include the following: 
Text resources (e.g., textbooks, teacher curricular guidelines, websites, worksheets, 
syllabi, tests) 
Other material resources (e.g., manipulatives, calculators) 
Digital-/ICT-based curriculum resources (e.g., interactive e-textbooks) (pp. 172–
173) 

The current volume contains works that refer to all the above categories. Before 
we present the sections of the volume, it is important to provide a brief overview 
of the field, in relation to current research. Rezat et al. (2021) in their survey 
paper, view resources as instruments of change in: the mathematical content 
which is taught, the innovations in teaching and the students’ beliefs and 
attitudes concerning mathematics. Indeed, many – if not all – reforms in 
mathematics education are accompanied by a series of resources. Another aspect 
of resources is their use by the teachers and the students. Pepin and Gueudet 
(2020) view this as a two-way interactive process since: 

(1) the resource’s features influence the subject’s activity and learning (for teachers, 
this can lead to policy choices, drawing on resources as a means for teacher 
education); at the same time, (2) the subject shapes his/her resources, according to 
his/her knowledge and beliefs. (p. 174) 

The last aspect of resources we could consider is their design; a variety of 
approaches have been suggested, especially on textbook and ICT-based 
resources. Textbook analyses may either focus on the content (Pepin & 
Haggarty, 2001) or on the students’ experiences (Norberg, 2023). Digital 
resources allow for a flexible adaptation and (re)design, therefore they can 
adjust to the needs of various students within the same classroom. They usually 
come with a comprehensive assessment scheme, which makes the teacher’s 
decisions easier. However, many factors are at play during the implementation 
of such tools, such as their affordances and their users’ skills and attitudes 
concerning their use. 
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In the present volume, 19 chapters provide a wide range of approaches to the 
uses of educational resources in the mathematics classroom. These chapters are 
placed in three parts, based on their content. 
Part 1, entitled Using educational resources for mathematics learning contains 
seven works that present ways that resources in the form of materials, textbooks, 
tasks or activities, can be used to enhance the learning of mathematics, usually 
with a focus on a specific concept or field. 
Part 2, entitled Educational resources as research-based tools contains seven 
works that present ways of connecting research on resources with their 
implementation in practice, in order to improve students’ or preservice teachers’ 
mathematical skills. 
Part 3, entitled Digital resources in the mathematics classroom puts to the fore 
the use of digital tools to support students and preservice teachers. The five 
works included, refer to tools that vary from digital media to online assessment 
and investigate topics such as the resources’ potentials and how their use may 
affect students’ performance. 
Overall, the present volume provides sufficient data to support the claim that 
educational resources constitute an important and evolving field of research in 
mathematics education. At the same time, the works contained in the volume, 
stress the need for a careful implementation of such resources, which should be 
based on concrete results of research. The reader who wishes to conduct such 
research may find useful examples of relevant studies in this volume. 

Rzeszów, Poland, June 2024 
The Editors 
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THE PATHWAYS OF ‘ADDITIONAL’ EDUCATIONAL 
MATERIALS UP TO THE MATHEMATICS CLASSROOMS 

Chrysanthi Skoumpourdi 
University of the Aegean, Greece 

 
The teaching and learning of mathematics, due to its abstract nature, are 
enhanced through the utilization of provided and/or ‘additional’ educational 
materials. The wide variety of available ‘additional’ mathematics’ educational 
materials requires teachers to take specific decisions regarding their integration 
into their teaching practice. The definition of the concepts of provided and 
‘additional’ educational materials (AEMs), the reflection of educators’ 
decisions on the placement of these educational materials in the mathematics 
classroom, as well as the determination of the relationship between teachers, 
students, and AEMs are issues that will be discussed both theoretically and 
practically, using specific examples. Investigating the pathways that AEMs 
could follow, up to the mathematics classrooms, as fundamental aspects of their 
designed integration, one can recognize their multidimensional relationship 
with teachers, as well as the learning opportunities they may (or may not) offer 
to students. 
INTRODUCTION 
Τhe abstract nature of mathematics necessitates the use of educational resources 
in the mathematics classroom in order to concretize the concepts. The designed 
integration of educational resources in teaching and learning process has gained 
significant attention in research and education, especially in recent years, 
following a period of questioning their role. The positive outcomes resulting 
from their use have led to a reassessment of their importance and a recognition 
of their contribution to both the cognitive and socio-emotional domains 
(Skoumpourdi, 2021). Researchers internationally examine the impact of 
integrating materials and other means in the educational practice and highlight 
their contribution to facilitating teaching and learning process (Meira, 1998), 
fostering positive attitudes (McCulloch Vinson, 2001), enhancing self-
confidence in problem-solving (Jacobs & Kusiak, 2006), supporting 
communication (Domino, 2010), and improving the performance of all students 
(Liggett, 2017; Swan & Marsall, 2010). 
DEFINING THE CONCEPT OF ‘ADDITIONAL’ EDUCATIONAL 
MATERIALS (AEMS) 
The haptic resources used in mathematics education can be categorized as either 
‘existing materials’, which are materials that exist independently of the teaching 
and learning of mathematics, and/or ‘specialized materials’, designed to support 
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specific educational goals (Skoumpourdi, 2021). ‘Specialized materials’ 
encompass all types of educational materials and could be either ‘provided’ 
and/or ‘additional’ educational materials. ‘Provided’ educational materials refer 
to the school teaching package (curriculum, student textbook, workbook, 
teacher’s guide, etc.), typically provided to educators. ‘Additional’ educational 
materials (AEMs) are materials selected or designed to be integrated into the 
educational process in addition to the ‘provided’ educational materials. 
The AEMs may include educational materials from different stages of the 
evolution of Mathematics Education:  

1. Early Materials: Educational materials originating from the beginning of 
Mathematics Science (such as abacus, counting frame, ruler, tangram, 
etc.), 

2. Evolutionary Materials: Educational materials, stemming from the 
evolution of Mathematics Education, constructed by significant 
researchers (such as Cuisenaire rods, Cattegno geoboard, Dienes blocks, 
etc.), 

3. Developmental Materials: Educational materials resulting from the 
development of Mathematics Education, which include: 

a. Redesigns of previous materials (such as arithmetic rack, number 
line, etc.), 

b. Contemporary educational materials (such as mathematical mirror, 
Sumblox, connecting shapes, etc.), 

4. Custom Materials: Educational materials designed and constructed by 
those involved in the educational process (teachers, students, parents, 
researchers, etc.) to support the teaching and learning of mathematics. 

TEACHERS’ DECISIONS REGARDING THE INTEGRATION OF 
EDUCATIONAL MATERIALS INTO THE MATHEMATICS 
CLASSROOMS 
Teachers’ decisions regarding the utilization of additional educational materials 
and the potential factors influencing those decisions are reflected in Casey’s 
model (2016). This model provides a research framework that has emerged as 
essential for considering the abundance of additional educational materials 
available from diverse sources. It illustrates the linear process of teachers’ 
decision-making regarding the use of such materials and the potential factors 
influencing it, divided into four phases: 1. motivation to consider materials, 2. 
discovery of materials, 3. evaluation of materials, and 4. preparation/adaptation 
of materials (see Figure 1). 
These decisions are influenced by both subjective and objective factors. 
Subjective factors pertain to educators themselves and include their knowledge 
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(Parada & Sacristán, 2010), beliefs, experiences, memories, goals, teaching style 
(Clements, 1999; Moyer & Jones, 2004), teaching experience (Sherin & Drake 
2009), and educational level at which they teach (Skoumios & Skoumpourdi, 
2021). Objective factors relate to the specific school environment, the broader 
educational framework, as well as the characteristics of the provided school 
teaching package (Janssen et el., 2015).
If educators perceive that the provided teaching package meets their needs and 
those of their students, and aligns with their teaching style, they may not be 
motivated to seek AEMs (see Figure 1). They may choose to utilize the school 
teaching package without deviation or modification, or they may adapt it 
through simple adjustments, additions, or minor changes (Brown, 2009; Davis et 
al., 2016). This scenario represents common practice in many countries 
worldwide where the school teaching package serves as the primary means for 
teaching mathematics in schools.

Figure 1: Teachers’ decisions on outside educational materials and possible factors 
affecting them (Casey, 2016).

If educators find that the provided teaching package does not meet their needs, 
or if they are kindergarten teachers who do not have access to a teaching 
package, they are motivated to seek AEMs for their teaching practice and 
proceed to the next phases (see Figure 1). If educators, during their search, do 
not find suitable AEMs, or if they find such materials but do not positively 
evaluate them, they are inclined to adapt, prepare, or use the provided materials, 
create new educational materials, or continue searching for AEMs (see Figure 
1).
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FRAMEWORK FOR EVALUATION OF MATHEMATICS 
EDUCATIONAL MATERIALS (FEMEM) 
Of particular interest in the aforementioned phases is the focus on the criteria 
adopted by educators to evaluate AEMs for integration into mathematics 
classrooms. Teachers’ primary criteria for positively evaluating AEMs for 
integration into mathematics classrooms are related to the alignment of the 
materials with curriculum standards (Davis et al., 2016; Roehrig et al., 2007), 
their teaching aims (Brown, 2009; Remillard, 2013), teaching practice (Janssen 
et al., 2015), and students’ interests (Son & Kim, 2015). The criteria mentioned 
above are typically superficial in nature. 
A systematic investigation into the main criteria affecting the evaluation led to 
the development of the Framework for Evaluation of Mathematics Educational 
Materials (FEMEM) (Skoumpourdi & Matha, 2021; Skoumpourdi, 2023) (see 
Figure 2). FEMEM analyzes the characteristics of the material and assesses its 
impact on the educational process and students’ learning performance, as well as 
its metacognitive impact. It offers a systematic evaluation based on two main 
categories of criteria: subjective criteria and objective criteria. Subjective criteria 
concern the personal criteria used by educators to evaluate and select materials 
and are aligned with the criteria of motivation to consider additional educational 
materials. The objective criteria of the FEMEM are developed along three 
dimensions, as presented in Figure 2: 1) evaluation of AEMs before its use, 2) 
evaluation of AEMs during its use, and 3) evaluation of AEMs after its use. 
The first dimension of the FEMEM, ‘evaluation before use’, is shaped by 
‘pedagogical’ and ‘mathematical validity’ (see Figure 2). ‘Pedagogical validity’, 
examines factors important for attracting and using the material by many users 
regardless of the social context.  These factors include the acceptance of the 
material for educational use (i.e., whether it is of high quality, safe, durable, and 
appropriately sized for the classroom) and its feasibility to procure (i.e., its 
availability, accessibility, and affordability). ‘Mathematical validity’, concerns 
the quality of the correspondence between the material and the mathematical 
idea/concept it represents (see Figure 2). It examines whether the material 
covers the mathematical idea/concept, the mathematical accuracy of the 
represented idea/concept, and the visibility of the material’s function for the 
specific mathematical idea.  
The degrees of mathematical accuracy (2nd phase of “mathematical validity”) 
could be analyzed according to the three following levels:  
Level 1. The material has a low degree of accuracy because it represents the 
concept in a way unrelated to the mathematical definition (e.g., incorrect 
representations or names of shapes).  
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Level 2. The material has a moderate degree of accuracy because it represents 
the concept with relative relevance to the mathematical definition (e.g., tangible 
materials, even with a negligible 3rd dimension, which represent plane shapes). 
Level 3. The material has a high degree of precision because it represents the 
concept with complete relevance to the mathematical definition (e.g.,
mathematically precise iconic representation of plane shapes).
Similarly, the visibility of the material’s function for the specific mathematical 
idea (3rd phase of “mathematical validity”), could also be analyzed across three 
levels: 
Level 1. Low connection of the material and the mathematical concept when the 
image of the material does not refer to the mathematical concept (e.g.,
geoboard). 
Level 2. Moderate connection of the material and the mathematical concept 
when the image of the material indirectly refers to the mathematical concept 
(e.g., tangram). 
Level 3. Strong connection of the material and the mathematical concept when 
the image of the material directly refers to the mathematical concept (e.g., 3d 
models of solid shapes).

Figure 2: Framework for Evaluation of Mathematics Educational Materials (FEMEM) 
(Skoumpourdi, 2023).

Α
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The second dimension of the FEMEM, ‘evaluation of material during its use’ 
concerns the understanding of its operation and the way of using it to discover 
its internal mechanism. It also involves the activation of students’ cognitive 
process that could emerge from its use.
The third dimension of the FEMEM, ‘evaluation after its use’, assesses the 
learning effectiveness for the material’ users within a particular educational 
context. It evaluates the connection of actions with the material through 
symbolic and conceptual representation, understanding of the concept without 
misconceptions, and the enhancement of metacognition.
Before using the above framework, it must be clear: i) which material will be 
evaluated? ii) for which mathematical concept will this material be evaluated? 
iii) for which age group will this material be evaluated?
AEMS FOR THE DEVELOPMENT OF SHAPES’ CONCEPT
According to van Hiele’s theory (1986), the development of children’s 
geometrical thinking is more influenced by the teaching methods and 
educational materials used than by age or biological maturity. Clements and 
Sarama (2007) suggest that young children can better understand geometric 
shape when their learning environment includes four key characteristics: 1) 
varied examples and counterexamples of the shape, 2) discussion about the 
shape and its characteristics, 3) presentation of a variety of other types of 
shapes, and 4) dealing with topics that are interesting to young children.
For young children to construct the concept of plane geometric shapes, they 
must simultaneously understand the shape’s dual nature – the conceptual and the 
schematic. This can be achieved through activities such as recognition, naming, 
classifying, analyzing, synthesizing, and constructing geometric shapes. These 
activities align with the objectives outlined in international curricula for 
geometric shapes (Clements & Sarama, 2007).

Figure 3a: Pattern blocks. Figure 3b: Tangram. Figure 3c: Pentominoes.

Figure 4a: Connecting shapes. Figure 4b: Anglegs.
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Figure 5a: Shape stamps Figure 5b: Shape stencils Figure 5c: Geoboard 

The AEMs commonly used for approaching plane geometric shapes could be 
outlined as following (Skoumpourdi, 2023):  
Models of shapes: 

1. ‘With internal filling’ [like Pattern blocks (Figure 3a), Tangram (Figure 
3b), Pentominoes (Figure 3c), etc.], 

a. ‘Without internal filling’ [like ‘connecting shapes' (Figure 4a), 
‘anglegs’ (Figure 4b), etc.], 

b. Artifacts for constructing plane geometric shapes [shape stamps 
(Figure 5a), shape stencils (Figure 5b), Geoboard (Figure 5c), etc.], 

2. Picture books for shapes, 
3. Games for shapes, as well as, 
4. Shapes’ cards, worksheets, art, objects, etc.  

Given the wide variety of AEMs for shapes, a question arises about their 
suitability for teaching the concept of shapes to children of early primary school 
age. In other words, how can teachers evaluate these materials to decide whether 
to integrate them into their teaching practice? 
Indicative examples of evaluation of AEMs for shapes 
Based on the FEMEM (Table 1) we evaluated some indicative examples of 
AEMs for shapes1 in early mathematics education (aimed at children aged 4-7 
years old), such as pattern blocks, tangrams, connecting shapes, shape stamps, 
shape stencils, and geoboards. These materials are commonly used for teaching 
shapes and are available on the market (Skoumpourdi, 2023). 
Beginning with the ‘evaluation before use’ we can confirm that all the materials 
have been positively evaluated in terms of their pedagogical validity. This 
indicates their acceptance for educational purpose, with feasibility in 
procurement (Table 1). They exhibit high quality, safety, durability, and 

 
1 The use of any tangible educational material—artifacts that possess three-dimensional quantities, albeit with a 

negligible third dimension—for teaching the concept of plane shapes to early elementary school children 
should commence with the understanding that they are selected due to their concrete nature, despite not being 
mathematically precise. 
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suitability in size for classroom use. Moreover, they are readily available, 
accessible, and affordable. 
In assessing the mathematical validity of the materials, we consider whether 
each one covers the mathematical idea/concept, represents it accurately, and 
makes its function visible. Based on the evaluation, it appears that all 
components of the materials are visible and accurately represent one or more 
basic plane shapes in their stereotypical form, thus covering aspects of the 
mathematical concept (Table 1). 
The representation of shapes is valid for all the materials, with the exception of 
the connecting shapes, due to the presence of notches and rounded tops, 
rendering their representations incomplete. Notably, not all the basic plane 
shapes are included, and even those that are included are limited to only one 
stereotypical representation.  
When ‘evaluating the materials during their use’, it is necessary to consider 
research findings from their practical application. However, for the pattern 
blocks, the connecting shapes, the shape stamps, as well as for the shape 
stencils, we did not find any research results. For the tangram, based on 
empirical data, it appeared that children only understood its operation and 
internal mechanism after receiving explanations and directions from their 
kindergarten teacher. Although children recognized the main shapes of the 
tangram, except for the rectangle, they were unsure how to manipulate them, 
requiring explanation. This explanation was accompanied by cards with pictures 
that could be constructed using the tangram’s seven pieces. Children’s efforts to 
manipulate the pieces and recreate the given picture activated their cognitive 
processes. They were able to process information, make connections between 
shapes, and recreate the figures depicted in the pictures. 

FEMEM Math Concept Pattern 
blocks Tangram Connectin

g Shapes 
Shape 
stamps 

Shape 
stencil 

Geo- 
board 

Evalua
tion 

before 
use 

Pedago
gical 

Validi-
ty 

i) Accepted 
for 

educational 
use 

ii) Feasible 
to procure 

 
i 
 

ii 

i 
 

ii 

i 
 

ii 

i 
 

ii 

i 
 

ii 

i 
 

ii 

Evalua
tion 

before 
use 

Mathe
matical 
Validi-

ty 

iii) 
Coverage of 
mathemati-
cal concept 

 
iv) Math 
accuracy/ 
fidelity 

 
v) Visible 
function 

Circle 
recognition & 
construction 

- - iii, - iii, iv iii, iv - 

Square 
recognition & 
construction 

iii, iv iii, iv iii, - iii, iv iii, iv iii, iv 

Rectangle 
recognition & 
construction 

iii, iv - - iii, iv iii, iv iii, iv 

Triangle 
recognition & 
construction 

iii, iv iii, iv iii, - iii, iv iii, iv iii, iv 



The pathways of ‘additional’ educational materials 17

 
 

Shape analysis iii, iv iii, iv iii, iv iii, iv iii, iv iii, iv 
Shapes  

synthesis iii, iv iii, iv iii, iv iii, iv iii, iv iii, iv 

 v ~ v v v ~ 

Evalua
tion 

during 
use 

vi) Understandable operation 
and usage  ~    ~ 

vii) Activation of cognitive 
process  vii    vii 

Table 1:  Evaluation of pattern blocks, tangram, connecting shapes, shape stamps, 
shape stencil, and geoboard, based on FEMEM (Skoumpourdi, 2023). 

[(i, ii, iii, iv, v, vi, vii, viii, ix, x: positively evaluated according to the corresponding 
criterion), (- does not match the criterion), (~ relevant after teacher’s explanations), 

blank cell denotes the lack of research data] 

Furthermore, the function of the geoboard is not evident to young children from 
the image of the artifact; it requires explanation. According to research results, it 
seemed that children did not understand its use from their first contact with the 
artifact (Skoumpourdi & Kossopoulou, 2011). Initially, none of them were able 
to use it to construct shapes. Only a few children (3 out of 15) attempted to use 
it, but they simply placed the rubber band on the board, leaving it in its natural 
shape. However, after the kindergarten teacher presented examples and guided 
them through various questions and activities, the geoboard transformed into an 
instrument for children to construct plane geometric shapes in different forms 
and sizes. There were three levels of difficulty in the constructions: a. Children 
who constructed the shapes with very few and specific movements. b. Children 
who constructed the shapes after making many alterations to their shapes. c. 
Children who found the whole process very challenging.  
The children approached their constructions in three different ways: 1. They 
started from one nail. 2. They started from many nails. 3. They started by giving 
shape to the rubber, stretching it in their hands, and then placing it on the 
geoboard. The stretching and securing of the rubber band on the nails, as a 
condition for the creation of a shape, the overlapping of parts of the shapes 
during their composition, as well as the possibility for quick changes and/or 
corrections of the shapes, were not realized by the children in all cases. In other 
words, it appeared that while all the children integrated the geoboard as an 
instrument into their activity and adapted it to their needs, not all of them 
understood its limits and possibilities. 
The ‘evaluation of the materials after their use’ was not possible due to a lack of 
research data on their long-term usage outcomes. 
Although we initially agreed to select tangible educational materials for their 
concrete nature in teaching the concept of plane shapes, as teachers and 
researchers, we must reconsider the tangible forms of these artifacts. We began 
with models of shapes with 'internal filling,' commonly used in teaching plane 
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geometric shapes. However, this approach raises questions about their suitability 
as educational materials. For instance, how would we present the square pattern 
block to children? Would we present it as the square geometric shape? If we 
present it as ‘the square’ and a child stacks multiple square pattern blocks, when 
does the square cease to be a square and become something else, like a cube or a 
rectangular parallelepiped? The three-dimensional nature of these materials 
poses a significant challenge in teaching plane geometric shapes and contributes 
to misconceptions. Additionally, the specificity and 'stereotypical' forms of these 
artifacts serve as further sources of misunderstanding. 
In regard to the models of shapes ‘without internal filling’, one can argue that 
they are more suitable for teaching plane geometric shapes because they better 
represent the image of plane shapes compared to ‘filled models’. Is this 
statement universally true? Perhaps not. We must consider whether these models 
serve as representative examples of plane shapes or as counterexamples due to 
factors such as unclear angles, apexes, discontinuities, and notches in the shape 
(as seen in connecting shapes), as well as unstable shapes (like anglegs), etc. 
When do we accept such a shape as an example, and when do we classify it as a 
counterexample? What are the boundaries between them? It appears that even in 
this scenario, the primary disadvantages of their three-dimensional nature and 
their limited variety persist, along with the lack of geometric shape accuracy. 
Young children are not able to construct geometric shapes with a ruler and 
a compass. Thus, there are artifacts such as ‘shape stamps’ (Figure 5a), ‘shape 
stencils’ (Figure 5b), ‘geoboard’ (Figure 5c), etc., that could help them in this 
direction. Most of these artifacts provide children with the opportunity to easily 
construct and deconstruct shapes, highlighting the two-dimensional nature of the 
shapes. The constructions with these artifacts are either designs and imprints on 
paper or shapes made with rubber bands. 
Of course, stamping shapes and drawing shapes with stencils require different 
skills and knowledge from the children than using rubber bands on a geoboard. 
In the former case, knowledge of the specific characteristics of the shape is not 
necessary, whereas in the latter case, it is essential. Furthermore, not all these 
artifacts facilitate the creation of shapes in different positions, sizes, and 
orientations. For example, the rectangle, square, and triangle are presented in 
their standard forms, and the circle cannot be precisely replicated on the 
geoboard due to its polygonal representation. Additionally, it is not easy to 
create compositions of shapes with these materials. 
These inconsistencies should be known to educators who will use these 
materials so they can manage them accordingly. It is also these inconsistencies 
that lead to the construction of new education materials aimed at overcoming the 
weaknesses and limitations of the aforementioned materials (Skoumpourdi & 
Mpakopoulou, 2011). Furthermore, it is remarkable that the selection and 
integration of educational materials, even the most appropriate ones, in the 
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teaching practice, does not automatically lead to understanding and learning 
(Boulton-Lewis et al., 1997). It cannot be assumed that they will highlight 
children’s mathematical reasoning or provoke their cognitive activity. For 
example, if a child uses pattern blocks to construct something, it is not certain 
that his/her actions will acquire mathematical meaning, that their actions will 
lead to the desired learning outcome, or that simple or complex strategies will 
emerge (Drews, 2007).  
The user needs to understand the function of the material and develop a 
relationship with it. The artifact itself has no instrumental value; it does not 
automatically define the role of the user. The artifact becomes an instrument 
when the individual is able to adapt it to his/her own needs and integrate it into 
their activities through the construction of personal meanings. During the 
process of transforming an artifact into an instrument, known as instrumental 
genesis (Zbiek et al., 2007), the individual interacts with the artifact and 
acquires knowledge that can, on one hand, shape the artifact to serve his/her 
goals, and on the other hand, shape his/her understanding through the 
instrument. 
Often, the selection and use of AEMs for teaching and learning of mathematics 
are done without proper planning. Most of the times, their manipulation follows 
a routine manner. In these cases, children learn to manipulate materials in a 
predetermined way and cannot understand the mathematical structure involved 
in the process. Other times, the actions with the materials are completely free, 
without structure, and therefore cannot constitute a learning activity since there 
are no motivations for action and defined goals. In these cases, the material does 
not become an instrument for the children but remains an artifact to be used, 
resulting in children being unable to connect their actions with the material to 
mathematical concepts and thus not being led to understanding. 
Other two factors that contribute to the positive relationship between materials 
and learning include: A) Students’ awareness of the connection between the 
material and the mathematical concept being taught, as well as their 
understanding that the individual elements of the material relate to elements of 
the concept, and B) Students’ ability to translate their interactions with the 
material into visual and mental processes for constructing the mathematical 
concept. This can be achieved by encouraging children not only to manipulate 
the materials but also to reflect on their actions, model them, describe them 
(Moyer, 2001), and communicate them to achieve a deeper understanding. The 
description should focus on presenting the actions, explaining the emerging 
strategies and results, and providing documented justifications for the actions. 
Communication should not be limited to oral and written expression but should 
also include other multimodal forms. Through the transfer of students’ actions 
from empirical mathematical entities to visual and abstract ones through the 
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organization of information, establishing appropriate connections and making 
generalizations, learning will occur. 
IN CONCLUSION 
In examining the possible pathways of AEMs integration into mathematics 
classrooms, their multifaceted relationship with teachers and the learning 
opportunities they may or may not afford students were presented. This 
complicated relationship with teachers includes decisions regarding motivation, 
discovery, evaluation, as well as preparation and adaptation of AEMs to define 
their way up to the mathematics classroom. The designed integration of AEMs 
into the teaching and learning process, along with the strategic orchestration of 
their usage by teachers, establishes the groundwork for supporting children’s 
mathematical development.  
The FEMEM can serve as a valuable evaluation tool for educators and 
researchers. The evaluation of the ‘pedagogical validity’ of the material, before 
its use, distinguishes those suitable for educational use, feasible to procure, and 
therefore usable in practice. Similarly, the evaluation of the 'mathematical 
validity' of the material before its use identifies materials that cover the target 
concept with scientific validity, clear structure, operation and utility, making 
them suitable for practical application. The evaluation during the use of the 
material distinguishes those that are comprehensible, with clear operation, and 
effective in facilitating cognitive processes, thereby enhancing learning 
outcomes. Finally, the evaluation of the material after its use identifies materials 
that have fostered the development of mental representations linked to the target 
concept, have facilitated knowledge acquisition without leading to 
misconceptions, and can therefore be regarded as effective tools for conceptual 
learning.  
From the evaluation of indicative educational materials for shapes, it became 
apparent that no single material could comprehensively address all aspects of 
shape construction in early years mathematics. A comprehensive grasp of each 
material’s unique characteristics, the mathematical concepts they provoke, and 
the interconnections between representations is indispensable for identifying 
mathematical concepts, fostering generalizations, and facilitating the transition 
to abstract thinking. Designing why, when and how those materials would be 
employed, ensures the conditions for transforming them from artifacts into 
effective educational materials.  
The above mentioned offers elements to be taken into consideration for 
designing and developing more sophisticated and synthetic forms of educational 
materials, such as multi-materials, which can be utilized to construct the 
mathematical concepts. By systematically evaluating AEMs based on these 
criteria, educators can make informed decisions about which materials are best 
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suited for integration into mathematics classrooms to support student learning 
and achievement. 
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In mathematics education at the early school level, “educational resources in 
the mathematics classroom” are understood not only as the latest technical 
innovations, but above all as textbooks. It is important for teachers to be able to 
use them appropriately, making full use of the potential of the tasks contained in 
the textbooks. The very teaching of mathematics at this level often requires a 
dynamic approach, especially in the context of considering issues related to 
geometry. It is important to form at this early level the intuitions of concepts that 
appear openly in teaching at higher educational levels. For a good educational 
process, it is important that teachers are well prepared and able to use the 
materials presented to them flexibly. Therefore, future teachers’ mathematical 
knowledge and intuitions related to mathematical issues are important. The 
research conducted among future early school teachers described in the paper 
shows their understanding of issues related to rotational movement. The results 
of the research show both the great potential of students in this area, as well as 
areas for in-depth work on better understanding the issue of rotational motion 
on a plane.  
JUSTIFICATION OF THE RESEARCH PROBLEM 
When we hear the phrase ‘educational resources in the mathematics classroom’, 
we generally think that it will be related to the latest technological achievements 
or new forms of classroom management. Indeed, much attention is paid to the 
use of appropriate computer programmes, or new trends such as STEAM, which 
exploit the multifaceted nature of learning in a non-classroom environment. 
Access to technological advances is, on the one hand, highly desirable, but often 
disturbing. Many concerns and questions are raised about access to artificial 
intelligence in general: how to use it effectively in teaching, how to defend 
against unwanted (unethical) use by students, e.g., when solving homework 
assignments. Undoubtedly, any research in this area is a requirement of the 
modern world. 
Regardless of emerging innovations, extensive research shows that what is 
commonly used in schools is the textbook (Haggarty & Pepin, 2002; Silverman 
& Even, 2015) or an e-textbook (Kamińska, 2015). Its uses can be varied (Fan & 
Kaeley 2000; Stylianides, 2014). But even focusing only on the proposed 
textbook tasks opens up a huge research area (Novotna et al., 2023; Sosniak & 
Stodolsky, 1993). 
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A very specific didactic issue is the question of textbooks for mathematics at 
early educational levels. In Poland, for some time there was a belief that for 
students at this level, exercise books would be enough because the content of the 
education would be presented to them by the teacher. This trend has changed, 
but there is still an opinion that the educational content contained in the textbook 
should clearly refer to what is contained in the Core Curriculum. The Ministry 
of National Education points out that the textbook is supposed to help students 
and teachers implement the core curriculum, but it should be remembered that 
the teacher may use a textbook but is free not to do so. You can use the 
textbook, but you don’t have to. However, only that this form of work (without a 
textbook) is chosen by a small group of conscious teachers (Bieńkowska-Wójcik 
et al., 2014). It is very difficult, especially at this educational level, to convince 
teachers that textbook proposals should be looked at more broadly, more 
flexibly, not only through the prism of compliance with the core curriculum. In 
particular, it should be taken into account that the specific nature of mathematics 
teaching requires that intuitions of concepts that overtly appear in teaching at 
higher educational levels should be formed at this early level. 
In our considerations, we will focus on one task addressed to early school 
students. The task as such is not yet included in any of the educational packages 
existing in Poland. It is a proposition resulting from our research on the intuitive 
understanding of rotation (isometric transformation on a plane) by 9-10-year-old 
students. 
A DYNAMIC APPROACH TO TEACHING GEOMETRY AS A 
DIDACTIC ISSUE 
Geometric reasoning has its own specificity, which is still not fully explored. 
There are many indications that the formation of geometric concepts proceeds 
differently from that of arithmetic concepts. Researchers emphasize that the first 
source for basic geometric concepts is visual information, but for the 
development of geometric reasoning the imagery of movement is needed. 
The student should be able to imagine the effect of certain actions performed on 
a geometrical object or its elements (e.g., the making of a cross-section, the 
extension of a height, changes in an internal angle), as well as the effect of 
actions performed with this object (e.g., the rearrangement of a block in a 
construction made of cubes, parallel displacement or rotation around a fixed 
point by a certain angle). It is only through such ideas that it will be possible to 
solve a large group of geometrical problems. In this way, dynamic reasoning is 
an essential skill for a certain class of geometric problems. 
The need for specific interventions related to the formation of such skills has 
been voiced by researchers gathered around Milan Hejný (Hejný 2000; Hejný, 
Jirotková, & Slezaková, 2007, 2008; Hejný, Jirotková, Slezaková, & 
Michalcova, 2009; Jirotková, 2016). These opinions convince us that proposals 
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based on the use of computer techniques are not sufficient here. The didactic 
problem of visualising movement in geometry teaching is often linked to the 
possibilities offered by the use of computer programs such as Cabri or Geo-
Gebra, but there are also studies suggesting significant caution in their use, 
especially at lower educational levels (Hoyles, 1996; Jones, 1999, 2000). 
Therefore, it is worth looking for teaching proposals that will allow the young 
pupil to act in the reality that surrounds him. Through the use of one’s own 
experiences (the informal ones), it is possible to form intuitions regarding 
dynamic geometrical ideas. Such an approach is in line with the whole path that 
humanity has gone through, when geometrical concepts and procedures were 
formed on the basis of practical activities (such as creating buildings, moving in 
space, constructing tools or using design) (Hejny, 1990; Henderson & Taimina, 
2005). 
In Poland, the problem of searching for a didactic path directed at the 
mathematization of motion (leading students to discover the properties and 
description of certain isometric transformations) has a long-standing research 
tradition. One of the threads of this multidirectional research was the study of 
the possibilities of students, being at the pre-definitional level, to create the idea 
of plane rotation with respect to a fixed point. 
WHAT DO WE KNOW FROM PREVIOUS RESEARCH  
The origins of research related to introducing students to an understanding of 
isometric transformations were strongly inspired by suggestions from Weyl’s 
(1952) series of lectures on symmetries. He wrote:  

(…) symmetric means something like well-proportioned, well-balanced, and 
symmetry denotes that sort of concordance of several parts by which they integrate 
into a whole. Beauty is bound up with symmetry. (p. 3)  

The conviction that the beginnings of learning about symmetries should be 
connected with the construction of patterns and ornaments is very strongly 
rooted in the Polish didactic tradition. This was also the origin of research, 
which in a sense confirmed this tradition (Jagoda & Swoboda, 2010, 2011; 
Swoboda & Vighi, 2016). However, at the next stage, a need arose to go beyond 
functioning in the world of ornaments (based on the relation of object position to 
object). There was a need to organise such a learning environment in which the 
pupil himself could experience the validity of the definitions of geometric 
transformations learnt in the older grades. The results of the research carried out 
in this direction suggested that it was worth exploring the teaching strand of 
rotation formation. A series of experiments was created, in which students 
formed their idea of the position of a figure in successive stages in motion 
relative to a fixed point (Swoboda & Zambrowska, 2023; Szkoła, 2016). 

The results of recent research (Swoboda, Maj-Tatsis & Pytlak, in press) suggest 
that there are some specific teaching problems to which teachers should be 
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sensitive when working on building intuition of rotation among children. These 
include: 

1. Maintaining a constant shape after a transformation is not a significant 
pedagogical problem. It is only necessary to strive to limit technical issues 
related to shape replication, adapting to the manual skills of a student. 

2. Students should be directed towards understanding the properties of a 
circle (center of rotation, constant radius length) at an early stage. 

3. Maintaining a trajectory along the circle for all points of the figure is one 
of the main pedagogical challenges. 

4. Another important pedagogical issue is drawing attention to maintaining a 
constant orientation of the figure. This is particularly crucial for 
understanding the defining description of axial symmetry. 

However, since the issue of building intuitions of rigid movement is not 
explored among the topics addressed in early school education, it is worthwhile 
to build these intuitions, as it were, ‘by the way’ of implementing other topics. 
Such an approach is consistent with the third principle of the H-mat conception: 
Interlinking topics: not isolating mathematical patterns. The authors of this 
principle state:  

When we connect the individual topics with each other, especially using our own 
experience, we are easily able to deduce or recall a particular piece of knowledge. 
(…) We learn about new concepts, processes, problem-solving strategies, and 
phenomena in different environments, and we gain a good understanding of them 
by putting the puzzle-pieces of partial knowledge from the various environments, 
and from the various activities, together (H-mat o.p.s., 2024).  

In our opinion, an environment that will bring students closer to the idea of 
rotational movement could be analyzing clockwise motion. The hands are 
rigidly fixed in the centre of the clock face, which naturally emphasises the 
function of the centre of rotation. However, it is necessary to structure the task 
in such a way that it is possible to draw attention to the additional defining 
conditions for rigid rotation. In addition, teachers need to be aware of which 
elements to pay attention to when analysing students’ work. 
However, can teachers look at task proposals broadly enough to use them to 
build intuition and associations with various mathematical topics? This problem 
was the main research question described in this study. 
METHODOLOGY OF RESEARCH 
The course of the research 
The research was carried out on a group of 118 female Pedagogy students 
(Preschool and Early School Pedagogy), during the Methodology of 
Mathematical Education course, in February and March 2024. Geometrical 
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topics had not yet been covered in this course. It was a deliberate procedure. 
Above all, we wanted to investigate whether future female early school 
education teachers can use the task to form such intuitions, which are beneficial 
for further learning about isometric transformations.
Research objectives

1. Will early school teachers recognise the geometric problem in the ‘clocks’
task?

2. What properties of rigid rotation on the plane relative to a fixed point can 
they incorporate in their own solutions?

3. How do they react to inappropriate student solutions - can they specify 
what the inappropriateness of the solution is?

Research tools
The entire study involved working on two worksheets.
WORKSHEET 1 (in the original the students had more space for the drawing)
Anne has glued a triangle to the hour hand. The pointer is positioned at 12 
o’clock (as shown in the picture below). How will the triangle be arranged if 
the pointer moves to 3 o’clock? And how if the pointer moves to 6 o’clock 
or 8 o’clock? Represent these situations in the figures below.

Figure 1: Worksheet 1.

The aim of this task was to investigate the intuition and knowledge of female 
students - future teachers - related to rotation relative to a fixed point. The 
manipulation of the hands of a clock is an activity that is always performed in 
school when implementing topics related to the measurement of time. In 
addition, it can be used to build intuition about rotation. It naturally builds up 
intuitions related to circular motion (centre of rotation, constant radius length).
We assumed that the positioning of the clock hand itself would not be a problem 
for future teachers. What was important was the arrangement of the triangle in 
such a way that its shape was preserved, its orientation on the plane was correct, 
and its correct positioning in relation to the circle (related to the preservation of 
the trajectory of movement along the arc of all points of the figure). Making 
several drawings may have strengthened the image of continuous motion. The 
solutions to this task were to be the basis for answering the research question: 



Early childhood teachers’ understanding of a plane rotation task 29

what properties of rigid rotation in the plane relative to a fixed point can the 
students incorporate in their own solutions.
After completing the tasks from the first worksheet, students were asked to 
reflect on the presented task. They were to write what mathematical content this 
task was related to, and the answers provided were to be the basis for 
determining whether they saw in the task an opportunity to build intuitions 
related to the understanding of rotation.They were then given card two, 
presented below.
WORKSHEET 2 (modified for the purpose of the article - in the original, the drawings
were placed one below the other; additionally, the space required to write the verbal 
answer was not included here)
The second-grade students were solving a clock task. They drew how the 
triangle would be arranged when the hand moved to 6 o’clock. Some 
solutions are shown below. Please assess their correctness. If you think 
the solution is wrong, try to provide the type of error and its cause. 

Solution 1: Solution 2: Solution 3: Solution 4:

Answer: Answer: Answer: Answer:

Figure 2: Worksheet 2.

The choice of six o’clock was deliberate - in relation to the starting arrangement 
(12 o’clock), the triangle made a 180-degree rotation. In one of our previous
studies (Swoboda, Maj-Tatsis, & Pytlak, in press), this configuration was one of 
the more difficult ones.
Only the third proposal is correct. In the others, typical errors, appearing in our 
earlier studies, are presented: the first figure shows the rotation of the triangle 
‘as if on a mill wheel’, the second one does not preserve the orientation of the 
plane (the triangle is turned inside out), in the fourth proposal only one point of 
the figure preserves the trajectory of movement along the circle.
The aim of this task was to investigate how female students - future teachers -
react to student solutions, whether they can specify what the inappropriateness 
of a solution is.
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Analysis of the collected research material 
A rather surprising result of the analysis of the solutions to the tasks from sheet 
1 was the finding that not all arrangements were equally difficult. Hour 3 posed 
no problems - the triangle retained its shape and size; its position relative to the 
circle was correct. Perhaps this is related to the sheer size of the angle of rotation 
(the angle being relatively small, a right-angle alignment is typical). The 
erroneous solutions (if any appeared here), related to the size of the triangle 
drawn (too small). It was also the case that the student did not understand the 
task at all, since she drew a triangle by connecting the ends of the two drawn 
clock hands. 
The second alignment - at 6 o’clock - caused more problems. There were 
arrangements that did not preserve the orientation of space (i.e. the triangles 
were ‘reflected’ as in axial symmetry) - this was the most common error. It was 
also quite common to draw a triangle with a shape far from the model. 

 
Figure 3: Typical mistakes made by student for 6 o’clock. 

The most problematic was the alignment of the triangle at 8.00 a.m. Perhaps this 
was the result of work on the previous two positions, where the triangle made a 
rotation of 900. In this alignment, the triangle changed shape (to isosceles, 
obtuse), and did not maintain an arc trajectory for all its points.  

 
Figure 4: Example of students’ solution for 8 o’clock. 

 
A summary of these solutions is provided in Table 1. 
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 3 o’clock 6 o’clock 8 o’clock 

 Correct 
solution 

Incorrect 
solution 

Correct 
solution 

Incorrect 
solution 

Correct 
solution 

Incorrect 
solution 

Number 107 11 96 19 91 27 

% 90 10 81 19 77 23 

Table 1: Students’ solutions. 
The analysis of the statements concerning the task itself also gave rise to 
interesting conclusions. The students related the task to more than one issue. 
This in itself is a good approach, but the types of answers are far from the 
expectations of geometric transformations. Most often, female students 
associated the task with the problem of time measurement. Regardless of the 
fact that the students drew the triangle in different positions in their work, when 
describing the purpose of the task they stated that it was about a clock and 
reading the hours. This approach to the task was dominant. 
Equally frequent were responses related to geometric figures: triangle, 
recognition of triangle, right-angled triangle and even view of triangle from 
different perspectives. There was sometimes criticism about the fact that other 
geometric figures do not appear in the task. There were also references to the 
angle (which could indicate an understanding of the angle as a measure of 
rotation) 
Wherever there was a reference to the intuition of geometric transformations, 
there were formulations about rotational motion: learning geometry - how a 
triangle rotates, rotating a geometric figure in a certain way, changing the 
position of a figure (every hour the triangle looks differently), the position of the 
triangle as the clock hand moves, rotating a figure, implementing a rotation. 
However, there were also inappropriate, or very broad, references: geometric 
displacement, movement of a triangle, displacement of figures, symmetry 
(without specification - what kind), mirror symmetry. 
Some of the statements were so general that it is difficult to classify them into a 
specific category. For example, students stated that this task develops the 
imagination, is about geometry and even about projection. And such general 
statements were the most numerous. 
Regardless of these comments, it can be concluded that the students used an 
intuitive idea of rigid rotational motion, mostly realizing all its properties. 
However, they are not aware of the mathematical issues involved, their 
intuitions are deeply hidden. The quantitative distribution of these responses is 
shown in the Table 2.  
 



32 EWA SWOBODA, MARTA PYTLAK 

 
A clock and 

hours Geometric figures 
Intuitions of 
geometric 

transformations 
others 

Number 88 56 18 77 

% 75 48 15 65 

Table 2: Categories of students’ responses. 
Analysis of the results from Worksheet 2 
Due to the different approach to each of the presented proposals, we will 
separately discuss the results regarding teachers’ attitudes towards each type of 
error. 
Proposition 1 Some participants said that this task was well solved. They wrote: 
the triangle moves around the circle, the pointer moves without changing the 
alignment of the triangle, the triangle's position is constant. These opinions are 
consistent with the approach observed in the research described in (Swoboda et 
al., 2024). However, there is a fundamental difference between teachers’ and 
students’ approach: very often teachers wrote that the student redrew the 
triangle without changing the position, the final alignment the same as the 
initial alignment, nothing changed (for students it was the rotation of the 
triangle ‘as if on a mill wheel’). Thus, it is not clear whether the assessment of 
this solution assumed any movement or not. 
Proposition 2. In these responses, participants emphasised that the triangle is in 
a mirror image. Thus, they compare the initial position of the triangle (12 
o’clock) to the current position (6 o’clock) - such an explanation was sometimes 
even illustrated in the sketch drawings made by the future teachers. Thus, there 
is no reference to the fundamental idea of rotational motion. After such a 
statement, some even stated that the task was well solved. It was also quite 
common to omit any justification. 
Proposition 3. In general, respondents stated that the task was correctly solved. 
Quite surprisingly, in some cases this solution was considered to be incorrect. 
The argument given was that a mirror image was used. However, there was also 
an answer which indicated that a mirror image was used in the task and therefore 
the solution was correct(!). 
Proposition 4. Almost everyone stated that this task was solved incorrectly. A 
sizable group felt that here the triangle had changed its shape(!) However, 
mostly students had trouble justifying why this solution was wrong. It was 
written in very general terms: it is ‘crooked’, the alignment is not correct, it is 
connected to the circle with the wrong vertex, it should be adjacent to the clock 
with one side, and even the student did not know how to draw it. No one 
mentioned that each point of the triangle in rotation determines a trajectory that 
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is an arc, i.e. that the distance of each point of the figure from the centre of 
rotation should be constant. A quantitative summary of the results is shown in 
Table 3. 

 
Task 1 Task 2 Task 3 Task 4 

correct 
solution 

incorrect 
solution 

correct 
solution 

incorrect 
solution 

correct 
solution 

incorrect 
solution 

correct 
solution 

incorrect 
solution 

Number 15 103 25 93 114 4 7 111 

% 12 88 21 79 97 3 5 95 

Table 3: Student’s responses in Worksheet 2. 
SUMMARY AND CONCLUSIONS  
The analysis of the collected material raises ambivalent feelings. When solving 
the task, most of the students - future teachers - acted correctly. They were able 
to maintain both the size and shape of the proposed triangle, and its orientation 
on the plane (without using a mirror image). Intuitively, they kept a constant 
distance of all points of the triangle from the center of rotation, regardless of the 
size of the rotation angle. This is a very promising result, suggesting that the 
idea for the task itself is a good one, as it triggers those elements and properties 
that are significantly related to the concept of rotation. These incorrect solutions 
that appeared turned out to be typical incorrect solutions also observed in the 
student group. These are perhaps the ‘epistemological obstacles’ associated with 
this concept. 
However, there are also less optimistic conclusions. As can be seen from the 
summary in Table 2, students are unable to clearly link the issue presented in 
this task with the idea of rigid rotational motion. They look at the task either 
very narrowly (a task about a clock) or very broadly, enigmatically (geometric, 
about the position of a figure). When referring to the students’ solutions, they 
feel lost. Although they are good at identifying correctly solved tasks, they are 
unable to specify what is wrong with the solutions they (correctly) treat as 
incorrect. 
Regardless, the mere fact that they can see anything more than a measurement of 
time is taken as a good starting point for further work. 
In Poland, professional training in Early Childhood Education, regards to 
mathematics preparation, includes two different subjects: Mathematical 
Education and Methodology of Mathematics Education. The objectives of the 
two subjects are rather different - the first one reminds and consolidates 
concepts from school mathematics (generally from the older grades), the second 
one focuses on mathematical issues implemented according to the core 
curriculum for the younger grades. It seems worthwhile to revise the syllabuses 
for both subjects in such a way that the issues of Mathematics Education are 
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linked directly to such solutions, which fall under the issues discussed within the 
Methodology. Perhaps this will better open students up to a broad approach to 
shaping the mathematical intuitions needed by the student at later stages of 
schooling. It also goes without saying that such tasks should appear in textbooks 
for primary school students. 
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MATHEMATICS TEXTBOOKS AS A POSSIBLE CAUSE 
OF STUDENTS’ MISCONCEPTIONS IN PLANIMETRY 

Vlasta Moravcová 
Charles University, Prague, Czech Republic 

 
The paper deals with selected phenomena occurring in Czech mathematics 
textbooks, and their possible influence on the formation of students’ 
misconceptions in the field of planimetry. The analysis of textbooks was 
elaborated as part of long-term research into Czech pupils’ and students’ 
conceptual knowledge in geometry. We have found that the design of the 
textbooks is the possible cause of some students’ misconceptions. However, in 
our opinion, the mathematics teacher, who is well acquainted with the risks, has 
the tools to eliminate these misconceptions.  
INTRODUCTION AND THEORETICAL BACKGROUND 
Mathematics is one of the key parts of the school curriculum, and the level of its 
knowledge has a significant impact on our lives. However, mathematics is 
difficult for many Czech pupils and students and does not rank among their 
favourite subjects. This fact is repeatedly confirmed by research by the Czech 
School Inspectorate (e.g., Novosák et al., 2022). Many mathematics teachers 
also perceive their subject as difficult and unpopular with students (Rendl et al., 
2013). 
Geometry, especially the synthetic one, comes to the fore among the difficult 
topics of mathematics. Students cannot rely only on algorithmization, but often 
need a deeper understanding of the subject matter. Children can become familiar 
with elementary geometrical concepts in a natural way already at preschool age. 
This knowledge needs to be further developed in accordance with the age of the 
pupils. However, part of the teachers, especially in the primary school, struggle 
with some tasks in geometry themselves and therefore they do not like to teach it 
(e.g., Šťastná, 2012; Son, 2006; Hacısalihoğlu-Karadeniz et al., 2015). These 
teachers are dependent on various teaching materials. 
Despite the growing trend of digitisation, recent researches show that the use of 
printed textbooks in Czech schools (Pešková, 2018) and abroad (e.g., Hansen & 
Gissel, 2017) is still prevalent. According to Sikorová and Červenková (2014), 
mathematics teachers primarily look for suitable tasks in textbooks. Teachers 
usually prefer the textbooks published by publishing houses, checked by high-
quality lecturers, and, ideally, reviewed and approved by the Ministry of 
Education, Youth and Sports1. They have more confidence in the correctness of 
the information given in such textbooks. 

 
1 For more details on the approval of textbooks in the Czech Republic, see (Greger, 2005). 
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Textbooks can be analysed from many perspectives and in many ways, and their 
analysis is an integral part of pedagogical research. In the Czech Republic, two 
main approaches to textbook analysis come to the fore: the curricular approach 
focusing on the relationship between the national curriculum and textbooks, and 
the psychological-didactical approach putting the transformation and 
representation of content and methods of working with textbooks, etc. in the 
spotlight (Knecht & Janík, 2008). 
Textbook analysis employs various methods within both mentioned approaches. 
An overview of these research methods is introduced by Janko (2011). His 
classification of methods is based on Průcha’s findings (1998). Janko (2011) 
distinguishes seven textbook analysis methods: quantitative method (finding the 
occurrence and frequency of certain measurable units of a textbook), content 
analysis (finding and evaluating qualitative textbook properties), questioning 
(collecting and evaluating of statements about various properties of a textbook), 
observation method (researching into ways of using a textbook in teaching and 
its influence on students), testing method (testing students to determine learning 
outcomes caused by a textbook), experimental method (researching into the 
influence of textbook modifications), and comparative method (comparison 
between several textbooks from different points of view). The most commonly 
used textbook research method is presumably the content analysis. Although this 
method is initially a qualitative, owing to the subsequent categorization of the 
data obtained, it turns into a quantitative one. 
A high-quality mathematics textbook should, among other things, be error-free, 
emphasize essential problems and respect the national curriculum (Odvárko, 
2019). The geometry curriculum can be structured in various ways and is also 
processed differently in individual Czech textbooks (Janků, 2011). The progress 
from concrete conception to abstract one is essential in teaching geometry and in 
understanding geometrical concepts. This idea corresponds to the van Hiele’s 
Theory. Van Hiele described five levels of student thinking in geometry: 
visualization, analysis, abstraction, deduction and rigor (van Hiele, 1986; 
Mayberry, 1983). Students who have reached the level of abstraction should not 
show the evidence of misconceptions. This level should be reached by students 
during lower secondary school (Budínová, 2021). Tall and Hejný work with the 
similar principles. Tall et al. (2001) view the teaching of geometry from the 
perception of shapes through the manipulation of prototypes of objects to the 
proof and axiomatic construction of geometry. According to the Hejný’s Theory 
of Generic Models, students gain abstract knowledge from isolated models 
(Hejný, 2012). 
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In the years 2017 and 2018, we2 tested the level of Czech pupils’ and students’ 
understanding of selected concepts from the field of planimetry. We discovered 
several students’ misconceptions (Moravcová et al., 2020). In the subsequent 
search for causes, we found that one of the problems could be in mathematics 
textbooks design, which, although they are very diverse, contain common 
shortcomings. In this contribution, we deal in more detail with the question of 
whether textbooks can be one of the causes of students’ misconceptions; and if 
so, how to minimise this negative influence. 
METHODOLOGY 
The testing described above was only one part of our long-term empirical 
research into students’ conceptual knowledge. In the first phase, three tests 
focused on selected concepts from the field of planimetry were prepared and 
administered to Czech pupils and students of different ages: Test I was solved 
by 505 ISCED I graduates, Test II was solved by 437 ISCED II graduates, and 
Test III was solved by 472 ISCED III graduates and by 44 pre-service 
mathematics teachers in their last two university study years. The sample was 
obtained on the basis of its availability and included students of 9 elementary 
schools (ISCED I + ISCED II), 8 grammar schools (ISCED II + ISCED III) and 
5 universities in the Czech Republic. All students were tested anonymously. 
The assignments were based on commonly used mathematics textbooks and 
with respect to the Czech national curriculum (Balada et al., 2007; MŠMT, 
2017). Moreover, the long-term teaching geometry experience of the research 
team members was also reflected. 
The clarity of all the tests and the time limits for solving them were first verified 
with a small sample in the form of pre-tests. Some types of answers were 
subsequently investigated through post-tests and guided interviews with other 
groups of respondents of the same age. For more details about the testing (such 
as the number of tasks and their formulation, time limits, etc.), see (Robová et 
al., 2019; Halas et al., 2019; Moravcová & Hromadová, 2020; Moravcová et al., 
2021). 
Results of the tests showed which concepts pupils/students have problems with, 
but did not answer the question of what the causes of these misconceptions are. 
So the second phase of research followed: the search for the causes of students’ 
misconceptions. This phase is still ongoing. 

 
2 Testing and data evaluation was carried out by a research team made up of members (namely in alphabetic 

order: Zdeněk Halas, Jana Hromadová, Vlasta Moravcová, Jarmila Robová) of the Department of 
Mathematics Education, Faculty of Mathematics and Physics, Charles University. 
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For each tested concept (so far we have dealt in more detail with the concepts of 
straight line, ray, angle, circle, disk, triangle, rectangle, trapezoid,3 axial 
symmetry, central symmetry and rotation, specifically rotation of a straight 
line), we monitor when and how it is defined in individual textbooks, in which 
context it is placed and whether it is adequately practiced. We focus on concept 
classification, visual illustration, and other factors that may influence how each 
student understands the concept. The results presented in this paper proceed 
mainly from the analysis of the concepts of triangle, rectangle, trapezoid and 
axial symmetry. 
In this research, all the official Czech textbooks used by the teachers of the 
tested classes were included. These textbooks were edited by Alter, Didaktis, 
Fraus, H-mat, Nová Škola, Prodos, Prometheus, SPN, Studio 1+1 and Taktik 
publishing houses (in alphabetical order). We explore complete series for 
individual levels of education, including the relevant collections of exercises. In 
total, we examined more than 80 textbooks and collections of exercises focusing 
on topics in planimetry. However, the results for each researched concept were 
based only on those textbooks in which the given concept was found. For 
example, the trapezoid is introduced to students in the lower secondary school. 
Therefore, we only followed this concept in textbooks for lower and upper 
secondary schools. Moreover, from the given textbook series, we chose the 
textbook for the grade in which the concept is firstly introduced. Thus, the 
number of analysed textbooks for one concept varies from 9 to 16. The 
exception is the concept of rotation, which is introduced in upper secondary 
school, and was only examined in upper secondary school textbooks. 
For each examined concept, we established several criteria and, using the 
qualitative content analysis, we looked into whether a textbook meets these 
criteria, and alternatively to what extent. The criteria were always based on 
students’ errors in our testing. For example, we set the following criteria for the 
trapezoid concept: 

A non-prototype/non-model of trapezoid occurs in the textbook. 
A trapezoid in a non-prototypical position occurs in the textbook. 

Furthermore, we noticed how the trapezoid is defined and included in the 
classification of quadrilaterals, and whether it is treated correctly in the tasks. 
Thus, our research combines the quantitative method and content analysis 
(Janko, 2011). We are not aware of a similar analysis of Czech textbooks that 
would monitor the introduction of geometric concepts to such an extent. 
 

 
3 We use the term trapezoid for a quadrilateral with just one pair of parallel sides, while the term trapezium for 

a quadrilateral with no parallel sides (in according with the exclusive definition, which is taught in Czech 
schools, and with Oxford Advanced Learner’s Dictionary). 
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RESULTS AND DISCUSSION 
Based on the textbooks analysis, we observed four problematic phenomena: 
early graphic transition from 2D shapes to their border; the prevalent occurrence 
of prototypes of shapes or their prototypical positions; the absence of non-
models; and the absence of atypical tasks. These phenomena are evident across 
all the analysed textbooks. In this section, we will describe the individual 
phenomena and their influence in more detail. 
Graphic transition from 2D shapes to their border 
Children are introduced to basic shapes such as triangle, square, circle, 
rectangle, etc. already at preschool age. Then, they gradually develop their 
knowledge. In accordance with the van Hiele’s levels, a graduate of primary 
school should be at the level of analysis, i.e., be able to describe the properties 
of a shape. On secondary school level, a student should ideally reach the level of 
abstraction, i.e., to be able to classify and sort shapes according to their 
properties and should not have fixed misconceptions (Budínová, 2021). 
In our research, however, we found out that many students do not consider the 
inner point of a 2D shape to be a point of the shape; i.e., they have a 
misconception “2D shape is the same as a boundary of the shape”. This problem 
was tested by several tasks related to various shapes in our research; among 
other things, we observed the students’ understanding of triangle. 
The “triangle misconception” appears already at the end of the primary school, 
when approximately half of the respondents perceive the triangle only as a 
closed polygonal chain (Robová, 2019). Moreover, it persists in older students, 
including pre-service teachers. The same misconception was also described by 
Budínová (2021). 

 
Figure 1: Illustration from the textbook (Molnár & Mikulenková, 2019; p. 7) 

for 2nd grade of primary school. 

In our opinion, this misconception can originate in the early stages of education 
based on empirical materials that are presented to students in the form of 
triangle representations in textbooks. While pupils are presented with coloured 
triangles in the 1st and 2nd grade of primary school (Figure 1), they begin to 
construct triangles themselves and suddenly the coloured filling is missing in the 
pictures from the 3rd grade (Figure 2). The result of such constructions is 
presented as a closed polygonal chain. The absence of coloured filling in the 
majority of tasks was found in all analysed textbooks for the 3rd and higher 
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grades of the primary school (a total of 15 textbooks). Moreover, this tendency 
is supported by the fact that, in connection with triangles, textbooks often talk 
only about their vertices and sides but rarely about any inner points. Then it is 
understandable that the inner points of the triangle do not have to be considered 
by the students as an integral part of the shape. Kupčáková (2017) and Budínová 
(2018) also draw attention to the influence of textbooks on pupils’ 
understanding of this issue with similar results. We also observed the same issue 
in the case of rectangle, circle and angle. 

 
Figure 2: Illustration from the textbook (Molnár & Mikulenková, 2020; p. 7)  

for 3rd grade of primary school. 

Dominant occurrence of prototypes of shapes or their prototypical positions 
The students’ fixation on prototypes of geometrical shapes or their prototypical 
positions4 indicates that the students have not even reached the analysis level of 
the van Hiele’s scale (Tsamir et al., 2015). We also observed this issue, and it 
was done through several tasks again. We found out a students’ prototypical 
perception of square, isosceles triangle, and trapezoid (Halas et al., 2019). 
Furthermore, we encountered a strong fixation of the axial symmetry axis in 
a vertical position (Moravcová et al., 2021). The preference for prototypes and 
prototypical positions causes a number of misconceptions in geometry. 
Problems with fixation on prototypes have also been pointed out by many other 
researchers (e.g., Budínová, 2017, 2018; Clements et al., 1999; Tirosh et al., 
2011). 
As with the previous phenomenon, there might be an influence of empirical 
material, especially textbooks containing predominantly images of prototypes 
and shapes in prototypical positions. For example, the trapezoid concept was 
analysed in 9 textbooks. In 4 of them, only the prototypical positions (with 
horizontal bases, Figure 3) are depicted. In the remaining 5 textbooks, the 
trapezoid occurs in a different position, but the prototypical positions strongly 
predominate. An obtuse trapezoid occurs only in 4 textbooks. The prevalence of 

 
4 The prototype of a triangle is an equilateral triangle, the prototype of a quadrilateral is a square, etc. The shapes 

in the prototypical position typically have a horizontally located base/bases. 
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prototypes and prototypical positions of shapes may negatively influence the 
student’s conceptual understanding of geometrical shapes (Hejný, 2012), as well 
as result in their concept image not corresponding to their concept definition 
(Vinner & Hershkowitz, 1980; Tall & Vinner, 1981). 

 
Figure 3: Illustration from the textbook (Herman et al., 1995; p. 83) 

for lower secondary school. 

Absence of non-models 
The analysis and abstraction levels of the van Hiele’s scale are related to the 
students’ ability to recognize a non-model, i.e., an object that does not have 
a declared property. In Test II, almost a fifth of the respondents identified the 
trapezium as a trapezoid (Halas et al., 2019). And, one of the most frequent 
misconceptions found out in our testing was that the students identified 
a rhomboid as an axially symmetric shape (Moravcová et al., 2021). This 
misconception was also described by other researchers (Aktaş and Ünlü, 2017; 
Son, 2006; Leikin, Berman & Zaslavsky, 2000; Hacısalihoğlu-Karadeniz et al., 
2015). 
The concept of axial symmetry was examined in 13 textbooks from the 5th 
grade of elementary school to upper secondary school. In 4 of them, non-models 
of axially symmetrical shapes do not occur. The rhomboid (which is an 
interesting counterexample for its central symmetry) appears only in 5 
textbooks, but in 3 of them only as part of a task. We have found a similar 
situation in the case of non-models of other concepts. 
Based on the results of our research, we can say that Czech mathematics 
textbooks do not contain a sufficient number of non-models of symmetrical 
figures, in general, they do not contain enough non-models of anything. In our 
opinion, students should encounter non-models of a concept as soon as they are 
introduced to the new concept. This is the only way they can realise which key 
properties distinguish the presented concept from other concepts. 
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Absence of atypical tasks  
The most difficult tasks of our testing (from the students’ point of view) were 
generally those which do not commonly occur in textbooks. However, such 
tasks best verify whether a student really fully understands a certain 
mathematical concept. Kambilombilo and Sakala (2015) also pointed out the 
difficulties in problem solving beyond the standard tasks from textbooks. 
If a student encounters a type of task for the first time, he/she may confuse it 
with another one that he/she knows and is similar to. This confusion usually 
leads to an incorrect solution. Or, the student can proceed to a procedural 
approach, but, without sufficient conceptual knowledge, he/she again obtains an 
incorrect solution (Son, 2006). 

 
Figure 4: Symmetry axes o1, o2 of line segment AB (axis o2 is the perpendicular 

bisector of line segment AB). 

In one of the tasks, which appeared in all three tests, students had to determine 
the number of symmetry axes of a line segment (the correct answer is “two”, 
Figure 4). Most students believe that a line segment has just one axis of 
symmetry. In our opinion, they have confused the terms perpendicular bisector 
of a line segment [“axis of a line segment”, in Czech “osa úsečky”], which is 
commonly explained in textbooks, and symmetry axis of a line segment [in 
Czech “osa souměrnosti úsečky”], which, with one exception, we have not 
found in any textbook. In some cases, respondents tried to solve the problem 
procedurally – they drew possible axes into the picture, but found only one 
solution (Moravcová et al., 2021). 
The described phenomena satisfactorily explain most of the student 
misconceptions identified by the testing. Their influence on the formation of 
these misconceptions does not matter whether students work with the textbooks 
themselves, or only their teacher uses them in the class. 
From the given information, we deduce the following conclusion: mathematics 
textbooks can influence the formation of students’ misconceptions. 
This result can also be supported by the fact that many students and teachers 
refer to textbooks as an authority. The most straight-forward solution is a 
revision of mathematics textbooks. However, this is a lengthy and non-trivial 
process in many respects. Aktaş & Ünlü (2017) pointed out that textbooks are 
indispensable for the learning environments as well as teachers. We believe that 
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a teacher can help with the elimination of the negative textbooks influence. 
However, the necessary condition is that the teacher has a developed 
pedagogical content knowledge (Shulman, 1986). Problems with prototypes can 
be eliminated by using visual models, e.g., in a dynamic geometry software. 
Several researches confirmed that technology can help to better geometrical 
concept understanding (Hollebrands, 2004; Jonson-Gentile, Clements & 
Battista, 1994; Lobato & Ellis, 2002). Furthermore, demonstrating a sufficient 
number of non-models and exploring the differences between a model and a 
non-model of an object also can help students to gain the necessary conceptual 
knowledge. 
Last but not least, teachers should assign a variety of tasks, including complex, 
open-ended and problem-based, and should use various teaching methods. For 
example, peer instruction method is suitable for a deep concept understanding 
(Mazur, 1997; Vickrey et al., 2015). However, the key factor is that the teacher 
must be aware of possible problems. 
CONCLUSION 
Geometry is an important part of school mathematics. Their study contributes to 
the proper development of visualisation skills, critical thinking, problem-
solving, logical argument and so on (Jones, 2002). School geometry is not an 
easy subject, it places considerable demands on both the student and the teacher. 
The purpose of mathematics textbooks is to help both the student and the 
teacher. Above all, they should inspire teachers, and provide students with basic 
information and practice tasks. However, the strict use of only textbooks carries 
certain risks and may lead to the formation of students’ misconceptions in the 
field of planimetry. 
These risks can be eliminated by the teacher provided that he/she is aware of 
them and is able to choose appropriate methods and didactic aids in order to 
increase the students’ conceptual knowledge. 
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In this study, we investigate the opportunities for the students’ learning of 
similarity in mathematics textbook series (textbooks, workbooks, teachers’ 
guides) in compulsory education in Greece. Overall, we identified 176 similarity 
tasks, which were analysed with respect to the included type of similarity, their 
context, and, and their links with proportional reasoning. The results of the 
analyses revealed that most of the similarity tasks are “finding” or “reflecting” 
exercises, around one third of the tasks are situated in real-world context, whilst 
the students have the opportunity to develop their proportional reasoning 
working in around one third of the tasks. 
INTRODUCTION 
Textbooks are at the core of most educational systems with respect to 
mathematical teaching and learning (Glasnovic Gracin, 2018), as they are 
resources both for the students’ investigations and for the teachers’ organisation 
of the mathematics instruction (Lepik et al., 2015; Weinberg & Wiesner, 2011). 
Thus, the mathematics learning opportunities provided to the students are 
closely interwoven with the qualities of the textbooks (Van Zanten & Van Den 
Heuvel-Panhuizen, 2018). The term “opportunity to learn” has been 
conceptualised in several ways, depending on the educational dimensions of 
interest. For example, it may refer to content coverage, content exposure, 
content emphasis, and quality of instructional delivery (Wang, 1998), while it 
may also refer to a broader perspective including what schools and teachers 
offer but also how schools and teachers conduct instruction (Liu, 2009; Stein, 
2000).  
In this study, which is part of a PhD project, the focus is narrowed to the 
opportunities to learn similarity as communicated by the institutional discourse 
that is present in the didactical relationship in the mathematics classroom 
(teacher, students, mathematical knowledge) and appears to significantly 
influence students’ opportunities to learn (Hadar, 2017): the mathematics 
textbook series. ‘Mathematics textbook series’ (Son & Diletti, 2017) refer to a 
set of curricula resources that teachers use for the daily teaching: student 
textbooks, workbooks and teacher’s guide. Given a figure on a plane, a similar 
figure can be produced by dilation and/or translation and/or rotation and/or 
reflection. Dilation is defined by a centre point and a scale factor, translation is 
defined by a vector, rotation is defined by a centre point and an angle, and 
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reflection is defined by a line (Mammana, 2016; Yao & Manouchehri, 2019); 
they are all planar transformations that are one-to-one mapping from a set of 
points on the plane into itself. The concept of similarity was chosen as a central 
mathematical concept (as, for example, is the Pythagorean Theorem; Moutsios-
Rentzos et al., 2014) that may potentially allow for the meaningful linking of 
crucial geometrical and arithmetical/algebraic ideas and forms of reasoning 
(Cox, 2013), notably proportional reasoning.  
Consequently, we investigate the opportunities to learn similarity as offered in 
the textbook series in compulsory education in Greece. Though similarity is 
introduced as a geometrical relationship, one of the difficulties that students face 
is that similarity requires them to search for quantities and multiplicative 
relationships, which is closely related to the development of proportional 
reasoning (Lamon, 2020). Proportional reasoning involves understanding that if 
one quantity in a ratio is multiplied or divided by a factor, then the other 
quantity must be multiplied or divided by the same factor (Lobato et al., 2010). 
We consider the following questions: a) What type of tasks offer students the 
opportunity to learn similarity?, b) Do these tasks include real-world context?, 
and c) Do these tasks also offer the students the opportunity to develop their 
proportional reasoning? 
SIMILARITY IN TEXTBOOK SERIES 
The students start constructing the ideas of geometrical congruency and 
similarity early in their school life (in Greece from kindergarten). While 
congruent shapes are those that exactly match, similar shapes are those that are 
related to the embodied sensations and the notions of “magnifying” or 
“shrinking”. Later, for example in the middle grades, students have the 
opportunity to extend their understanding of similarity noticing, for example, 
that in similar figures their corresponding angles are congruent and their 
corresponding sides are related by a scale factor (National Council of Teachers 
of Mathematics, 2000). However, as already noted, the students’ opportunities to 
appropriately construct ideas about similarity are greatly affected by the quality 
of the textbook series (Törnroos, 2005), as textbook series often guide the 
teacher’s didactic and pedagogic decisions about the adopted practices and 
strategies (Wijaya et al., 2015).  
Researchers have investigated the opportunities that textbook series provide to 
students to learn the concept of similarity. Barcelos Amaral and Hollebrands 
(2023) considered textbooks from Brazil (for students of Grade 9) and the 
United States (for students of Grade 9 and 10) and found that, although there are 
differences, all textbooks begin the discussion of the concept of similarity in 
general, then apply the concept to similar triangles, with the similarity theorems 
and formal definitions to appear later. 
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The same researchers, in another study (Barcelos Amaral & Hollebrands, 2017) 
focussing again on Brazil (for students of Grade 9) and the United States (for 
students of Grade 9 and 10), accounted for few contextual problem tasks among 
the similarity tasks, many of which were of low cognitive demand. 
Wijayanti (2019) analysed Grade 7 and Grade 9 Indonesian mathematics 
textbooks and revealed that the textbook authors focus more on how to use 
similarity to solve tasks, than on treating in the notion itself. Techniques from 
proportion were often used to deal with the similarity tasks. All of the textbooks 
treated similarity into two parts: polygon similarity and triangle similarity. 
Furthermore, polygon similarity always appeared first, with an informal 
definition of what it means for two (general) polygons to be similar and then 
was worked within tasks.  
In the study of Lo et al. (2006), the focus was on the concept definitions and the 
concept images of similarity in three middle grade intended curricula (Grades 6-
8). It was found that in two curricula, similarity was introduced in the context of 
scaling, while the third one provided two different definitions of the concept. 
Moreover, three major types of similarity activities were identified: 
differentiating (to determine/identify the similarity of given figures based on the 
intuitive notion of similarity), measuring (to measure a variety of attributes and 
use those measurements to explore similarity relationships), and constructing (to 
use specific tools and/or follow instructions to construct similar figures). 
METHODS AND PROCEDURES 
Compulsory education in Greece lasts 11 years and includes pre-school (2 
years), primary school (6 years; Grade 1 – Grade 6) and low-secondary school 
(3 years; Grade 7 – Grade 9). It should be stressed that all Greek schools have 
the same mathematics textbooks series provided by the Greek Ministry of 
Education, which further elevates their role in the Greek mathematics textbook 
series. Thus, the textbook series of all grades of compulsory education were 
included in our study. In Greece, similarity is explicitly introduced in Grade 5 
and is further discussed in Grade 6, Grade 7, and Grade 9. The unit of analysis 
was the task. If a statement or a question had more than one part, then each part 
was a separate task. Overall, 176 similarity tasks were identified. Each task was 
coded separately for each of the three research questions and was recorded in a 
Microsoft EXCEL database.  
RESULTS 
Amongst the 176 selected similarity tasks, the vast majority of the tasks (n=126) 
appeared in the textbook series of the Grade 9 (111 in the student textbook, 15 in 
the teacher’s guide), 19 tasks Grade 5 (12 in the student textbook, 7 in the 
student workbook),15 tasks in Grade 6 (10 in the student textbook, 5 in the 
student workbook), and 16 tasks in Grade 7 (14 in student textbook, 2 in 
teacher’s guide). 
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Types of tasks offering students opportunities to learn similarity 
The Greek textbooks are organised in chapters and units. The units have 
expository sections and exercises sets. In expository sections, new concepts are 
presented, statements are justified, and worked examples are presented. Each 
unit usually concludes with a set of exercises to be solved by the students (cf. 
Bergwall, 2021). The selected tasks of the present study were either in an 
expository section or in an exercise. The analysis has identified three types of 
expository section similarity tasks: a) theory (definitions, statements, criteria, 
conclusions about the notion of similarity), b) history (notes about the historical 
development of the similarity concept), and c) worked-out examples (solved 
exemplary tasks). Furthermore, exercises were categorised as (building upon Lo 
et al., 2006): a) differentiating (to identify the similar figures or determine if a 
pair of figures are similar), b) measuring (to measure and use the measurement 
results to explore relationships), c) constructing (to construct similar figures 
given a scale or a ratio), d) finding (to find the missing length of a side, the 
missing angle measure, the scale, the ratio, by using algebraic operations; see 
Figure 1 left), e) reflecting (to explain, to argue, to justify, to prove, to evaluate 
if a statement is true or false, to conclude; see Figure 1 right), and f) 
communicating (to communicate their mathematical ideas on the similarity to 
others).  

 
Figure 1. Finding task in real-world context (left; Grade 5, Workbook-B, p. 37), 

reflecting task (right; Grade 6, Workbook-D, p. 15). 

The results of the analyses are outlined in Table 1. 
Task Type  f % 

Exercise  144 81.8% 

 communicating 6 3.4% 

 constructing 21 11.9% 

 differentiating 5 2.8% 

 finding 60 34.1% 

 

 
 
 

In a map that was drawn to scale 
1:100.000, two cities are 18 cm away. 
Find their real distance in km. Magnify the star in the on the grid on the right. 
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 measuring 3 1.7% 

 reflecting 49 27.8% 

Expository section  32 18.2% 

 history 2 1.1% 

 theory 15 8.5% 

 worked example 15 8.5% 

Table 1: Types of similarity tasks. 

Most of the tasks are exercises (144 out of 176; 81.8%). Among the 144 exercise 
tasks, the finding tasks are 60, and the reflecting tasks are 49. In the finding 
tasks, students are asked to find, for example, the scale of an architecture design, 
the real distance of two cities, the length of the homothetic square or triangle 
sides, the similarity ratio, the angles with the same size in similar polygons, the 
missing length side of similar triangles, the corresponding sides of similar 
triangles. When students are engaged in reflecting tasks, they are required, for 
example, to explain their work on doubling/tripling a geometrical object, to 
investigate the properties of similar polygons, to explore the relationship 
between similarity ratio and area ratio, to justify why two given triangles are 
similar, to decide the true/false of the sentence “equilateral triangles are 
similar”, to prove the similarity of two triangles. There are fewer yet noteworthy 
(11.9%) constructing tasks. For example, students are asked to construct a figure 
on a grid using a scale, a mechanical tool called “pantograph” that is used for 
scaling a figure, a similar polygon with certain similarity ratio when another 
polygon is given. Moreover, there are very few tasks that provide students with 
other opportunities to deal with the concept of similarity, such as, to 
identify/determine the similar polygons, to measure the lengths of two similar 
images (bees) so as to find their scale, to communicate their ideas about how 
similar triangles can be used to make astronomic observations.  
Considering the expository sections, there are only 2 out of the 32 expository 
tasks that present a similarity problem from the history of mathematics (they are 
about how Thales of Miletus found the height of Egyptian pyramid and how 
Heron of Alexandria calculated the distance between two unreachable points), 
while the remaining 30 are theory and worked examples of the same number, 
through which the authors define the concept of similarity and its properties, and 
illustrate its use. 
Opportunities to learn similarity in real-world context 
Mathematics researchers appear to converge in about the benefits on the 
students learning when mathematical tasks are based on real-world context, 
related to students’ personal day-to-day activities (even imaginary) or to broader 
public/community situations (Van Den Heuvel-Panhuizen, 2005). When 
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students are engaged in such tasks, they are motivated to organize the solution 
according to the relevant mathematical concepts (Organisation for Economic 
Co-operation and Development, 2004).  
The findings of our analysis with respect to this aspect of the similarity tasks in 
Greek textbook series is outlined in Table 2 (see also Figure 1, left).  

  Real-world context 
 Similarity tasks f % 

Grade 5 19 17 89.5% 

Grade 6 15 9 60.0% 

Grade 7 16 10 62.5% 

Grade 9 126 18 14.3% 

Total 176 54 30.7% 

Table 2: Similarity tasks in real-world context. 

Almost all of the similarity tasks in Grade 5 (89.5%, 17 out of 19), while over 
half of the similarity tasks in Grade 6 are situated in a real-world context. These 
are tasks for which, for example, students are asked to use the scale to find the 
real distance or the map distance, to discuss the truth or falseness of the 
statement "to design something with 1:1000 scale, I divide the real length by 
1000", to evaluate whether a map scale can be used for a room design, to draw 
given figures using scale. The corresponding percentage for Grade 9 (where the 
vast majority of similarity tasks were identified) is only 14.3% (18 out of 126). 
Thus, it can be argued that the textbook series authors consider real-world 
context not to be so suitable for the older students. This conclusion adds to the 
earlier study of Wijaya et al. (2015) that showed that only about 10 % of the 
tasks in the Grade 8 textbooks are real context-based mathematics tasks. 
Opportunities to develop proportional reasoning 
In Table 3 we outline the results about the similarity tasks that appear to also 
promote students’ proportional reasoning (see also Figure 2). 

  Proportional reasoning 
 Similarity tasks f % 

Grade 5 19 17 89.5% 

Grade 6 15 13 86.7% 

Grade 7 16 14 87.5% 

Grade 9 126 69 54.8% 

Total 176 113 64.2% 

Table 3: Similarity tasks that develop proportional reasoning. 
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Figure 2. Similarity task with opportunity to develop proportional reasoning (Grade 7, 

student textbook, p. 90). 

In Grade 5, Grade 6 and Grade 7, most of the similarity tasks (more than 85%) 
appear to also provide the students with the opportunity to develop a 
multiplicative way of thinking. In Grade 9, the students have the opportunity to 
develop their proportional reasoning, while they are engaged with the 54.8% of 
the similarity tasks they are provided with. For example, students’ proportional 
reasoning is enhanced when they are explicitly asked to consider magnitudes 
and measurement when asked to shrink or enlarge a figure, to find the real 
dimensions of a room having the design scale, to explore how the microscope 
works, to explore how very long distances can be measured, to discover the 
properties of similar polygons, to evaluate if polygons with given lengths of 
sides are similar, to find the missing length of the side in similar triangles. All 
these examples, suggest that the authors of the Greek textbook series have 
chosen to strongly link geometrical similarity with aspects of proportional 
reasoning. Importantly, this appears to largely decrease in the last Grade of 
compulsory education (Grade 9). This may be linked with the fact that, in 
Greece, Grade 9 and Grade 10 are very close in terms of mathematical content, 
but in Grade 10 the students are for the first time engaged geometrical proof that 
is closely related to the Euclidean type of proof. Thus, this finding may suggest 
the authors of the Greek textbook series attempt to communicate to the students 
that Geometry has its own techniques and approaches that do not necessarily 
require the numerical aspects and focus on the geometrical properties (cf. 
Moutsios-Rentzos et al., 2014).  
DISCUSSION AND CONCLUDING REMARKS 
The aim of the present study was to highlight the opportunities to learn the 
concept of similarity Greek mathematics textbook series offer to students. Our 
study draws upon and expands prior studies on similarity (e.g., Barcelos Amaral 
& Hollebrands, 2017; Barcelos Amaral & Hollebrands, 2023; Wijayanti, 2019) 
that focus only on textbooks, including also workbooks and teachers’ guides. In 
our study, the focus was on the types of similarity tasks and their connection 
with the real-world, as well as the opportunities to develop the proportional 
reasoning through the geometric concept of similarity.  

 

 
 
 

Draw the triangle and then draw it magnified, so that the side with 
length 8 cm would have a new length of 12 cm. 
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The results of the analyses revealed the need to expand on the categorisation of 
Lo et al. (2006), since the Greek textbook series appear to give the students the 
opportunity to quantify similarity, to ‘argue’ (explain, justify, prove etc.) about 
similarity, and to communicate their ideas about similarity. This suggests that 
the Greek students are provided with the opportunity to focus on linking 
geometrical ideas with algebraic relationship and to provide mathematical 
arguments to support their ideas, which seems support students to construct a 
sophisticated concept of similarity.  
Moreover, in most of the tasks of primary and Grade 7, students have the 
opportunity to learn similarity in a real-world context in the vast majority of the 
tasks and to develop their proportional reasoning in more than 85%. This 
radically changes in Grade 9 where real-world context appears in almost half of 
the tasks, while proportionality appears in only about 15% of the tasks a little 
more than half of their grade tasks require a deep understanding of 
proportionality. We posit that this may echo the fact that in the following grade 
(Grade 10) the students are required to think about geometry in a ‘Euclidean-
like’ way, focussing on the properties of the geometrical objects, and less about 
the arithmetic or algebraic relationships.  
Furthermore, these findings appear to be in line with the recommendations of 
NCTM (2000): primary students should have the opportunities to use maps and 
make simple scale drawings either using a grid or not, focusing on 
proportionality to begin to think about similarity in terms of magnifying or 
shrinking transformations of geometrical figures. Most of the tasks of the 
primary school grades in Greece appear to require students to connect their 
algebraic reasoning with the geometrical reasoning and express their thinking 
either through words or through the production of a new figure, thus giving the 
students the opportunity to explore the concept of similarity in line with the 
above recommendation. On the other hand, almost half of the tasks of the 
middle school grades in Greece appear to emphasise geometric ideas of 
similarity (such as corresponding angles and/or sides) and not to focus on 
arithmetic/algebraic operations and reasonings. These seem to accord with the 
NCTM recommendations that middle grades students should extend the earlier 
intuitive notion of similarity to be explicitly linked with geometrical thinking 
and ideas, investigating the properties of, and the relationships among, similar 
shapes.  
Finally, in the present study, the textbook series have been examined only as 
human artefacts, which does not necessarily imply their actual utilisation in the 
Greek classrooms. Our analysis is a first level analysis that provides a snapshot 
of the way similarity is addressed in textbook series (Shield & Dole, 2013). 
Consequently, our current research builds on these findings to consider more 
complex questions (Fan, 2013; Rezat, 2009) about the role of textbooks in the 
didactical relationship in everyday teaching, investigating the ways that in-
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service students utilise the textbook series tasks with the purpose to design 
appropriate support for pre-service and in-service primary school teachers about 
the teaching of similarity.  
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This study explores the effect of integrating creative writing with mathematical 
problem-solving tasks through a hands-on activity to address a gap in the 
literature on interdisciplinary approaches. Focusing on Hungarian and 
Indonesian preservice primary school teachers, we investigate characteristic 
writing outputs. The findings contribute insights into the interdisciplinary 
approach, shedding light on the potential impact of each country’s pedagogical 
or cultural background on mathematics education. 
INTRODUCTION 
In this case study, our primary objective was to implement a mathematical topic 
for preservice primary school teachers within a learning environment designed 
to reflect the complexity of the teaching profession. We aimed to examine the 
success of this approach, focusing on learning outcomes and the inner 
motivation of the participants. The topic was number sequences, and the 
problem solving was based on the heuristic strategy of finding patterns. In 
addition to mathematical problem solving, the activities included creative 
writing, problem posing, and art making, the latter as homework. This classroom 
practice demonstrates interdisciplinarity, as it combines mathematics with 
creative writing to motivate individuals to express their experiences and 
thoughts using an integrated framework. This method may improve 
comprehension of mathematical ideas and boost verbal and communication 
abilities, demonstrating the integration of analytical and imaginative thinking in 
a coherent educational setting. 
This paper details the outcomes of the creative writing part of the lesson. The 
lesson was conducted in two countries with different mathematics education and 
cultural traditions: Hungary (N=19) and Indonesia (N=89). We also investigated 
how these traditions were reflected in students’ creative writing outputs. 
PRIMARY SCHOOL TEACHER TRAINING SYSTEM IN THE TWO 
COUNTRIES 
Hungary and Indonesia use different pedagogical approaches to mathematics 
education that reflect their respective educational traditions and objectives. 
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Hungary emphasizes talent nurturing and guided discovery approach, integrating 
various tools, games, and interactive technology to make mathematics learning 
more engaging (Győri et al., 2020). This approach aims to enhance students’ 
mathematical proficiency by creating meaningful learning experiences. 
Indonesia upholds the principle of implementing relevant learning (Indonesian 
ministry of education, culture, research and technology, 2022), allowing the 
ongoing implementation of Realistic Mathematics Education (RME), which 
emphasizes contextual problem solving and integrating mathematical concepts 
with real-life situations (Zulkardi et al., 2020).  
In both countries, training programs for preservice primary school teachers are 
part of the higher education system and span four years, leading to a bachelor’s 
degree. Primary school teacher training programs in Hungary and Indonesia aim 
to prepare candidates for the complex role of teaching in primary school. In 
Hungary, students are prepared to teach all the subjects in the first four years of 
primary school (including mathematics) and one subject (depending on students’ 
choice) in grades 1 to 6. In Indonesia, primary school teachers are responsible 
for multiple subjects, especially in grades 1 to 3, where the lesson is 
thematically integrated, combining the content of several subjects. In higher 
grades, the distribution of subjects may vary based on the specific curriculum 
adopted by the school. Both countries offer programs integrating a significant 
portion of practical content, including teaching practice. Both countries’ training 
programs underscore the importance of adapting teaching practices to diverse 
student backgrounds, with particular emphasis on the country’s cultural diversity 
in Indonesia. 
The study is framed by the following question: How is the mathematics 
education tradition in the two countries manifested in their creative writing 
outputs? 
LITERATURE BACKGROUND 
Despite the growing body of literature on integrating mathematics and science, 
see, e.g., (An, 2017), there remains a gap in research concerning the 
interdisciplinary approach combining creative writing with mathematical 
problem solving. Our research aims to fill this void by investigating the impact 
of incorporating creative writing activities into mathematics problem-solving 
tasks. 
Drawing on their expertise as a mathematics teacher, Morgan (1998) 
underscored the integration of writing within mathematical investigation tasks. 
In this context, students are allowed to emulate the authentic experiences of 
mathematicians, engaging in the resolution of relatively substantial and 
frequently original problems. Concurrently, the act of writing serves the purpose 
of articulating and persuading others regarding the accuracy of their 
mathematical findings. O'Kelley (2013) concurs with this assertion, as 
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articulated in their statement emphasizing the interdependence of the processes 
of writing and engaging in mathematics. O'Kelley posits that the writing process 
has the potential to propel students further into the exploration of mathematical 
concepts. 
In contemporary education, integrating writing into mathematics instruction has 
been acknowledged as a powerful tool for documenting information and 
fostering a deeper understanding of mathematical concepts among students. 
Alvermann (2002) and Pugalee (2004) provided converging perspectives on the 
significance of writing in mathematics learning. Alvermann emphasized its role 
in elevating cognitive abilities and critical thinking, while Pugalee highlighted 
its support for mathematical reasoning, problem solving, and the internalization 
of effective communication skills. Siegler (2007) emphasized the importance of 
engaging in mathematical talk to build understanding. The author suggested 
encouraging students to use verbalization, write reflective notes, and create 
stories that include mathematical problems, creating conditions for learning 
mathematics while participating in social classroom processes.  
Free-form writing might be started by hands-on activities like paper folding, 
which utilizes paper as an educational resource. Encouraging students to engage 
in paper folding promotes conjecture, and simple observations linked to the 
paper-folding process make the results convincingly plausible (Coad, 2006). The 
synergy between mathematical and writing skills is evident as students translate 
three-dimensional spatial manipulations into written expressions, which 
challenges students to think critically about the mathematical principles at play. 
Thus, it provides a unique avenue for students to integrate mathematical and 
writing skills into a cohesive and complex learning experience, going beyond 
traditional teaching methods. 
Using free-form writing in mathematics education research can capture the 
nuances of students’ thought processes, shedding light on their understanding 
and potential misconceptions in mathematical learning. Incorporating free-form 
writing into research methodologies fosters a deeper engagement with 
mathematical content, encouraging students to articulate their reasoning, 
problem-solving strategies, and reflections more personally and expressively. 
This provides researchers with rich qualitative data and enhances students’ 
metacognitive awareness and communication skills.  
Finally, free-form writing offers a multifaceted approach to researching 
mathematics education, providing a window into students’ cognitive processes, 
promoting metacognitive awareness, and fostering a deeper understanding of 
mathematical concepts through expressive communication (Urquhart, 2009). 
METHOD 
The study participants comprised 108 preservice primary school teachers: 89 
Indonesians and 19 Hungarians. We took the Indonesian sample (20 men and 69 
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women) from a university in Yogyakarta. The Hungarian sample consisted of 19 
students (1 man and 18 women) from three universities in Nyíregyháza, Eger, 
and Vác. Both groups averaged 21 years old, completing a professional 
mathematics course in their teaching training program.
The task elaboration and lesson organization are as follows:

1. Each participant in each group was given a sheet of paper for a 
preliminary activity, i.e., folding the paper in half twice until it could no 
longer fold (see Figure 1 for an illustration of the folding). At the same 
time, they were instructed to find the pattern of the folding lines on the 1st, 
2nd, 3rd, and so on until the nth fold (Mason et al., 2010). First, the 
participants worked individually, then had a partner discussion, and 
finally, a class discussion.

Figure 1: Illustration of the folding.

2. By reflecting on the folding paper activity, the participants were 
encouraged to work on the following task:
a. Write a story related to the folding paper activity.
b. Complete the previous story into a word problem for elementary 

school students that matches the folding activity.
3. Participants completed the motivation questionnaire.

The task aligns with the school curricula, incorporating patterning and 
recreational mathematics elements, fostering algebraic thinking through an 
enjoyable activity. It allows participants to develop a story problem by 
interpreting the paper folding activity in an open environment with a clear 
starting point but without specific restrictions (Stoyanova & Ellerton, 1996). The 
students had an opportunity to reflect on the mathematical aspect of the paper 
folding activity and express it into a story. Thus, the task design provides 
synergy to enhance mathematical and writing abilities. 
To investigate the writing tendencies, the written outputs were systematically 
categorized, distinguishing between factual narratives representing real-life 
stories and artistic forms encompassing fictional motives, stories in the form of a 
tale or poem. Two authors coded individually the corpus and later, the 
disagreements were decided based on all authors’ consensus.
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RESULTS AND DISCUSSION 
The creative writing outputs among Indonesian participants showed that 72% of 
them fulfilled the task, while 28% did not provide a story. Of those who did, 
100% centred their stories on factual portrayals of real-life experiences, with 
none presenting artistic expressions such as tales or poems. For example, in the 
following quotation, the student accurately reconstructed the classroom activity, 
and the task faithfully reflected the original problem. However, no specific 
creative element appears in the text. 

In the classroom, Mr. Rahmat introduced folding to his students. They folded a 
piece of paper in half, making it half the width of the original. Then, they folded the 
paper into four equal parts, making it one-fourth the size of the original. 
Mr. Rahmat gives each student a square piece of paper the same size. Each student 
is asked to fold the paper in half, making it half the width. How many layers of 
paper will they have after folding? 

This manifestation implies at least three points: 1) It contains a real-life context 
that emphasizes the rootedness of RME in the minds of students, (2) The task 
encourages the appearance of metacognitive awareness as the students reflect on 
what they did before writing the story (Urquhart, 2009), and 3) It corroborates 
the findings of the inner motivation analysis, specifically in the “Value” 
subscale, where students perceived the sequence of activities as advantageous 
for their future careers. In this instance, the students transferred their learning 
experience into contexts that enabled them to apply it in their students. 
Another participant focused on the Indonesian artifact, the “besek,” a traditional 
woven basket commonly used by Javanese that embodies both practical utility 
and cultural importance in effectively displaying the integration of mathematics 
and ethnography. Ethnography appears as an approach that provides a basis for 
applying mathematical principles to traditional, culturally-rooted real-world 
phenomena. Ethnography is a possible component of RME, deeply embedded in 
the problem environment through cultural aspects (Prahmana, 2023). Despite the 
openness of the problem and its detachment from the pattern of the original task, 
we consider the endeavor instructive, which combines a real-life story with 
Indonesian culture, particularly in the context of Yogyakarta. 

Make a besek using origami paper, then count how many folds occur from the 
beginning of the creation until it’s finished! How many fold lines are there in the 
shape of the besek? 

Thirty-two percent of Hungarian participants wrote stories related to creative 
expression (artistic forms), i.e., fairy tales and poems, while the remaining 68% 
produced real-life stories. Cultural history may have an impact on the creative 
expressions of Hungarian students. Gosztonyi (2019) states that a historical 
perspective on mathematics plays a crucial role in a specific Hungarian tradition 
of mathematics education. Earlier, Hersh and John-Steiner (1993) stated that 
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Hungary has an artistic writing legacy, including mathematics education. The 
following Hungarian student’s work reflects a form of artistic writing related to 
the tradition, which supports what Hersh, John-Steiner, and Gosztonyi 
mentioned. 

Once upon a time, there was a grandmother. The grandmother lived in a lovely 
place, in the Kerekerdő. One day, she heard that her grandchildren were coming and 
wanted to treat them to something nice. So, she baked them some strudel and folded 
the pastry several times. [“Kerekerdő” is a frequent motif in Hungarian folk tales; 
literally, it is translated to “Round Forest.”]  
Grandma folded the pastry in half first, so she had two layers. How many times did 
Grandma have to fold it to get 15 folded lines? 

This artistic writing reflects the principles of primary education set out in the 
Hungarian National Core Curriculum (Government of Hungary, 2020), namely 
that students should be encouraged to develop their problem-solving skills while 
experiencing joy through fun activities, which can be related to music or 
literature. In addition to the folk-tale motifs in the text, the problem clearly 
reflects the class activity.  
In Indonesia, with a strong emphasis on RME, preservice primary school 
teachers provided a real-life context for word problems. Conversely, in 
Hungary, where history is deeply rooted, a preference for artistic writing styles 
appeared. 
CONCLUSION AND PEDAGOGICAL IMPLICATION 
The incorporation of hands-on activities and the creative writing task resulted in 
the conclusion and pedagogical implications as follows:  
The Hungarian group’s creative writing products were more varied, including 
real-life stories, tales, and poems, while the Indonesian group’s writing was 
merely real-life stories. This tendency reflects each country’s tradition in 
mathematics education that is still in effect today: Hungary with its guided 
discovery approach, which incorporates various tools, games, and interactive 
resources to make learning mathematics more engaging for students, and 
Indonesia with its realistic mathematics education tradition, which integrates 
mathematical concepts and real-world situations and has been recognized for its 
effectiveness in enhancing mathematical literacy and fostering a deeper 
conceptual understanding of mathematics. 
Given that the early-grade curriculum in Hungary follows a multidisciplinary 
system where subjects are taught separately while Indonesia follows an 
interdisciplinary system through its integrated thematic approach, it is expected 
that Indonesian preservice teachers’ creative writing outputs were also in 
another form of literature, not merely real-life stories. A result contradicting this 
fact requires further investigation. 
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In summary, it is noteworthy to underscore the discernible advantages derived 
from the amalgamation of hands-on activities and creative writing. The 
undertaking clarified the impact of different educational backgrounds in each 
country and demonstrated that, despite these varying academic foundations, both 
groups universally found the activity intriguing and beneficial. 
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Teaching resources for combinatorics offer a diverse array. However, there are 
no universally applicable teaching materials suitable for all pupils. Creating 
resources that will meet each pupil's unique learning needs is desirable. The 
finite range of cases allows tailoring materials to suit the typical pupil's 
characteristics. In my research, I assigned various tasks involving computations 
of problems of type "5 over 2" to different pupils. They autonomously sought 
solutions, and when encountering tasks, they searched for correlations and 
isomorphisms among them. My goal is to present and discuss the findings 
arising from these inquiries. 
INTRODUCTION 
Understanding the learning theories and their application is paramount in 
education. Research findings suggest that pupils across various educational 
levels struggle when learning combinatorics. Further insights into combinatorial 
thinking, the inherent complexity of these problems, common problem-solving 
strategies, and frequent difficulties encountered are essential for effective 
teaching. The research aims to delineate the development of combinatorial 
thinking in lower secondary school pupils aged 11-12, focusing on appropriating 
and extending combinatorial thinking by exploring solutions to “5 over 2” type 
problems. While isomorphism is evident in some word problems, it remains 
concealed or proves challenging to discern in other instances. The research 
questions include examining the problem-solving strategies employed by pupils 
for “5 over 2” type word problems, tracking the development of these strategies, 
and investigating how pupils recognize isomorphism between these problems. 
This research has the potential to uncover the cognitive processes involved in 
navigating complex combinatorial scenarios, offering insights into the evolution 
and application of combinatorial thinking and problem-solving strategies. Our 
main aim is to uncover the cognitive processes of pupils’ minds while solving 
combinatorial problems. 
THEORETICAL FRAMEWORK 
Combinatorial problems encompass mathematical or practical scenarios that 
involve combinatorial activities. They consist of a base set, a working set, and 
an organizational principle (Hejný, 1990). According to the implicit model 
(Dubois, 1984), these problems are categorized as selection, distribution, or 
partition, reflecting the thought operations involved. Further, they can be 
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classified based on the operation employed for the solution, the context, and the 
number of combinations (Fishbein & Gazit, 1988). 
Pupils at all levels face difficulties even when solving elementary combinatorial 
problems (e.g., Hadar & Hadass, 1981; Fishbein & Gazit, 1988; Batanero et al., 
1997; Lockwood & Gibson, 2016). Researchers (e.g., Fishbein & Gazit, 1988; 
Godino & Batanero, 2005; Lockwood, 2013) and teachers (Vondrová, 2019) 
agree that the main problem in solving combinatorial problems is the lack of 
competence to identify the combinatorial operation. Pitfalls also include the 
inability to fully understand the word problem, the choice of inappropriate 
notation for the information, the incapability to decompose the problem into a 
series of sub-problems, the choice of an unsystematic computing method, the 
inability to add constraints to the original problem to solve it, difficulties with 
generalization (Hadar & Hadass, 1981) and the inability to see two isomorphic 
combinatorial problems as equivalent (Batanero et al., 1997; Maher et al., 2011). 
Among common strategies for solving combinatorial problems are 
classification; systematic enumeration; use of inclusion/exclusion principle; use 
of recurrence; drawing of tree diagrams and graphs (Figure 1); construction of 
tables (Figure 1); use of addition, multiplication, and division principles; use of 
combinatorial and factorial numbers; use of Pascal’s triangle (Batanero et al., 
1997). 
Combinatorial problems can be solved graphically in three fundamentally 
different ways. Figure 1 shows how the following problem of football matches 
can be solved: Five teams entered the football tournament. It is played on a one-
on-one basis, one match each. How many matches will there be? 
  
 
 
 
 

drawing    tree diagram   table 

Figure 1: Three different graphical solutions to the football matches problem. 

These diverse problem-solving approaches highlight the range of tools available. 
Additionally, considering the ability to perceive isomorphism as another 
valuable strategy adds depth to our understanding of combinatorial problem-
solving. 
Isomorphism refers to structural similarity between entities that may appear 
different at first glance but share identical patterns or relationships. Regarding 
this research, an illustration of isomorphism will be given for two problems of 
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type “5 over 2”, tasks Towers and Party from the research problem list (Table 
1). 
To show that these problems are isomorphic, we will match elements from one 
problem to the corresponding elements in the other problem (Figure 2). We can 
assign the position of each cube to one of the girls. Specifically, Diana is 
assigned the cube on the 1st level, Ema is assigned the cube on the 2nd level, and 
so on. If the cube is blue, the girl will tap her glass. The first tower shows Ema’s 
and Diana’s toast, the second tower shows Mona’s and Diana’s toast, etc. 

 
Figure 2: Illustration of isomorphism between the Towers and Party tasks. 

METHODOLOGY 

During the first half of the school year were selected pupils in 6th grade from a 
random school. This specific time of the year and school grade increases the 
chance that pupils have not encountered similar combinatorial tasks during 
mathematics classes yet. There were no other characteristics required among 
pupils to be selected. Pupils split into groups of two to four according to their 
time possibilities. The experiment took place in school after teaching hours and 
consisted of three to four 90-minute sessions during which pupils gradually 
solved 24 problems. Their discussions or individual explanations of solutions 
were video recorded. This paper analyzes the first meeting with the group of 
three boys – Erin, Will, and Jay during which they solved five tasks (Table 1). 
Board In a wooden toy factory, a machine cuts the same-

colored boards. To make it clear which way the cut goes, 
each board has 5 small black dots on it. Now the 
machine is set up to cut each board into 3 pieces. How 
many different ways can it cut the board? 

Towers We build towers from 5 cubes as shown in the picture. Two cubes are  
colored blue, the rest is gray. How many different towers can be built? 
 

Party Diana throws a party. Ema, Mona, Alex, and Laura come to the party one by 
one. Everyone who comes taps a glass of lemonade with everyone there. How 
many of those taps there will be? 

Stones In the table, the number 102 is formed using 3 stones. How 
many different numbers can be created using 3 stones? 

Cups Tom has two identical cup stickers and five differently colored cups on which 
he can place them. He does not want to put more than one sticker on the cup. 
How many ways can he put the two stickers on the cups? 

Table 1: Series of five isomorphic tasks. 
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ANALYSES 

For each word problem, the solving process can be decomposed into three parts: 
1. Understanding the problem. 
2. Grasping the task. 
3. Problem-solving strategy. 

Understanding the task can be shifted. The solver could understand the task 
differently than the author intended. It can also be an alternative when the solver 
finds two or more understandings. The best way to find out how the solver 
understood the problem is to ask him to explain the task in his own words to a 
peer. At the pupils’ request, the experimenter added verbal explanations to make 
the task as clear as possible. Comprehension of the problem begins with the 
choice of language the solver uses to describe the objects and relationships of 
the problem. The strategy for problem-solving means finding an organizing 
principle. The analysis of the meeting attempts to replicate the timeline 
concerning the continuity and interconnection of individual ideas. 
Task ‘Board’ 
Erin: 1) There were two types of objects in the problem - the cuts and the parts 
of the board that the cuts created. From a computational perspective, only the 
cuts were important. For Erin, the parts of the board were dominant, so the idea 
of a cross-section also arose in his mind, and the numbers 26 and 32 appeared in 
his results in addition to the number 20. He then had to displace the idea. 2) He 
recorded the various possibilities using only his fingers and stored these in his 
memory. 3) He fixed one cut and took each other option as the second cut of this 
solution. To each cut belonged 4 other cuts. That led to the result 5 · 4 = 20. The 
absence of a coding system made his explanation on the whiteboard unclear. 
However, it was here that he realized that taking the first two cuts would take 
this option twice in his counting. This led him to correct his result, but the idea 
that the original erroneous result of 20 could just be divided by two did not 
occur to him on the whiteboard. At the desk, he then devised a second strategy. 
He found 4 possibilities for the first cut, 3 for the second cut, etc., and quickly 
arrived at the correct number 10. 
Will: 1) He understood that only one part (one-sixth) of the board was being cut 
into three pieces, but even this was not entirely clear to him, so he did not 
progress further with the problem. 
Jay: 1) He clearly understood the problem. 2) He found the coding system. He 
used the same digit to indicate the two cuts that make up one solution. 3) Jay 
found a good strategy thanks to a clear grasp of using codes.  Figure 3 on the left 
side shows how he proceeded. It was not completely systematic, but it was clear 
enough. Then, when explaining his solution on the whiteboard (Figure 3 on the 
right side), his strategy was consistently systematic. 
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Figure 3: Jay’s solution in the worksheet and on the whiteboard. 
Task ‘Towers’ 
Erin: 1) The understanding of the task was immediate. 2) He grasped the task by 
manipulating cubes. He stored individual cases in his mind and did not record 
them. During manipulation, he also discovered that harder-to-manipulate towers 
could be laid down and made into “trains”. 3) His organizing principle had two 
steps: 1. Move the lower cube up by one to the point where repetition occurred, 
and 2. Change the relative position of the two blue cubes so that in the first 
round there were two blue cubes next to each other, in the second round there 
would be one grey cube between the blue ones, and in the third round, there 
would be two grey cubes between the blue ones. 
Will: 1) The understanding of the problem was immediate. 2) He grasped the 
task by manipulating cubes. He grasped the problem graphically. Probably 
inspired by Jay, he captured each of the towers with a rectangle divided into 5 
parts (Figure 4, left side). The rectangles were horizontal, and Will immediately 
saw that a lying rectangle (train) or a standing rectangle (tower) was the same. 
The boy showed the ability to transform geometrically vertical and horizontal 
positions. He first drew a series of “trains” and then colored two blue cubes. 3) 
He was not looking for any organizing principle to arrange the individual towers 
and believed he could create the whole set by the “looking for what is missing” 
system. He arrived at number 9, presented on the whiteboard (Figure 4, in the 
middle). 

Figure 4: Solutions to the Towers task. 

Erin examined Will’s solution and did not object but suggested a more 
appropriate organizing principle. He tried to demonstrate this by interspersing 
the cases in Will’s solution. Still, he then got lost in it and demonstrated his idea 
of moving one cube at a time using a tower of 5 cubes in a manipulative design. 
Eventually, he searched for the missing element of the solution and discovered 
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the symmetry of the set of all solutions. Erin completed Will's solution with the 
10th missing tower case. He looked at the whiteboard (Figure 4, in the middle) 
and noticed only 3 squares colored in the first and fourth columns of Will's list, 
whereas 4 squares colored each time in the other columns. This allowed Erin to 
find the missing case. In terms of insight into the combinatorial situation, this 
insight of Erin’s was the most profound. It showed that the solution system is 
subject to symmetry. He applied this brilliant insight once more, in a problem 
with stones. This moment showed the quality of his thinking. 
Jay: 1) The understanding of the task was immediate. 2) He grasped the task by 
manipulating cubes. He drew “towers” as “trains” right at the beginning. We 
could not pinpoint the cause. Life experience may have played a role here, as we 
wrote various lists in a column, such as things to buy. He used colors in his 
coding. 3) He used two organizing principles (Figure 4, right side). He found the 
first four cases by moving one cube to the left. Then he found cases 6 – 9 by 
moving the left blue cube one box to the left, and the left blue cube to the second 
blue cube. We did not know when he discovered he was missing one more case 
or how he found it. He stated that the organizing principle for the first five 
towers was the same as Erin’s. However, this was not accurate. While Erin 
moved the cube from the first floor to the fifth floor each time, Jay moved the 
same cube one position higher. Further, Jay, in his own words, did not find an 
organizational strategy and searched for other towers by random selection. 
According to his record, there was an organizing principle. 
Task ‘Party’ 
Will: 1) Understanding the task was immediate. 2) He grasped the task through 
names. He did not write anything down and kept everything in his mind with the 
help of fingers to count. 3) The organizing principle was determined by process, 
first comer tapped once, second twice, etc. So, the result is 1 + 2 + 3 + 4 = 10. 
Jay: 1) He made sure he understood the assignment well. He asked if they all 
tapped together each time. 2) and 3) Neither the grasp nor the organizing 
principle was clear. When explaining his solution, he stopped and said he got it 
wrong. He made a mistake somewhere and only realized it when he should have 
been describing his organizing principle. We did not find enough text in written 
records to infer it. 
Erin: 1) Understanding the task was immediate. 2) and 3) He nodded that he 
solved it the same way as Will did. 
Task ‘Stones’ 
Jay: 1) He needed to make sure he understood the assignment. Namely, whether 
all three stones always had to be used and how big the table was. 2) He grasped 
the task through the table. 3) His organizing principle was to move the stones 
from left to right. He started in the 3-0-0 triplet and ended in the 0-0-3 triplet. In 
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this way, he got 7 cases. He realized he missed a combination of ones and 
hundreds, so he found solutions 1-0-2 and 2-0-1. This gave him a total of 9 
cases. He was likely applying the same organizing principle here, i.e., shifting 
this time in the opposite direction, from ones to hundreds. One stone was moved 
from the last column to the first, and another stone in the next step. He missed 
the solution to 1-1-1. Erin immediately wrote it on the whiteboard. In Jay's 
solution on the paper, we found two other, but repeating solutions, 0-2-1 and 0-
1-2. Jay did not realize he already had these solutions and was convinced that all 
of the solutions were 11. 
Will: 1) He clearly understood the problem. 2) He grasped the problem through 
the numerical values of the cases. However, he did not take this fact as an 
organizing principle. 3) He searches the file using the “looking for what’s 
missing” system. The repetition of case 300 on his paper in the first and second 
places was probably the result of inattention. He was only missing case 102, but 
this was a number from the assignment, so it was possible that he was not 
looking for it. 
Erin: 1) Understanding the task was immediate. 2) and 3) We didn't know how 
he grasped the task, what organizing principle he used, or if he used it at all. 
Erin quickly filled in Jay’s solution with the 10th missing case 1-1-1. We could 
not determine how he found this case. Probably he had been looking for this for 
a long time, therefore it became dominant in his mind. This could be why it was 
easy for him to discover quickly that this case was missing. Erin did not 
articulate his thoughts on this, nor did he make any written record. This too was 
probably the reason for his first incorrect result that the solution was 12. At the 
whiteboard, he already believed the solution was 10, which he argued was due 
to the symmetry of the columns. In each column, were once three stones, twice 
two stones, and three times one stone. Again, he found the structure of all ten 
cases, as he did for the task Towers. 
Task ‘Cups’ 
Will: 1) Needed to clarify the assignment. The experimenter repeated the 
assignment in other words. Then Will understood the assignment clearly. 2) Will 
saw the isomorphism between the situation with the towers and the situation 
with stickers on the cups. He could describe this isomorphism at the object level. 
He accurately assigned five cups to each tower (the object of the set of towers) 
by putting a sticker on the cups corresponding to the blue cubes on the tower. It 
was clear to him that this representation is bijective. The nature of the 
isomorphism that Will had discovered was conceptual. 3) There was no need to 
find an organizing principle as the task was already solved thanks to the 
isomorphism with task Towers. 
Jay: 1) He understood the assignment clearly. 2) He found the coding system. 
He used the same digit to label the two cups that make up one solution. He 
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discovered the isomorphism between the Board and the Cups tasks due to the 
solving process. When asked if the simile to cups Will explained made sense, he 
broke down the steps one by one and nodded. This was how class osmosis 
occurred, with one trying to understand the other's vision. It required a 
welcoming atmosphere, effort, and willingness to understand what Will was 
saying. In doing so occurred a projection of Will’s thoughts onto Jay's structure. 
This process was markedly different from the process where the teacher puts his 
thoughts into the structure of the pupil. Here, the pupil does not need to insert 
new ideas into his structure, but needs to remember these ideas, thus the 
autonomy of the pupil’s thinking is at a very low level. This highlights the 
mistake teachers make when they do not allow discussion between children 
because a classmate would not say it accurately enough. This eliminates the 
pupil's intellectual autonomy; the idea is not inserted into an existing structure, 
but new memory information is inserted, in a belief that this is how the pupil 
will learn it. The nature of isomorphism that Jay discovered was procedural. 3) 
The organizing principle was the same as in the Board task. 
Erin: 1) Understanding the task was immediate. 2) and 3) Discovered an 
isomorphism between the Board the Cups tasks. However, we did not know if 
this was due to the solving process or if he saw a bijection between structures. 
We believed he suspected the isomorphism at a conceptual level and then 
verified it procedurally. 
Didactical conclusions 
Erin: He had not yet demonstrated the ability to grasp the situation using a 
coding system. He had not needed it yet, but coding would make his solution 
more transparent. The second strategy he used to solve the Board task did not 
require coding, but his initial grouping could have been eliminated using 
appropriate codes. The “look and see” strategy was an organizing principle that 
relies on trusting that his mind could run through all the possibilities without 
writing them down. Erin had a strong short-term memory and could retain 
structural links, which was already seen in the organizing principle in the 
Towers task. There he took the transfer of the bottom cube up and then the 
transformation of the adjacent cube of blue and grey. In our judgment, the effort 
to further build this memory does not contribute substantially to the intellectual 
growth of the pupil. The desirable thing is to teach him to grasp the situation by 
notation. To support his ability to encode, two ways are suggested: 1. Asking 
Erin to explain a combinatorial problem to a classmate; 2. Give the boy 
sufficiently challenging problems that he cannot grasp without coding. This can 
be done, for example, by increasing the number of objects. Instead of looking 
for the number 5 over 2, we might look for the number 6 or 7 over 2. Erin’s 
thinking could detect patterns. We can increase this ability when we switch to 
graphical grasping. A good way to do this is to offer him tasks in which he can 
discover other structural relationships. For example, a series of tasks: 1. We 



Customized learning paths: navigating combinatorics for diverse learners 77 

 
 

have 4 blue, 1 red, and 1 green cube. How many different towers can be created? 
2. We have 4 blue and 2 red cubes. How many different towers can we create? 
3. How are the previous two problems related? 
Will: The Board task was currently elusive for Will. This was probably due to a 
combination of two factors. First, the task was long, and its context was outside 
Will's experience. Then the objects he perceived here were semantically diverse 
- cuts and parts of the board. In the Towers (Cups) task, the objects were 
homogeneous - blue cubes (cups with a sticker) and grey cubes (cups without a 
sticker) so he had no problem finding a solution here. Comparing his solutions 
to the Party and Towers tasks, the conceptual assignment of Towers offered Will 
no organizing principle, and he was looking for an enumeration of all 
possibilities. This raised the question of whether a problem could be found 
between this procedural and conceptual assignment. There were two currents in 
the development of his thinking. Grasp a situation through an organized set of 
signs (such as numbers) and build a structure. In both cases, he can be helped by 
classmates. The teacher can give Will tasks that already help structure the 
assignment. These can be tasks with procedural assignments, as in the Party 
task. Or to tasks with conceptual assignments, appropriate instructional tasks can 
be added. For example, add two pre-tasks to the task on sections: 1. If the first 
cut is placed to the left, how many options will there be for the second cut? 2. If 
the first cut is placed in the middle, how many options will there be for the 
second cut? There is also the possibility of giving Will the task of discovering 
the organizing principle in an already organized set of solutions. 
Jay: A certain shortcoming of Jay’s solution to the Board task was the 
complexity of the coding. However, there was usually spontaneous 
improvement here as Jay solved other problems or explained his solution to 
classmates. No teacher intervention was needed here. Interestingly, Jay solved 
the more difficult problem with cuts systematically and the problem with towers 
chaotically. If it were not 5 over 2 but 10 over 2, Jay would have discovered a 
strategy based on more sophisticated coding. This is advice to the teacher to give 
Jay a problem about towers with more cubes, which motivates the boy to 
discover the organizing principle. Life experience seemed to interfere with Jay’s 
grasp of the simple party problem. The case was resolved by discussion with 
classmates. He alerted us that the Stones and Party tasks were not explicitly 
given. If the goal is to solve the 5 over 2 problems, it would be more appropriate 
to add in the Stones problem that we are just placing 3 stones into a table as in 
the picture, and for the Party problem choose one greeting kiss instead of 
tapping glasses. 
RESULTS 
When a pupil had difficulty understanding the task, it was important to identify 
the source of the problem. We looked for possible factors such as: the type of 
objects, the experience, the pupil’s understanding of the situation in the task, the 



78 ANNA KUŘÍK SUKNIAK 

situation’s relevance with life experience, the format of the task (procedurally or 
conceptually), pupil’s possibility to model the situation, and the pupil’s ability to 
model the situation. 
Most pupils who had difficulty grasping situations in writing or graphically were 
usually weaker students. However, it may be that the pupil is bright, like Erin. 
The strong short-term memory of such a pupil does not make it necessary to 
record a given problem in writing. Research is ongoing and we are trying to 
identify other types of learners. 
DISCUSSION 
When there is a problem with pupils understanding a task the advice for teachers 
is to find out how it's understood and discuss it. Teachers can help pupils 
understand a task by giving them simple short-text tasks where the objects are 
familiar to the pupil. When helping weak pupils grasp the situation the advice 
for teachers is to solve easier problems with pupils and to support them in 
discussions with classmates. If pupils have strong short-term memory, the 
advice is to increase the task difficulty, so that their solution cannot be handled 
by a short-term memory anymore. Another option is to ask such a pupil to help a 
classmate solve the problem. Both options aim to induct a natural motivation to 
write the solution down.  
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In this paper we address the need of developing precise language when learning 
mathematics. We describe and assess different methods of teaching quantifiers:  
language-based and symbolic approaches. We analyse the performance by three 
groups of learners introduced to statements with quantifiers. Then we compare 
their achievement with more advanced students. Our results show that 
introducing quantifiers early in the school curriculum is necessary. 
INTRODUCTION  
At all educational levels students need to use precise language when talking 
about mathematics (Dawkins, 2017). Broadly speaking, they should be able to 
formulate definitions of basic concepts and to be able to justify or prove that 
their solutions or statements are true (Schoenfeld, 1992). However, research 
shows that even at the college level many lack the understanding of more 
complicated mathematical statements, especially when they include quantifiers 
(i.e. expressions such as for all or every (universal quantifiers) or exits or for 
some (existential quantifiers). Statements in precise mathematical language and 
their various possible interpretations in English language cause problems in 
understanding them. The results in (Piatek-Jimenez, 2010) show that statements 
of the form There exists…. for all … evoked a larger variety of interpretations 
by students that the statements of the form for all… there exists….  
The study described in (Chung, Shin 2023) shows that processing of ambiguities 
in English sentences may depend on the learners’ fluency in the language and 
the familiarity of the context. Especially, when two or more quantifiers are 
included, or the sentence is negated, learners have problems with extracting the 
correct meaning. Many do not understand the difference between the importance 
of the order of quantifiers in statements such as: Every student has a unique 
identification number, and Every number has a student assigned to it as his/her 
identification. Other study (Epps, 1994) finds that undergraduates struggled 
trying to write symbolically statements (given to them in English) such as 
Everyone is older than someone, however when the proper order of symbolic 
quantifiers was provided ∀ 𝑥𝑥 ∈{people} ∃ 𝑦𝑦 ∈{people}.... vast majority was able 
to complete the task. These results underline the need for providing firm logic 
rules that govern mathematical discourse that go beyond understanding of 
individual words and often clash with everyday language which students tend to 
rely heavily on.  Overall, many attempts were made to improve pedagogy, 
methodology or technology for introducing quantifiers at the university level in 
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various contexts, such as computer programming (Dubinsky,1997,1988), 
proving theorems (Epps, 2009) or through interesting activities (Kyeong, 2011). 
However, the assessment of effectiveness of these methods (repeated at other 
venues) did not show major advances in student achievements. The suggestion 
was made in (Dubinsky & Yiparaki, 2000) that symbolic forms may be better 
for introducing quantifiers (traditional way).   
In this study we assess three different methods of introducing statements 
involving quantifiers at the introductory logic university courses.  We worked 
with three groups of freshmen enrolled in mathematical logic courses (called 
Logic 1, Logic 2, and Logic 3 that had no systematic background related to 
quantifiers yet. The pre-test administered at the beginning of the study showed 
that the groups were compatible. We used different methodology for introducing 
quantifiers in each group: Logic 1 started with interactive language-based 
activities, then learned symbols for quantifiers; Logic 2 was introduced to 
symbolic approach first, and then translated mathematical statements into 
English (traditional method); and participants form Logic 3 followed the plan 
for Logic 2 group with the addition of hands-on activities based on reading a 
map for a small town (traditional plus hands-on). At the end of the study all 
participants were administered a post-test that included translation of various 
statements and their negations, as well as drawing a Venn diagram for 
underlying sets. To assess retention of the knowledge of quantifiers, we 
compared the post-test results of these three groups with a group of more 
advanced mathematics students who have used quantifiers in several other 
courses (Advanced group). Note that most of the assessment in previous 
research studies of comprehending quantifiers was based on questionnaires not 
related to underlying teaching methods. Most of the questions asked the 
participants to decide if the statement given was true or false and to justify their 
reasoning. Some tasks involved translations between symbolic and language-
based forms of statements. In general, the previous results showed that learners 
at every level struggle with quantifiers regardless of the teaching methodology 
they were exposed to. 
METHODOLOGY  
Note that at the beginning of our study, participants in each of our three groups 
Logic 1, Logic 2 and Logic 3 described above were familiar with sets, 
operations on sets, Venn diagrams, definitions, logical sentences, and 
connectives between statements (such as and, or, not, implies). They were able 
to evaluate a given logical formula as true or false when the logical value of 
each sentence in the formula was known. There were no quantifiers or variables 
in these sentences when the study started (Propositional Logic only).  
We designed several activities for introducing mathematical quantifiers and the 
underlying variables informally (through language-based activities) and 
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symbolically (traditionally), introducing First Order Logic through different 
methods.  
The universal quantifier for all, every has a symbol ∀. We usually write the 
name of the variable, say x, that is quantified as ∀ x (or ∀ x ∈ X if we want to 
specify what set x belongs to). For example, the symbolic statement: 

       ∀ x ∈ {birds}   x  can fly    can be written in English as     All birds can fly. 

For the existential quantifier or exits, for some we use the symbol ∃ or ∃ y when 
specifying the variable (or ∃ y ∈ Y to indicate from what set y is an element of). 
For example, the symbolic statement: 

       ∃ x ∈{birds}  x  can fly    can be written in English as     Some birds can fly. 

Our hope was that after our experiment students will understand both forms of 
quantifiers (language-based and symbolic) and be able to translate between 
them.  
Description of the methodology for each group. 
Logic 1 group.  We introduced quantifiers through one hour language-based 
activity.  Students started by evaluating logical values and equivalences of 
simple sentences such as: 

All dogs are poodles. 
Some dogs are poodles. 
There is a dog that is not poodle.  
All dogs are not poodles. 

And with two quantifiers. 
Every person has a friend. 
Some people have friends. 
Some people have no friends. 
Nobody has a friend. 
Some of your friends have no friends. 

This activity generated many discussions as students mostly understood the 
meaning of the sentences, but they were not sure which ones are equivalent. 
Two days later, this group was introduced to the symbolic notation and was 
asked to rewrite the statements symbolically. Then they restated some 
statements with symbols in English language. The participation in the second 
part was less enthusiastic than during the first hour, and often students worked in 
silence. From then on students were using statements and their negations with 
(one or more) symbolic quantifiers in the course for the next 6 weeks. The post-
test was administered at the end of the semester. 
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Logic 2 group.  We started by introducing symbolic notation for quantifiers; 
this method is well tested as it is often used in a traditional mathematics 
classroom. The first session took one hour, and students were asked to explain 
the meaning of the sentences, to evaluate their logical values and find equivalent 
statements (true or false for the same elements).  
∀ x ∈ {dogs}  x is a poodle. 
∃ y ∈ {dogs}  y  is a poodle. 
∃ z ∈ {dogs}  z   is not poodle.  
∀ w ∈{dogs} w  is not a poodle. 

Here are examples of statement with two quantifiers. 
∀ x ∈ {people}  ∃ y ∈ {people}  x is y’s  friend. 
∃ z ∈ {people}  ∃ w ∈ {people}  z is w’s friends. 
∀ x ∈ {people}  ∃ y ∈ {people}  x is not  y’s  friend. 
∃ z ∈ {people}  ∀ w ∈ {people}  z is w’s friends. 
∀ x ∈ {people}  ∀ w ∈ {people}  x is w’s  friend. 

We have expected that this group will be less active as the symbolic notation 
was new to them. As it turned out, the exercises generated many discussions 
when students tried to interpret the meaning of the sentences and evaluate their 
logical values. Again, they were often not sure which ones are equivalent. Two 
days later, this group was asked to rewrite the language-based statements 
symbolically. Then restate some statements with symbols in English language. 
From then on students were using statements and their negations with (one or 
more) symbolic quantifiers in the course for the next 6 weeks. The post-test was 
administered at the end of the semester. 
Logic 3 group.  We started with the traditional method of introducing 
quantifiers for the first two hours (as for Logic 2 activities) and observed similar 
involvement levels.  However, at the third hour this group participated in hands-
on activity that they completed working individually or in pairs. Participants 
were given a map of a small town that had a school, store, several gas stations, 
parks, etc. and a measuring tape to estimate distances on the map. They were 
asked to evaluate statements similar to the ones below.  
∀ x ∈ {houses} the distance from x to school is less than 5 miles. 
∃ x ∈ {houses}  ∃ z ∈ {parks}  the distance from x to z is more than 3 miles. 
∀ w ∈ {gas stations}  ∃ x ∈ {houses} the distance from x to w is more than 5 miles. 

∃ z ∈ {park}  ∀ x ∈ {people} the distance from x to z is less  than 5 miles. 
∀ x ∈ {houses}  ∀ w ∈ {gas station}  the distance from x to w is less  than  9 miles. 



84  IVONA GRZEGORCZYK, ERIC BRAVO 

This activity was very successful (the mean was 75%) and majority of students 
answered 8 questions as above in allotted time of 20 minutes. From then on, 
these students were also using statements and their negations with quantifiers in 
the course for the next 6 weeks, when they wrote the post-test. 
Advanced Group. Participants in this group were already studding mathematics 
at the university level for at least 2-3 years and had taken some advanced 
courses requiring writing proofs (such as linear algebra, real analysis, abstract 
algebra, etc.). They requested a short (20 minutes) review on statements with 
two or more quantifiers and their negations before taking the test. After the 
review, they answered the questions on the post-test given to the other groups. 
The aim of this part of our experiment was to assess the retention of knowledge 
related to quantifiers and to compare this group’s achievement with our other 
three groups consisting of students that just completed their first mathematical 
logic course. 
RESULTS  
We collected data from pre-test and post-test from the groups that were graded 
on a scale 0-4 points. Note that Logic 1, Logic 2, Logic 3 pre-test means were 
low as expected as students were not exposed systematically to quantifiers yet 
(around 1.5 out of 4). Statistically speaking there was no significant difference 
among these groups (all p-values were larger than .05). Advanced students did 
not take the pre-test. Post-test means increased for all three groups by at least 0.7 
(which means students have learned) and t-tests showed p-values smaller than 
.05, i.e. each group improved significantly as expected. We then compared post-
test scores for all four groups. The summary is given in a table below. 

Post-test  
Scores  

Sample Size     Mean Score 

                          Scale 0-4 

Standard          Engagement   

Deviation         in Activities 

   Logic 1 group       20                   2.13      .85                 Moderate 

   Logic 2 group  

   Logic 3 group 

      13                   2.61 

      26                   2.65 

     .65                 High 

     .55                 High 

  Advanced group        21                   2.66      .41 

Table 1: Post-test data by groups. 

It is worth noticing that all logic groups were engaged in the activity at least 
moderately, and each group improved on the post-test significantly. 
We compared each group post-test scores with others (including the Advanced 
group) by calculating the appropriate p-values and we found no significant 
difference among the post-test sores. However, we observe that Logic 3 group 
has the highest mean and the smallest standard deviation among the groups. This 
would suggest that the traditional method reinforced by hands-on map reading 
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activity was the most effective. Indeed, the p-value between Logic 1 and Logic 3 
is less than 0.10. Hence at the significance level 10% Logic 3 performed much 
better than Logic 1 that started with language-based statements. 
Note that all the means are below 3 (less than 75%), and there was only one 
advanced student who scored 4 points. This is somewhat troubling as even 
though each group improved, students still did not master the quantifiers as well 
as we hoped for. Another interesting observation is the fact that the advanced 
group, even though it has the highest mean, did not perform significantly better 
than freshmen in their first logic course. It means that the experiences with the 
quantifiers in other courses did not strengthen their knowledge and skills in this 
area. It was an unexpected result. 
Here we show the post-test questions and analyse the results for each group and 
typical difficulties they displayed.    

Post-test questions (each question graded on a scale 0-1 points). 
1) Write the following statement using quantifiers and symbols 
Z: For every senior at this university there is another senior at this university 
with a different major.  

Is this statement true?  Explain. 
2) Write the negation of the statement Z from 1) in English using symbolic 
quantifiers. 

Is this statement true? 
3) Write the following statement in English.  

∀ 0 < x ∈ R   ∃ y ∈ Q   |𝑥𝑥 − 𝑦𝑦| < 1
2     Is this statement true?  Explain. 

4) Write the statement in English and draw the corresponding Venn diagram. 
∀ A ∈{sets}  ∃ B ∈{sets}  A – B = A   Is this statement true?  Explain. 

The first question asked to translate a statement in English language with two 
quantifiers into a symbolic statement. It turns out that this was the most 
complicated question for all students, and vast majority of them did not answer 
it or answer it incorrectly. Many were not sure about the order of the quantifiers 
and how to attach variables to them with appropriate sets. Note that Logic 3 
group (that did the hands-on activity) scored the highest. See numerical data in 
Table 2.  
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Question 1  
Post-test  

Sample Size     Mean Score 

                          Scale 0-1 

Standard          Major Errors   

Deviation          

   Logic 1 group       20                   0.12   .22      Order of quantifiers 

   Logic 2 group  

   Logic 3 group 

      13                   0.14 

      26                   0.34 

  .33      Order of quantifiers 

  .32      Order of quantifiers 

  Advanced group        21                   0.19   .20      Order of quantifiers 

Table 2: Post-test question 1 data by groups.  

Question 2 asked to negate the statement 1). The scores were higher on this 
question, especially in Logic 2 group that had a mean of 92% and most of the 
errors in this group were marked as no answer provided.  Students struggled the 
most with the placement of the negation (the word not) and choices of proper 
quantifiers. Surprisingly, Logic 3 that was successful on problem 1 achieved the 
lowest score here, and the mean for the Advanced group was only 70%. 

Question 2  
Post-test  

Sample Size     Mean Score 

                          Scale 0-1 

Standard          Major Errors   

Deviation          

   Logic 1 group       20                   0.65   .48      Negation placement 

   Logic 2 group  

   Logic 3 group 

      13                   0.92 

      26                   0.60 

  .27             No answer 

  .31      Negation placement 

  Advanced group        21                   0.70   .47      Negation placement 

Table 3: Post-test question 2 data by groups.  

Question 3 asked for translation of the symbolic statement into English.  

∀ 0< x ∈ R   ∃ y ∈ Q   |𝑥𝑥 − 𝑦𝑦| < 1
2                            

Question 3  
Post-test  

Sample Size     Mean Score 

                          Scale 0-1 

Standard          Major Errors   

Deviation          

   Logic 1 group       20                  0.55   .51      Order of quantifiers 

   Logic 2 group  

   Logic 3 group 

      13                  0.76 

      26                  0.50 

  .43          Language choice 

  .32          Language choice 

  Advanced group        21                  0.70   .47            No answer 

Table 4: Post-test question 3 data by groups.  

All groups had a mean of at least 50% on this question. Many students had the 
incorrect order of quantifiers or had problems with formulating the statements in 
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English. Note that many participants from the Advanced group did not answer 
this question, which was surprising. See Table 4 for summary of the scores. 
Question 4 used sets as variables for the quantifiers. Majority of students were 
able to figure out that the statement is true when the set B is empty. Hence the 
corresponding Venn diagram was easy to draw (but many in Logic 3 did not 
draw it at all, hence their lower scores). 

Question 4  
Post-test  

Sample Size     Mean Score 

                          Scale 0-1 

Standard          Major Errors   

Deviation          

   Logic 1 group       20                  0.91   .15             

   Logic 2 group  

   Logic 3 group 

      13                  0.90 

      26                  0.60 

  .19              

  .32            No Venn 
diagram 

  Advanced group        21                  0.90   .22             

Table 5: Post-test question 4 data by groups.  

Some interesting comments from participants. Below we quote some of the 
comments on the quantifier activities and the learning process from post- survey. 

Student S1: I find quantifiers hard because I’m not sure what do they mean in 
English in many situations. But I enjoyed playing with symbols and the language.  
Student S2:  I plan to be computer science major and quantifiers are used in 
programming. I wish more of my courses were interactive and interesting.  
Student S3: Being precise it too precise for me. Why all the quantifiers are in front? 
I liked debating the language options. Translating is quite complicated for me; my 
first language is Spanish. 
Student S4:  Now, I find logic questions interesting. But I’m worried about upper 
division courses where the statements have many quantifiers. It can be very 
difficult. 
Student S5:  My last logic class was 2 years ago. We used quantifiers a lot in linear 
algebra. And to my surprise I had some problems with translating some of the 
statements with quantifiers on this test.  

Overall comments focussed on difficulties of finding proper words and the right 
order to represent the symbolic statements into English, and on putting 
quantifiers in correct order when translating into symbolic form. While many 
questions proved to be quite challenging, learners were engaged in the learning 
process trying to use their own reasoning to accomplish the tasks. Some students 
expressed interest in studding more advanced logic. 
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CONCLUSIONS  
Our study focused on comparing three methods of teaching mathematical 
quantifiers. We found that the results for traditional method used for Logic 2 
and 3 groups had a small edge over Logic 1, and students in these two groups 
showed unexpected engagement (we expected the language-based approach 
group to have more student interactions, as the introductory statements proposed 
were immediately understandable to students). Hence, we recommend starting 
with symbolic approach and an interactive learning approach (involving 
discussions, activities, etc.) for any methodology.  
The post-test results of the three freshmen groups and the additional group of 
advanced mathematics participants show that the students at every level still 
struggle to understand the concepts. The freshmen groups seemed to grasp the 
idea of translating quantified statements into English better than the other way 
around, regardless of the method they used to learn quantifiers. All students 
were quite comfortable working with one quantifier in a statement but not when 
more quantifiers were used (as well as when the order of quantifiers mattered). 
Both traditional groups that started with symbolic quantifiers performed better 
than the first group that started learning using language-based tasks. Even 
though results of the third group (that worked on the additional hands-on 
activity) were the highest, there was no real statistical difference between all 
three groups.  
On the other hand, the performance of advanced mathematics students who had 
previous knowledge of quantifiers, was below our expectations as they still 
struggled with translation tasks and understanding of the statements with 
multiple quantifiers. Since their scores were compatible with the other 
participants that just finished their first university level course, it seems that 
their understanding of quantified statements did not improve over the years. We 
suggest that other mathematics courses require writing in precise language at 
every level. 
Many studies, including this one, show that university level students still 
struggle to communicate in precise language. Since quantifiers seem to be hard 
to comprehend even in the language-based contexts, we recommend introducing 
them much earlier at school curricula, so even young children learn to pay 
attention to the way they state their mathematical thoughts and learn how to 
place quantifiers in the right order.  
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This paper presents two approaches based on the author’s involvement in 
shaping negative numbers, algebraic expressions and functions in students, 
showing the interplay between research and school practice and resulting in the 
development of educational resources. Firstly, an algebraic approach to the 
‘minus’ sign, understood as ‘opposite’ in school mathematics, is presented in 
the context of introducing both negative numbers and algebraic expressions to 
students through educational resources based on tokens. Secondly, the ways of 
improving students’ functional thinking are briefly mentioned on the basis of 
educational resources developed by the international FunThink Team. 
INTRODUCTION 
Negative numbers, algebraic expressions and functions are among the most 
fundamental mathematical topics in schools all over the world and at the same 
time they cause many difficulties for students, pre-service teachers as well as 
educators, therefore they require well-planned didactic approaches and well-
prepared educational resources based on research in mathematics teaching. The 
aim of this article is to present different contexts, theoretical, investigative and 
practical, based on own involvement, in which selected educational resources 
have been created in order to overcome students’ difficulties in forming negative 
numbers, algebraic expressions and functions.  
THEORETICAL FRAMEWORK  
This section presents the processes followed in designing the educational 
resources developed to facilitate the understanding of negative numbers, 
algebraic expressions and functions. 
Context I: Towards shaping negative numbers and algebraic expressions: 
Introducing the ‘minus’ sign as ‘opposite to’ 
This section describes the cycle of creating educational resources in the form of 
concrete teaching tools – tokens related to the teaching of negative numbers and 
algebraic expressions, and then developing learning environments that detail 
their use, supported by a teacher’s guide. The development of the educational 
resources was designed and co-funded within the EU project “Algebraic 
Approach Towards Shaping ‘Minus’ in School Mathematics” (AMMA). The 
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inspiration for the project was developed theoretical approach T1 and then T2 
and T3 approaches were involved to build the following theoretical framework: 

• T1: analysis of the concept of negative numbers in a historical 
perspective, the discovery and analysis of two mathematical models, 

• T2: constructivism in the teaching of mathematics, 

• T3: analysis of the available didactic models for the introduction of 
negative numbers and algebraic expressions at school, and analysis of 
curricula and textbooks in Poland and Slovakia.  

On this basis, the following educational resources were developed: 
a) sets of tokens-models for the use of negative numbers and algebraic 

expressions for children and teachers, 
b) lesson plans using the tokens in three languages, English, Polish and 

Slovak, 
c) a teacher’s guide in three languages, English, Polish and Slovak. 

The whole cycle of the process of their creation consisted of 6 general stages, 
however, between stage 4 and 5 there were many interrelations, effects and 
rounds. The stages were: 

1. Developing the theoretical framework (T1, T2 & T3) 
2. Developing the first version of the learning resources (tokens and lesson 

descriptions)  
3. Evaluation of the educational resources in the form of feedback from an 

external expert 
4. Preparation of revised versions of educational resources (tokens and 

lesson descriptions) 
5. Evaluation of educational resources - implementation in schools in Poland 

and Slovakia (4 schools, two Polish and two Slovakian). 
6. Development of the final version of the educational resources (tokens and 

lesson descriptions and teacher’s guides). 
The process is illustrated in Figure 1. 
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Figure 1: The process of creating educational resources in the AMMA project by 

Sajka, Błaszczyk and Zaręba (2022). 

The whole process had its origins in historical research (T1) on the emergence 
of the concept of negative numbers. In this line, Błaszczyk and Sajka (2017) 
identified two ways of introducing negative numbers in the history of 
mathematics.  

• In the first one, a totally ordered set (L,≺) is assumed, an element 0 in L is 
taken arbitrarily, and a number a is negative if a≺0.  

• In the second, a negative number is defined only by the formula a +(-a) = 
0.  

From a mathematical point of view, the first method involves the idea of a 
totally ordered group (G, +, 0, <), while the second considers only the idea of 
the algebraic group (G, +, 0). Through the analysis of source texts, we have 
shown (Błaszczyk & Sajka, 2017) that the first model comes from John Wallis’s 
(1685) Treatise of Algebra, while the second comes from the theory of 
polynomials as developed by Descartes in his 1637 La Géométrie (Błaszczyk & 
Mrówka, 2015). 
In mathematics education, the first model is overwhelmingly used. Teaching 
negative numbers based on this involves the conventional choice of zero on the 
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number line, and consequently we assume at the outset that we are considering 
an ordered set by defining that a negative number is less than zero. The number 
line model attempts to support unary, binary, and symmetric integer sign 
functions simultaneously:  -5 can represent position, -5 can represent the move 
‘5 units to the left’, -5 can also represent a number (position) opposite to 5. This 
multiplicity of agreements and interpretations, and the flexibility required in 
their use depending on the context, illustrate the limitations of this approach. 
However, there is another important consequence associated with the use of this 
model, namely that a negative number is immediately learnt to be less than zero 
and the student acquires the association that something preceded by a minus sign 
is negative, which consequently leads to a strong association of ‘-x’ with a 
negative number, a common error and key misconception among students in 
later stages of their mathematics education, and causes further difficulties in 
understanding ‘-x’ as a number opposite to x. This misinterpretation leads to 
profound difficulties in understanding, interpreting and manipulating algebraic 
expressions. 
In contrast, teaching according to the second model involves dividing the objects 
– elements of the given set – into two groups, for example of different colours, 
such as black and white. A pair of objects of different colour: {white, black} is 
interpreted as 0. Note that we do not need the order of the set at this stage. We 
do not assume that a negative number is less than 0, but we only know that a 
negative and a positive form a neutral pair, and therefore from the fact that a + (-
a) = 0 it follows that a is opposite to (-a) and vice versa. The most likely model 
using two coloured objects was the so-called ‘positive-negative charge model’, 
described as early as the 1970s and used to interpret addition and subtraction of 
integers (Frand & Granville, 1978; Grady, 1978). Later, the widely quoted 
‘annihilation model’, published in an article in Arithmetic Teacher by Battista 
(1983), showed how this model could be used to interpret all four operations on 
integers. 
A historical review (Błaszczyk & Sajka, 2017) allowed for another conclusion: 
negative numbers have no concretisation in material entities. They are a purely 
theoretical creation that arose not to study reality, but to describe and study 
mathematical phenomena. Moreover, almost at the same time as negative 
numbers, imaginary numbers were introduced, which were accepted not much 
later. In everyday life, all the concretisations of negative numbers that are 
proposed as examples to students are artificially produced on the basis of the 
conventions of social life and are unavailable to many children, such as: 

a) the temperature below zero, 
b) the levels of buildings or car parks in certain shopping centres or railway 

stations; moving (by lift or stairs) to the corresponding level -1, -2 
(basement), etc., and other analogous arrangements involving movement: 
forwards-backwards; right-left in relation to a chosen starting position 
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(e.g., the game proposed by Thompson & Dreyfus, 1988; movement 
performances in Hejný, 2008), 

c) depressions in the geographical sense, 
d) debts (debit, loss, penalty points). 

The second theoretical approach T2 is based on constructivism (e.g., Bruner, 
1957, 2009; Lerman, 1989; Piaget, 1970) and the theory of Sfard (1991), 
according to which concepts are acquired first operationally and then 
structurally, and the transition to the structural form of a concept – as a 
mathematical object – takes place in three steps: interiorisation, condensation 
and reification. In the interiorisation stage, the learner becomes familiar with the 
processes that will eventually result in the formation of a new concept. These 
processes are operations performed on lower-level mathematical objects. 
According to the intellectual development of the Grade 5-6 pupil, it would be 
worth to shape the concept of negative number based on models operating in the 
real world and activities on concrete material, using so-called enactive 
representations and not only iconic or symbolic representations (Bruner, 1956, 
2009). This postulate is further supported by the observation that students’ 
specific learning difficulties in mathematics are increasing, with dysfunctions 
such as dyslexia, dysgraphia or dyscalculia being diagnosed more and more 
frequently. Moreover, this postulate is supported by research. For example, 
Carbonneau et al. (2013) presented a meta-analysis that combined the results of 
55 studies involving over 7,000 students to show that the use of manipulatives is 
associated with positive effects at all levels of mathematics, and with 
particularly strong effects in favour of the use of manipulatives compared to 
instruction using only abstract mathematical symbols.  
Using tokens to teach negative numbers and then algebraic expressions fulfils all 
these assumptions. 
Context II: Towards enhancing functional thinking  
This section describes the cycle of creating educational resources aimed at 
enhancing functional thinking from primary to upper secondary school. The 
development of educational resources was designed and co-funded within the 
EU project “Enhancing functional thinking from primary to upper secondary 
school” (FunThink), a large international project. Figure 2 shows the processes 
followed for the design of the educational resources, consisting of 11 stages.  
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Figure 2: FunThink Learning Environments (LEs) preparation process (own 
interpretation). 

The visible interplay between theory, research and practice is described below. 
Stage 1: The first stage was related to the development of the theoretical 
background necessary for the creation of educational resources. This part 
consisted mainly of a review of the world literature on functional thinking and 
different aspects of functions. All partners were involved in a literature review. 
As a result of this review and numerous discussions, a theoretical background 
was developed by adopting four aspects of the development of functional 
thinking related to aspects of the concept of function (FunThink Team, 2021; 
Frey et al., 2022). The aspects of function are: 

• Function as an input-output mapping emphasises the computational aspect 
of function, perceived as a requirement to perform a calculation;  

• Function as a dynamic process of covariation between independent and 
dependent variables;  

• Function as a correspondence relationship;  

• Function as a mathematical object that can be studied, compared with or 
connected to other mathematical objects. 

Stage 2 & 3: Empirical research was conducted in the form of semi-structured 
interviews with national experts (Frey et al., 2022). The research question was: 
What conceptions of functional thinking do mathematics educators in the five 
countries Cyprus, Germany, the Netherlands, Poland and Slovakia have? In 
order to answer this research question, a total of 34 semi-structured interviews 
were conducted with mathematics educators in all five participating countries. 
The case of Poland was described in Polish (Sajka, 2023). This study also 
resulted in a theoretical model of the experts’ response categories, as they were 
analysed using qualitative content analysis (Mayring, 2015), which allowed for 
both an inductive and a deductive approach. As a result of this study, country-
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specific needs were formulated. In Poland, it turned out that at the secondary 
school level, functional covariation reasoning was not considered by the experts 
interviewed. This is one of the reasons why we gave further attention to this 
topic by preparing particular Learning Environments (LEs). 
Stage 4 & 5: In this phase, the national curricula of the partner countries were 
analysed: Cyprus, Germany, the Netherlands, Poland and Slovakia, and possible 
learning trajectories were analysed in order to define further needs in the 
national contexts. However, due to the large discrepancies in the curricula, it 
was decided not to create explicit learning trajectories, but to prepare different 
LEs for the three types of schools: Primary, Lower Secondary and Upper 
Secondary. 
Stage 6: This stage was the second theoretical step, related to the search for 
design principles, and also involved an analysis of the available approaches to 
the preparation and design of educational resources. As a result of the analysis, 
existing approaches were adopted, but it was assumed that all 4 design 
principles should be implemented simultaneously in each LE: 

• Inquiry-Based Education (IBE): for example, Artigue and Blomhøj (2013) 
discuss various mathematics education frameworks that are suitable for 
addressing inquiry-based mathematics education, including problem 
solving (Schoenfeld, 1992), realistic mathematics education (Freudenthal, 
1991), and the theory of didactic situations (Brousseau, 1997). 

• Embodiment: because modern theories consider cognition and thinking to 
be embodied, “not merely located in the mind of people, but grounded in 
action-perception experiences with their mind and body (e.g., Lakoff & 
Nunez, 2000). Theories on embodied cognition, or embodiment, differ in 
what they consider to be activities with the body, allowing for action-
perception experiences or loops” (FunThink Team, 2021, p. 12).  

• Situatedness: which refers to meaningful situations in need to be 
organized or mathematized, in the context of didactical phenomenology 
proposed by Freudenthal (1983). 

• Use of digital tools: In mathematics education, it is necessary to pay 
attention to the subtle interplay between the use of tools and mathematical 
learning. One theoretical approach that takes this into account is 
instrumentation theory (Artigue, 2002): “this theory stresses the need for 
a process of instrumental genesis, that a student goes through while using 
a tool for doing and learning mathematics. This instrumental genesis 
comes down to the coemergence of techniques for using the specific tool 
for the given task, and the development of mathematical meaning 
involved in the topic. This approach is key to a fruitful integration of 
digital technology in mathematics education” (FunThink Team, 2021, p. 
14). 
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Stage 7: In this phase, the first versions of the LEs with the whole didactic 
package (including didactic materials, digital tools, applets, worksheets, learning 
videos, implementation videos, teaser videos) and descriptions of the Teacher 
Guides were started. 
Stage 8-10: LEs were piloted in each partner country and the prepared 
educational resources were modified several times. The final versions of the 20 
LEs with all the educational resources were translated into English, German, 
Greek, Polish and Slovak. 
Stage 11: The final versions of the LEs were evaluated in practice, with the 
same pre-test and post-test prior to implementation in all countries. The 
evaluation reports can be found at www.funthink.eu. 
The next part of the work was the preparation of courses for pre-service and in-
service teachers, which will not be described for reasons of space. 
Comparison of the educational resources design cycles 
Common to both approaches are the strong theoretical underpinnings of both 
sets of educational resources. In the case of tokens, these are source-based 
historical studies, and in the case of functional thinking, a review of the 
available educational literature. Both contexts include a detailed analysis of the 
curricula in all the countries involved in the process and an analysis of the 
existing teaching resources available. Both approaches take into account the 
principles of instructional design, with Context II explicitly assuming and 
implementing four design principles in each LE: IBE, embodiment, situatedness 
and digital tools, while in Context I the main principle is constructivism with the 
use of manipulatives, but constructivism also assumes problem-based learning 
(i.e., the IBE approach), and the manipulation of tokens is a certain situational 
context and at the same time a kind of embodiment. So, only the tools are 
different: Context I assumes the use of manipulatives only, while Context II 
assumes the use of digital tools obligatorily. Educational resources developed in 
Context II are applicable worldwide due to the availability and universality of 
digital tools. On the other hand, the problem of accessibility of manipulatives 
could be overcome if we ask students to prepare their own set of cardboard cut-
out manipulatives (some teachers in Poland, for example, use buttons of 
different shapes and colours instead of tokens) and the advantages of using 
manipulatives are widely described in the literature (e.g., Carbonneau, Marley 
and Selig, 2013). 
The obvious similarities are also that both approaches included a pilot stage, 
improvement of developed resources and a final evaluation. The external 
differences were related to the territorial and content scope of the two contexts. 
For instance, Context I developed a coherent didactic approach aimed at the 
later years of primary school and has a clearly structured and linearly described 
learning trajectory, whereas in Context II different learning trajectories were 
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possible, in different order and aimed at pupils of different ages. Moreover, 
Context I implemented only one underrepresented approach to shaping the 
notion of negative numbers and algebraic expressions (based on Theoretical 
Model II), whereas Context II deliberately implemented different approaches 
and shaped the notion of functions in each LE in many and preferably 
simultaneously in all the four aspects mentioned above. Another methodological 
difference is that Context II included an empirical research phase in the form of 
open-ended in-depth interviews with education experts, which allowed to 
distinguish the needs in each country; Context I did not include such research.  
EXAMPLES OF EDUCATIONAL RESOURCES 
Context I: Towards shaping negative numbers and algebraic expressions: 
Introducing the ‘minus’ sign as ‘opposite to’ 
A set of manipulatives for the student and a set for the teacher contained 10 
tokens each (60 manipulatives). It is worth mentioning that the Slovak teachers 
also used a multimedia whiteboard (Figure 4). The tokens are presented in 
Figures 3 and 4. 

 
Figure 3: Tokens–left: manipulatives for students, right: magnetic tokens for the 

teacher. 

 
Figure 4: Tokens and their use in AMMA project (Sajka, Błaszczyk & Zaręba, 2022). 
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As a result of the AMMA project, sets of tokens for pupils, teacher sets (for 
blackboards), complete lesson plans, teaching materials and teacher guides have 
been produced.  All educational resources were evaluated in 4 schools (2 in 
Poland and 2 in Slovakia) and were found to be effective in both countries, 
despite significant differences in the curriculum, as in Slovakia negative 
numbers are introduced in grade 8, whereas in Poland they are usually 
introduced in grade 6. The only situation where students reported some 
dissatisfaction with the tokens was in the revision classes in grade 7 in Poland, 
where students were already familiar with negative numbers. In these classes, 
students sometimes expressed impatience and embarrassment with the ‘childish’ 
tokens. This effect was not observed in the older Slovak students of grade 8, 
where negative numbers were introduced in this way. The developed approach 
was also suitable for students with special educational needs and has been used 
with relatively young, gifted children (grade 4, Poland) and with dyslexic and 
even dyscalculic children in grades 7 and 8. 
Context II: Towards enhancing functional thinking  
Table 1 lists topics of modules of LEs developed for the FunThink project for 
primary and lower secondary education. 

Primary Education Lower Secondary Education 

1. Distance-time version A 

2. Distance-time version B 

3. Double number line 

4. Function machines GeoGebra 

5. Function machines gizmos 

6. Pattern 

7. Qualitative interpretation of graph 

8. Variation-covariation 

 

1. Embodying graphs 

2. Cooling of water 

3. Filling vessels 

4. Temperature 

5. Walking graphs 

6. Nomogram – Introduction and graph 

7. Various vessels 

8. Marbles 

9. Coordinates 

10. Change is change 

Table 1: List of FunThink LEs. 

Each LE was accompanied by its description, including information on the 
degree of implementation of the four design principles and the aspect of 
functional thinking developed during the lesson (Figure 5). 
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Figure 5: Extract from the description of the LE “Embodying graphs”. 

ONGOING STUDY  
Covariational thinking is developed in students in the early years of 
mathematics, but in upper secondary school, where the concept of function is 
formally introduced and used, the implementation of covariational functional 
thinking in mathematics teaching is neglected in Polish practice, in favour of 
other aspects of functions, such as: function as input-output assignment, 
correspondence and mathematical object. However, covariational functional 
thinking is essential for understanding differential calculus, but also for solving 
modelling problems. 
Research on the development of educational resources to improve students’ 
covariational functional thinking is being continued.  Based on empirical 
research using methodological triangulation, including the use of eye-tracking, 
the difficulties in students’ covariational functional thinking have been 
diagnosed. To overcome these difficulties, the next approach has already started 
in the context of the EMPE project (Embodying Math and Physics Education). 
The new educational resources will aim to overcome the diagnosed difficulties 
in reading and interpreting graphs and to improve covariational functional 
thinking. Our aim is to design, prototype and implement devices and software, 
using an embodied approach, involving students, their movement, experience, 
discovery, related to the visualisation of the concept of function, focusing on 
understanding, interpreting and using graphs of functions in the context of 
motion analysis. The educational resources developed aim to prevent such 
deficiencies and to support covariational functional reasoning. 
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STUDENTS’ CONCEPT IMAGE OF FUNCTION IN 
CONNECTION WITH LEARNING KINEMATICS 
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Mathematics and physics are closely related disciplines, and many areas of 
mathematics play an essential role in learning physics. We aim to explore the 
9th graders’ concept image of functions with particular attention to the link of 
knowledge students have after learning about the kinematics of simple 
movements in physics lessons. Therefore, the students took a test consisting of 
two different tasks. The first task assessed their conceptual knowledge, and the 
second task was a physics problem with a position-time graph. The survey result 
shows that students likely associate the function concept with their most 
common activity: representing points and curves on a coordinate system. 
Physical tasks contribute to the concept image of function by providing activities 
at the action level. 
INTRODUCTION 
Mathematics and physics are closely related disciplines, and many areas of 
mathematics play an essential role in learning physics. In physics lessons, 
mathematics is always behind the basic concepts, models, expressions, and 
formulae, thus helping understand and describe phenomena that occur in nature 
(Radnóti & Nagy, 2014). It is also worth approaching the question from the 
other direction. On the one hand, students use many mathematical concepts 
earlier in physics lessons than in mathematics lessons (at least in Hungary; see 
textbooks (Csajági et al., 2020; Juhász et al., 2020)). This provides an 
opportunity to incorporate the experience gained in physics into the processing 
of mathematics curricula. On the other hand, physics problems often serve as a 
non-mathematical context in mathematical problem-solving. However, the 
professional experience of secondary school teachers and didactic research 
shows that students cannot effectively connect the knowledge acquired in these 
two fields. (D. Balogh, 2002; Pospiech, 2015; Ubuz et al., 2019). 
In this study, we focus on a specific mathematical concept, the function, which 
is essential not only from the aspect of mathematics but also from several 
scientific fields such as physics. Ninth-grade students already have plenty of 
preliminary knowledge of the function concept. Some of these are acquired in 
mathematics lessons, some in physics lessons, or everyday life. We aim to 
explore the 9th graders’ concept image of functions with particular attention to 
the link of knowledge students have after learning about the kinematics of 
simple movements in physics lessons. 
We formulated the following two research questions. 
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RQ1. What preliminary knowledge do 9th-grader students have on the notion of 
function? 
RQ2. How do they use their knowledge of functions when solving a physics 
problem? 
Our survey is the first step in a more extensive teaching experiment. The 
experiment aimed to provide curricular knowledge of functions by building on 
students’ experience while maintaining the link between mathematics and 
physics to provide students with comprehensive and applicable knowledge 
across multiple domains. 
THEORETICAL BACKGROUND 
It is important to consider that in the case of a concept, alongside definitions, 
students also have some mental image of the idea. This includes all the visual 
representations that can be seen concerning a concept. In this respect, the first or 
most used examples are the most prominent. For example, students often think 
of functions as something described by some algebraic expression, especially by 
linear expression. Besides this mental picture, some properties might also be 
associated with the concept. These properties and the mental image constitute 
the “concept image” (Vinner, 1983). The concept image also has a vital role in 
the teaching-learning process because, in most cases, when thinking, it is not the 
conceptual definition but the concept image that is evoked. In Vinner’s model, 
the concept definition and concept image are two separate cognitive structures. 
One or both may often be empty regarding a given concept, or even the links 
between them are missing. When developing conceptual knowledge, paying 
close attention to the concept definition, the concept image, and the links 
between the two in either direction is crucial. 
Sierpinska (1992) described the conditions for understanding the notion of 
functions. Students need to move confidently in the world of (1) changes, (2) 
relationships or processes, (3) rules, patterns, and laws. This means that students 
should have (1) mathematical and non-mathematical experiences of changing 
objects and covariant quantities, (2) relationships, and (3) rules that determine 
the relationships. 

Students must become interested in variability and search for regularities before 
examples of well-behaved mathematical elementary functions and definitions are 
introduced in the classroom. (Sierpinska, 1992, p. 32) 

When developing the function concept, the physics problems students are 
familiar with provide these worlds and this variability. The kinematics problems 
contribute to the initial picture of function since they deal with the process of 
motion, i.e., the relationship of the quantities of distance, speed, and 
acceleration, which vary with time. Different forms of representation are used to 
describe the relationship between covariant quantities. The most used 
representations are verbal description (written or oral), table of function, graph, 
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and algebraic expression (Sierpinska, 1992). The latter two are common in 
physics problems, while the value tables are used for measuring physical 
quantities. 
The functions defined by physical laws convey a static function picture since the 
relationship (physical laws) is not determined by us but discovered or just 
learned. A different, more dynamic image is conveyed, for example, by 
geometric transformations, where we create the image (Sierpinska, 1992). It can, 
therefore, be seen that the quantities and their relationships known from physics 
provide good examples of the concept of function. This is true even if it only 
covers part of the mathematical function concept. 
Dubinsky and Harel (1992) mention four stages of understanding the concept of 
function. (1) Pre-function: In this stage, students’ concept of function is vague 
and unsuitable for solving function-related problems. The concept only has its 
clues. (2) Action: Students think of a function as something that returns the value 
of an expression to a particular value of the variable. It entails substituting 
numbers into algebraic expressions and calculating their values. (3) Process: 
The interpretation of the function as a process includes a dynamic 
transformation of quantities. Students’ concept of a function may show an 
“input-transformation-output” picture at this stage. (4) Object: The function can 
be considered an object created with a process’s help. Breidenbach et al. (1992) 
consider these stages not development levels but ways of thinking about 
functions. They grouped college students’ responses to the question “What is a 
function?” into these categories. The result showed that a significant number of 
responses belonged to the pre-function or action category. Most examples of 
functions students gave before the instruction were some algebraic or 
trigonometric expressions in line with the action way of thinking. Based on 
these, we expect that the features of pre-function and action will also appear in 
our 9th-grade students’ perception of function. 
METHODOLOGY 
Sample 
In Hungary, public education is divided into two main parts: an eight-year 
primary school, then students choosing a secondary school. Among other 
options, students can continue their education in four-year secondary schools, 
focusing on purely academic subjects, preparing them for a graduation exam. 
This can be followed by studying at college or university level. Each class often 
specializes in certain subjects, involving more lessons from them during the four 
years. 
We conducted a teaching experiment in a ninth-grade class with a science 
profile in a major city in Hungary. The science profile means the students follow 
an advanced-level curriculum in biology, chemistry, and physics. In addition, in 
the ninth grade, they have 4 lessons of mathematics per week instead of the 
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mandatory 3 lessons, which they study in subgroups of 16 students each. The 
class has above-average abilities, which is supported by the fact that their 
average score in mathematics on the central admission exam before ninth grade 
(34.0 points out of 50) was remarkably higher than the national average (21.1 
points) (Oktatási Hivatal, 2023, p. 35). A total of 30 students participated in the 
survey.
Circumstances
The experiment focuses on the teaching of functions. The topic was not entirely 
unfamiliar to the students since it is part of the curriculum in Hungarian primary 
schools in grades 7-8. According to the national mathematics curriculum, 
students must be familiar with the coordinate system, plot points in them, and 
read the coordinates of points. They learn about direct and inverse proportions 
and should be able to plot the graph of direct proportionality. They also learn the 
concept of function as mappings between specific sets. Physics subject is 
mandatory from grade 7, and the first theme students face in physics classes is 
the kinematics of linear motion. They learn the position, velocity, and 
acceleration relationship with time in this context using algebraic expressions
and graphs. The experiment involves introductory lessons with one subgroup for 
two 45-minute lessons, where physics tasks requiring knowledge of functions 
are presented. Afterwards, throughout the topic, we continuously use physics 
examples. We process the experiment in the form of action research, and it 
begins with a survey.
Measurement instrument
At the beginning of our experiment, we wondered what kind of concept image 
the students possessed and how they could handle a typical kinematics problem. 
Therefore, the first task assessed their conceptual knowledge, and the second 
task was a physics problem with a distance-time graph.

Task 1. (a) What memories do you have, what we call a function? (b) Write down 
whatever comes to your mind about the concept.
Task 2. A car moves in a straight line at a 
uniform speed, accelerating or decelerating
uniformly. Its movement from start to stop is 
shown in the following distance-time graph.
The movement can be divided into three stages 
(1, 2, 3). (a) How long does each stage take, and 
how far does the car travel during each time? 
What kind of movement does it make in each of 
these stages? (b) What is the speed of the car in stage 2? (c) Plot the speed over time
in phase 1 of the motion. (d) What is the acceleration of the car in phase 1?

A code system was inductively developed to analyse the responses. The 
following codes were assigned to each question.
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Task 1a required a content analysis. The following motifs and codes were 
distinguished (often more than one in the same answer). (A) a specific function 
is named, (B) function property (i.e., monotonous increase), (C) assignment, (D) 
graph or coordinate system, (E) other, and (F) no answer.
Task 1b was coded in two dimensions: the function type and the representation 
form. The function types students mentioned are physics functions, linear 
functions, quadratic functions, and others, while some of them did not answer. 
The forms of representation used are verbal description, ordered pair(s), graph, 
and algebraic expression.
Regarding Task 2, we focused on the correctness of the responses and how 
students determine the result: Do they connect their reasoning to the graph or 
calculate the result independently from them?
The two authors coded the answers separately and then decided on a few 
differing codes by consensus.
RESULT AND DISCUSSION
What do we call a function?
The motifs in the responses are summarised in Figure 1.

Figure 1. Frequency of different motifs about function concept.

About half of the students (16) referred to the coordinate system or the graph of 
a function in some form (D). Several described that functions or points can be 
represented in an x-y coordinate system or that the function itself is the points 
plotted in the coordinate system.
A specific function (A), for example, a linear function, was mentioned 4 times. 
Some function properties, such as “can be decreasing or increasing” (B), 
appeared 3 times. In 4 motifs, the function was defined as “assigning one value 
(usually y) to another (usually x)” (C).
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There were 8 unique responses (E). For example, stating that functions “can be 
described with some rule,” or that they can illustrate the change, or “the 
relationship between two pieces of data.” Someone mentioned that “equations 
can be solved with them, and they contain letters.” One described the graphing 
of linear functions, explaining how the slope and the intercept are determined. 
Another student recalled Excel functions from IT classes, while two others 
mentioned value tables. 
From the answers, it became apparent what concept image the students have 
regarding functions. They likely associate the concept with their most common 
activity: representing points and curves on a coordinate system. Most students 
seem to have an empty concept definition, possibly because they encountered 
functions mainly in informal ways. Twenty-one students provided non-empty 
answers to this question. Generally, multiple different categories appeared for 
each student. Ten students mentioned 2, and 2 students mentioned 3 different 
motifs. That indicates that their concept image includes various components. 
Nine students either did not write anything or mentioned that they could not 
remember anything (F). 
Examples of function and their representations 
According to the primary school requirements, most students represented the 
linear function in some form, as an example (Table 1. Examples of function. 
Triggered by memories from physics classes, some brought up examples, 
including physical quantities. This meant a distance-time graph, or they wrote 
“the function of time,” which might have originated from the assignment: “Plot 
the position as the function of time.” In 3 cases, a parabola-like graph arising 
from variable movements was also mentioned. 

Physics 
function Linear function Quadratic function Other No answer 

3 13 3 8 3 

Table 1. Examples of function. 

In responses to question 1a, many also mentioned points plotted in the 
coordinate system as part of their definition of a function. In line with this, 7 
students (among the 8 who were coded “Other”) also displayed coordinate pairs 
in some form (Figure 2 2.). This indicates that some believe these ordered pairs 
also constitute functions. 

 
Figure 2. The ordered pair as an example of a function. 

In the examples, various representations appeared (Figure 3). In line with 
question 1a, the most common representation (13) was the visual representation, 
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a graph in a coordinate system. It is worth noting that except for one student, all 
emphasized only the first quadrant of the coordinate plane. In most cases, the 
negative parts of the axes were missing, or the plotted points of the function 
were all in the first quadrant. This perfectly aligns with the fact that in physics 
classes, they mostly represent positive quantities, hence only graphing the first 
quadrant.

Figure 3. Frequency of different representations when the example is not an ordered 
pair.

In several cases (9), the example was given in some textual form, but it always 
meant describing a type of function (e.g., linear function). In a few cases (3), 
they provided an example using some rule with algebraic expressions (e.g., 
f(x)=x+2). Some students presented multiple representations associated with a 
single example, but various examples could also appear in the case of one 
student. In the following student work, we see a linear and a constant function 
named with words and depicted with a graph (Figure 4). Another example on the 
right side of the figure contains elements of the algebraic notation and ordered 
pairs in a way that is not usual. This shows that the student has a vague 
understanding of these concepts.

Figure 4. A student’s work with different representations and various examples.

The examples align with the answers to the first question and mostly show that 
the concept image dominates the definition, which does not exist in most cases. 
This is also indicated by the fact that some students did not answer the first 
question but could still provide a visual example.
Findings of the physics task
In the physics task, almost every student could read the time and position values 
for each motion phase from the graph. The only issue encountered in 6 cases 



Students’ concept image of function in connection with learning kinematics 113

was that they did not calculate the distance for each segment from the graph; 
they just wrote down the position of the ending point as the distance. Except for 
3 students, everyone accurately determined the type of motion based on the 
curve. This means that they can read the coordinates of the points and are also 
aware of the physical meaning of the graph.
In the second motion phase, the object underwent uniform linear motion, and the 
students had to determine its speed. From the solutions, it is evident that they 
solve this task separately from the given graph. In 24 cases, the students wrote 
down the formula v=s/t without any index or other indication that would refer to 
the specific part of the motion. So, to determine the speed, they used the well-
known algebraic expression (formula) and substituted the values of distance and 
time into it. This is consistent with using the concept of function at the 
operational (action) level.
Then, they had to graph the velocity as a function of time in the first phase of the 
motion, which was uniformly accelerated. Figure 5 shows that 7 students solved 
this task perfectly.

Figure 5. Frequency of different types of answers for question 2c.

In the rest of the responses, it is noticeable that the graph is separated from the 
previous parts of the task. In 15 cases, the final velocity was incorrectly 
determined, even though it had already been calculated in the previous part of 
the task. In Figure 6. the student drew a linear segment starting from the origin 
according to uniformly accelerated motion, but it does not connect to their 
previous results. Neither the final velocity (1 m/s) nor the time value for the 
ending point (4 s) matches the value calculated previously (2 m/s, 5 s).
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Figure 6. Different values for final velocity in the answers to questions 2.b and c. 

The rest of the responses did not correspond to uniformly changing motion 
despite correctly describing it as such earlier when they characterized the 
motion. This indicates that certain factors of the motion process are overlooked 
during problem-solving, and students only focus on the data they need at the 
moment. 
Physical tasks contribute to the concept image of function by providing 
activities at the action level and using a graphical representation. However, it is 
not enough to reach a more complex level of understanding, at least based on 
our experience. 
CONCLUSION 
The students’ responses gave us a broad picture of the first research question. 
Obviously, their concept image of functions draws from primary school 
mathematics classes and secondary school physics classes. Since they come 
from different schools, they have varying levels of prior knowledge. However, it 
can generally be said that the concept image is dominated by representation in 
coordinate systems and linear functions. The role of ordered pairs is also 
significant, but students have a vague understanding of this aspect. 
Regarding the second research question, we gained partial insights. Overall, the 
students could read data from graphs and even qualitatively interpret what type 
of motion it represents. However, after extracting the data, if we ask for some 
calculation or further representation related to the motion, sometimes it does not 
match the previous graph or data. This indicates that while students are familiar 
with the representations involving graphs and algebraic expressions, they might 
have difficulty seeing the connections between them. This suggests that the 
confident movement between the worlds described by Sierpinska (1992) is not 
fulfilled. In this question, a more complete picture will be provided by the next 
phase of the teaching experiment. 
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The results supported our expectation that students think on the pre-function or 
action levels. Their concept of function is still vague and narrow, and during 
problem-solving, they are mostly stuck at the level of calculating with algebraic 
expressions. Teaching the topic will require a significant effort to move them 
towards the process level of understanding. 
In the next step, the introductory lessons allowing us to map out the students’ 
prior mathematical and physical knowledge even more accurately based on their 
reactions. Our goal in the teaching experiment is to develop a higher-level 
understanding of the function concept, relying on students’ experiences in 
physics classes. Of course, this can only be done effectively if we properly 
assess the prior knowledge. We hope to incorporate the findings from the 
presented survey into teaching the topic more effectively. 
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Problem posing is an important aspect of mathematics and, therefore should be 
included in teacher education. We present a study on preservice teachers and 
their problem posing within a course designed to enhance their problem solving 
and problem posing skills. Our results show that the design of problems that are 
based on a given text and are open-ended has been a challenge for 
a considerable number of the preservice teachers involved in our study. This 
stresses the need for a wider inclusion of structured and semi-structured 
problem posing activities in teacher training. 
INTRODUCTION 
Mathematics mainly consists of solving and posing problems. This is 
acknowledged in mathematics education literature, especially concerning 
problem solving (Schoenfeld, 1992), while the last years posing problems has 
also gained attention by many researchers. This trend has affected curriculum 
design, but also teacher training. Although there is evidence that preservice 
teachers can pose good problems (Crespo, 2003; Leavy & Hourigan, 2020), we 
can also find studies reporting “irrelevant, nonmathematical, ill-formulated and 
sometimes unsolvable problems” (Leavy & Hourigan, 2022, p. 150). These 
results stress the need for a comprehensive assessment framework for the posed 
problems, but also for the need for systematic and wider inclusion of problem 
posing in teachers’ training. Bearing these in mind, we designed a study 
involving preservice teachers, aiming to examine their problem posing skills, but 
also their skills in assessing their own problems. Next, we present the theoretical 
underpinnings of our study, followed by our research questions. 
THEORETICAL UNDERPINNINGS 
Mathematical problems play a crucial role in mathematics and its learning. This 
fact was expressed in the relevant literature mainly by analysing the ways in 
which students solve problems (Schoenfeld, 1985; 1992). Gradually, the 
importance of engaging students in problem posing emerged, leading to relevant 
studies. Various definitions have been suggested in these studies; here, we 
present only two of them. Stoyanova and Ellerton (1996) defined problem 
posing as the “process by which, on the basis of mathematical experience, 
students construct personal interpretations of concrete situations and formulate 
them as meaningful mathematical problems” (p. 518). This definition focuses on 
the students’ processes when they are asked to construct a problem based on 
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a given resource; additionally, it refers to the meaningfulness of the posed 
problem, which is an assessment criterion. Silver (1994) defined problem posing 
as the activity of generating new problems and reformulating given problems 
which, consequently, can occur before, during, or after problem-solving. This 
definition focuses on the relationship between problem posing and problem 
solving, which has been the focus of many studies (e.g., English, 1998). A 
useful categorisation of problem posing situations is offered by Stoyanova and 
Ellerton (1996):  

In free situations students pose problems without restrictions; students are asked to 
“Make up a difficult problem” or, simply, “Make up a problem you like”. Semi-
structured problem-posing situations refer to the ones in which students are 
provided with an open situation and are invited to explore the structure of that 
situation, and to complete it by using knowledge, skills, concepts, and relationships 
from their previous mathematical experiences. Structured problem-posing situations 
refer to situations where students pose problems by reformulating already solved 
problems or by varying the conditions or the question of given problems. (Bonotto, 
2013, pp. 39–40) 

The acknowledgement of the importance of problem posing in mathematics 
education led to studies on teacher training, based on the premise that the 
teachers need to be prepared to implement such an approach in their classroom 
(Crespo 2003; Koichu & Kontorovich, 2013). Our own interest, as teacher 
trainers is aligned with these studies. One of the elements of problem posing is 
the strategies that can be employed by the poser, in order to pose worthwhile 
problems. We found that the most prevailing is the “What if not?” strategy 
(Brown & Walter, 1993), according to which the poser is listing the attributes of 
a given problem and then changes them. For example, the poser can change the 
numerical value of data, change the kind of data, or even eliminate one of the 
data (Lavy & Bershadsky, 2003). 
Lastly, one of the main arguments for including problem posing in the 
classroom is that in the real world “many problems, if not most, must be created 
or discovered by the solver, who gives the problem an initial formulation” 
(Kilpatrick, 1987, p. 124). This argument connects problem posing with the 
student acting in the real world, which in turn leads to realistic mathematics 
education approach. According to this approach, “mathematics education should 
start from problem situations that are meaningful to students, which offers them 
opportunities to attach meaning to the mathematical constructs they develop 
while solving problems” (Van den Heuvel-Panhuizen & Drijvers, 2020, p. 715). 
These problem situations may come from resources such as objects, images, 
videos and texts; all of these carry their affordances, which should be considered 
in research and in teacher training. We have been trying to connect realistic 
mathematics education with problem posing in our teacher training courses; 
particularly, in one of our studies (Maj-Tatsis & Tatsis, 2014), we engaged 
preservice mathematics teachers in semi-structured problem posing and then 
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asked them to evaluate their peers’ problems, based on originality, level of 
difficulty and degree of being realistic. The diversity in the evaluations we 
acquired was an indication of the preservice teachers’ diverse interpretations of 
what constitutes a ‘good’ realistic mathematical problem. An important finding 
of this study was the significant role of the wording of the posed problem: in 
some cases, misinterpretations coming from the wording of the problem led 
some preservice teachers to different solutions than those intended by their peers 
who had posed the problem. 
The above considerations led us to design a study in which the preservice 
teachers would be asked to design and then assess problems that began with a 
given phrase taken from a textbook. We were also interested in studying the 
characteristics of the posed problems. This led us to the following research 
questions:  

a) Were the preservice teachers able to pose open-ended problems in a semi-
structured situation?  

b) What were the characteristics of the open-ended posed problems? 
CONTEXT OF THE STUDY AND METHODS 
The participants were 26 preservice teachers (23 women), all of whom were at 
the third (out of four) year of their studies. Our data were collected at the ninth 
of the 13 lectures of the semester. By that time, the preservice teachers have 
been introduced to the following content within the course entitled Didactics of 
Mathematics – Teaching Practice led by the first author of the paper: learning 
theories in mathematics education, problem solving (especially the use of 
heuristics, but also categories of problems with a special focus on open-ended 
problems) and realistic mathematics education (including a discussion on 
aspects that render a problem realistic, with a focus on the role of context). The 
day of data collection began with a lecture on problem posing, which contained 
elements and examples of the various problem posing strategies mentioned in 
our theoretical framework, with a special focus on the “What if not?” strategy. 
This was followed by examples of structured and semi-structured problem 
posing situations. Then the preservice teachers were asked to fill in an 
anonymous online questionnaire, which contained questions on their age, 
gender, direction of studies in secondary school, followed by these questions: 

6.Write a closed realistic problem that begins with the phrase: “Two cranes 
unload a ship in three hours”. 

7.Solve your problem. 
8.Rate your problem, according to its level of difficulty. (1-5 Likert scale, 

ranging from “very easy” to “very hard”) 
9.Rate your problem, according to its level of being realistic. (1-5 Likert scale, 

ranging from “not at all realistic” to “very realistic”) 
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10. Write an open realistic problem that begins with the phrase: “Two cranes 
unload a ship in three hours”. 

11. Solve your problem. 
12. Rate your problem, according to its level of difficulty. (1-5 Likert scale, 

ranging from “very easy” to “very hard”) 
13. Rate your problem, according to its level of being realistic. (1-5 Likert 

scale, ranging from “not at all realistic” to “very realistic”) 
There were no restrictions concerning the grade that the problems should 
address – this was done in order to allow for a bigger variety of problems. At the 
same time, it was obvious to the preservice teachers, that their problems should 
adhere to the curriculum of the last three grades of primary school in Greece, 4, 
5 and 6. After all participants completed the questionnaire – which took them 
approximately 30 minutes – a discussion was initiated on how they perceived 
the process of problem posing and whether they believed that such an approach 
can be implemented in their classroom. Specific problems were also selected by 
the instructor and discussed. There was no data collection at this point, so our 
analysis is based on the questionnaire responses. For the purpose of this paper, 
we focus on the formulations and the solutions of the open-ended problems, 
therefore our data come from questions 10 and 11. The responses to these 
questions were categorised by deploying a content analysis approach 
(Krippendorff, 2019). Particularly, we established codes to describe the posed 
problems, according to the following categories: 

• content: the mathematical concepts involved in the problem; consisted of 
three respective codes, namely direct proportionality, inverse 
proportionality, and combination/other (this included a combination of 
proportionality with other concepts, such as additive relationships); 

• complexity: the number of operations required to solve it; consisted of two 
respective codes, namely one operation and more than one operations; 

• openness: consisted of two respective codes, namely open-ended and 
closed. 

The above categories fit well with the posed problems, except two cases which 
were excluded, as we will show in the results. We performed a quantitative 
analysis of data in order to answer the first research question. Then we 
qualitatively analysed the characteristics of each posed problem, which was 
categorised as open-ended. Our results, complemented by examples of our 
analysis, are presented in the next section. 
RESULTS 
We received 26 responses, among which one contained no text, and another one 
contained the following problem, which we did not include in our coding: 
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What would happen if more ships arrived at the port at the same time? Do you think 
the unloading time is affected by the type of cargo of each ship? 

Half problems (12 out of 24) were based only on direct proportionality, followed 
by seven problems based on other notion(s), while five problems involved only 
inverse proportionality. Nine problems required one operation to be solved, 
while the remaining 15 required more than one operation to be solved. The most 
interesting result though, was the number of the actual open-ended problems 
(among those which were categorised as such by the preservice teachers), which 
was lower than one would expect: 11 out of 24. Table 1 summarises these 
results. 

Category  Number of problems 

 direct proportionality 12 

Content inverse proportionality 5 

 combination/other 7 

Complexity 
one operation 

more than one operation 

9 

15 

Openness 
open-ended 11 

closed 13 

Table 1: Results on the content, complexity and context of the problems. 

As seen from Table 1, proportionality (direct and inverse) persevered in all 
problems, including the open-ended ones. This was expected, since the provided 
situation implied such a relationship. There were, however, some problems 
containing other concepts, as we will show later. Since our focus was the open-
ended problems, we analysed these in respect to the categories of content and 
complexity. Table 2 below summarises the results of this analysis: 

Category  Number of open-
ended problems 

 direct proportionality 4 

Content inverse proportionality 0 

 combination/other 7 

Complexity 
one operation 

more than one operation 

0 

11 

Table 2: Results on the content and complexity of the open-ended problems 

Before we present examples of the open-ended problems (signified by P), 
followed by the solutions suggested by the posers (signified by S), we present an 
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example of a closed problem, which was categorised as open by the preservice 
teacher: 

P2: What would happen if a crane had to unload a ship? How many hours would it 
take? 
S2: One and half hour. 

Although the problem is clearly closed (and the preservice teacher provides the 
only solution), it is clear that the problem formulation is based on the “What if 
not” strategy. Therefore, this strategy was interpreted as one that would surely 
lead to an open-ended problem, although this was obviously not the case. Next, 
we present examples of problems that were actually open-ended. 

P5: Two cranes unload a ship in 3 hours, a sailboat in 2 and a boat in half an hour. If 
we have 24 hours how many and what can we unload? 
S5: There are many solutions. One solution is 4 ships, 5 sailboats and 4 boats. 
P6: Two cranes unload a ship in 3 hours. Each ship has 20 containers, one suddenly 
overheated and stopped working and was replaced with one with half the yield. We 
have two groups of people who push them through the crane to trucks, group A 
unloads 1 container in 1 hour and group B 2 containers per hour what combination 
would you make? 
S6: Each crane unloads 10, so the new crane unloads 5 within three hours, so within 
three hours the cranes will unload 15 out of 20 and 5 will remain. Group B could be 
used for 2 hours and Group A for an hour. 
P19: Three cranes unload a ship in 2 hours. If each crane needs 400€ to operate per 
day, and in a week the employees work all 7 days, 8 hours a day with 3 cranes and 9 
hours with 2 cranes, and the budget for the operation of the cranes is 8000€, how 
many ships would be likely to unload so as not to exceed the budget. Which are 
considered better options for the employer and which for employees and why? 
What would be a balanced choice for both employees and employers and why? 
S19: Students will make a board with 4 columns, days with 2 cranes, days with 3 
cranes, money spent and unloaded ships. They find all possible answers that do not 
exceed 8000€. The last questions give a perspective of both the employer and the 
employee and [the students] can understand that although many ships could be 
unloaded, but the employer also wants the largest possible profit at the same time, 
so it may be that something that is true in mathematics is not true in reality. 

The above examples present in a clear way some of the qualitative 
characteristics of the posed problems, which relate to the preservice teachers’ 
views of open-ended problems in mathematics, but also of other aspects of 
mathematics education. The first example (P5) is a typical case of an open-
ended problem, in which the student is asked to find the combinations of 
numbers that lead to a given sum, in this case 24. The second example (P6) 
contains a scheme that appeared in four other problems: according to this, 
additional data is inserted (e.g., the total load is broken down into containers and 
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each container needs to be unloaded by a group of workers), which results in 
additional operations to be performed. This increases the complexity of the 
problem and renders it a realistic one, especially due to the initial condition 
(“one suddenly overheated and stopped working and was replaced with one with 
half the yield”), which resembles a realistic situation. The last example is even 
more interesting, because the preservice teacher (although he reformulated the 
initial phrase, maybe accidentally), not only inserts additional information, but 
also considers factors such as the total budget (and how to not overcome it) and 
the desired balance between the employee’s and the employer’s needs. We may 
perceive this as a feature of critical mathematics education (Skovsmose, 2020), 
which is considered important for teachers’ training. 
DISCUSSION 
Our study aimed to shed light on the problem posing of preservice teachers, 
which was based on a given text. Firstly, we examined whether they would be 
able to pose open-ended problems: our results showed that they had difficulties 
in doing so. Such difficulties might stem from their lack of experience, despite 
the fact that they had received specific instruction on what is an open-ended 
problem and how to design such a problem. These difficulties led them to 
perceive closed problems as open-ended ones. 
By looking at the qualitative aspects of the open-ended problems, we were able 
to discern their characteristics, in order to answer our second research question. 
It was noteworthy that mere proportionality appeared in only 4 problems, 
whereas the majority of problems contained a combination of mathematical 
concepts; in most cases an additive relationship was used. All open-ended 
problems required more than one operation to be solved. In some cases, the 
preservice teachers inserted additional data to their problems, making them 
‘more’ realistic, and, in some cases, adhering to the principles of critical 
mathematics education. 
We conclude by acknowledging that the preservice teachers could have been 
exposed to more structured problem posing situations and to more examples of 
open-ended problems, before our study took place. In this line, we posit that the 
process of problem posing needs to be systematically implemented in teacher 
training, since it is one of the most important mathematical activities. Such 
implementation should consider the connection between problem posing and 
problem solving, for instance, by asking the posers to solve their own (or their 
peers’) problems. Moreover, it should be enriched with elements such as 
realistic mathematics and critical mathematics education, in order to achieve a 
better preparation of future teachers, which will expectedly lead to a better 
preparation of their students. 
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This paper presents the results of a research project focused on understanding 
of multiplication in primary school. An experiment was carried out in Czech 
Republic and in Italy in two classes with pupils aged 8-9 years. Pupils solved 
two arithmetic tasks based on the rectangular model of multiplication, its role 
was studied as a resource to promote multiplication understanding. Pupils’ 
solutions were analyzed in detail during interviews and by examination of 
submitted worksheets. The results show that suitable tasks can promote the 
transition from the additive to the multiplicative field. 
INTRODUCTION 
Multiplication is considered to be more difficult than addition and subtraction 
(Clements & Sarama, 2007).  From a conceptual point of view, these operations 
are very different, even if in the usual tasks they are reduced to calculations with 
numbers. In school, various models are used to introduce multiplication of 
whole numbers. It is important to be aware of the different features and 
potentiality of these models, and to take into account the possible problems 
connected with to the transition from a model to another. 
In the Czech Republic (CR), elementary mathematics traditionally bases the 
methodology of multiplication on the manipulation of concrete objects arranged 
in rows and columns. This arrangement is described as ‘a rows of b elements’ or 
‘a groups of b objects’, later simplified to the expression ‘a by b’, and finally 
expressed as ‘a times b’. Pupils can also solve multiplication examples using a 
square grid or by cutting them out of square paper. It is emphasized that this 
initial phase focuses solely on the pupils’ understanding of the essence of the 
multiplication operation, with the goal of performing calculations by heart is 
reserved for the second phase (Divíšek et al., 1989; Nováková & Blažková, 
2022). 
In Italy (IT), usually the first approach to the multiplication of whole numbers is 
based on making a groups of b objects, or on arrays of objects and the teacher 
poses the problem of counting them. Pupils observe the presence of equipotent 
rows and columns, and they use repeated addition to count the totally of objects. 
Subsequently, other representations are introduced and utilized, but soon the 
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models are neglected, and multiplication becomes only an activity with 
numbers. 
THEORETICAL FRAMEWORK 
The transition from the additive to the multiplicative field is complex because 
their structures are very different. As documented by many researchers (Mariotti 
& Maffia, 2018), presenting multiplication as repeated addition can hinder the 
understanding of multiplicative structure. 
In mathematical terms, when we write a·b the symbols a and b represent 
numbers, while when we say “a repeated b times” the symbol a denotes a 
number, while b represents a numeral adjective, in the sense of an operator: the 
first is an element of the ‘language’, the second of the ‘metalanguage’ 
(Marchini, 2001/2002, p. 13).  
Briand (1993) showed that 7-8-year-old pupils, when dealing with an 
arrangement of objects in rows and columns, utilize multiplication for counting 
them, but if the arrangement is incomplete and it becomes necessary to uncover 
or reconstruct its structure (see the following Tasks 1 and 2), the calculation 
procedures undergo a complete transformation. One possible explication is that 
the procedures learnt in class to enumerate a row-column arrangement are not 
interiorized; they become destabilized when the arrangement’s conditions 
change. Consequently, some researchers suggest working on row-column 
arrangements starting from kindergarten (Rozek & Urbanska, 1998). 
In his theory of semiotic representation, Duval (2006) emphasizes the role of the 
transition from one representation to another, distinguishing between two types 
of transformation, ‘treatment’ and ‘conversion’, which correspond to different 
cognitive processes. In our study, treatment occurs when we perform 
calculations as a·b = c remaining within the arithmetic register, while 
conversion involves, for instance, transforming a visual representation of a 
rectangle into a linguistic expression, such as “it is a rectangle a·b” and 
subsequently conducting the relative calculation. According to Duval’s theory, 
in the latter second case, transitioning from the geometrical to the arithmetical 
register could promote the understanding of multiplication.  
Thus, it can be useful to work with various approaches on multiplicative 
structures, such as hopping along the number line, creating grids, generating 
areas, and more. These models have distinct features and should be utilized in 
complementary ways.  
Another possible model is the Laisant’s 1 table, sometimes employed by teachers 
as a tool for introducing multiplication. This table, also known as the 
“decanomial” in Montessori’s (1934/2016) activities, provides a new semiotic 

 
1 Charles-Ange Laisant, French mathematician who invented this table (Laisant, 1915). 
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representation for multiplication. In Laisant’s table, both columns and rows 
increase by one, moving respectively from left to right and from top to bottom. 
Maffia & Mariotti (2020, p. 28) note: “Laisant’s table incorporates the 
rectangular model, presenting any rectangle as an ordered multiplication. Such 
possibility constitutes the core of the semiotic potential of this artifact.” 

 
Figure 1: Laisant’s table. 

Initially, the construction of the table can be a drawing activity, a task assigned 
by the teacher based on the respect of some rules. In fact, the table allows a 
geometrical introduction of the multiplication, enhancing a visual perception of 
quantities. Essentially, as the table is realized, it immediately reveals rectangles 
(or squares), that appear during the construction of the table itself. 
Consequently, it feels natural, for example, to observe the pink rectangle and 
describe it as “a rectangle three times four” using everyday language, pre-
empting the linguistic expressions usually employed whit multiplication. 
Later the teacher can move pupil’s attention on the small squares that form the 
pink rectangle and he can ask to count them (twelve in our example). The next 
step involves connecting the two initial numbers with the third: 3·4 = 12. 
It is important to underscore a significant difference between working on 
multiplication with arrays and Laisant’s table. When we work on arrays, a and b, 
and a·b represent numbers. However, with Laisant’s table, the scenario changes 
entirely: a and b represent linear measures, the lengths of the rectangle sides, 
while a·b represents the number of squares that forming this rectangle. Thus, 
there is a transition from the additive field to the multiplicative field, from linear 
measures to area measures. It can prepare the work in geometry with linear or 
two-dimensional geometrical figures. 
Another positive aspect of this table is the possibility to cut rectangles and to 
superimpose appropriately them onto the rectangles drawn in the table, using 
manipulation (Figure 1). The table maintains the structure while if we 
manipulate objects in an array their disposition changes. 
Research questions 
In the present research, we employ two tasks, designated as Task 1 and Task 2, 
with the aim of investigating the following questions: 
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1. Are Task 1 and Task 2 a resource for diagnosing pupils’ preconceptions 
and/or internalization of multiplication?  

2. Can Tasks 1 and Task 2 serve as valuable resources for exploring the 
transition from additive structure to multiplicative structure? 

3. Is the Laisant’s table a resource for constructing multiplication structure?  
Task 1 and its a-priori analysis 

How many tiles will be on the floor when it will be finished? 

 
Figure 2 

Task 1 originates from an assessment question presented by INVALSI (Italian 
National Institute for the Evaluation of Instruction and Formation Educational 
System)2, the authority responsible for conducting periodic and systematic tests 
on pupils' knowledge and abilities. These tests are administered in all Italian 
schools, in the same day at the end of the school year.  
The Authors of the current paper utilized the figure of the task D9 (Figure 2), 
which was originally presented to 7-8-year-old pupils in the year 2019. 
However, they modified the question in alignment with their research inquiry. 
Specifically, the original test question focused on determining the number of 
omitted tiles, while the aim of the present research is to observe whether pupils 
utilized multiplication, such as 6·5 or 5·6, when facing Task 1 or not. We can 
suppose that pupils had to mentally visualize the omitted tiles and count them 
with ‘mental eyes’. Alternatively, they could draw them, but in this case the 

 
2 More detailed information see: https://invalsi-areaprove.cineca.it 
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drawings must be accurate. The solution could also be reached by counting ‘in 
horizontal’, or ‘in vertical’, or ‘in groups of tiles’. 
Task 2 and its a-priori analysis 

How many tiles will be on the floor when it will be finished? 

 
Figure 3 

Task 2 presents the same question of Task 1, the ‘floor’ once again is a rectangle 
(Figure 3), which includes an interior ‘cross’ created by two intersecting square 
lines and four empty white rectangles (the drawing comes from (Briand, 1993)). 
We hypothesize that Task 2 can serve as an educational resource to stimulate the 
necessity of multiplication and promote its understanding. When presented with 
an array of objects, pupils tend to utilize multiplication. However, in Task 2, the 
conditions of enumeration are different, allowing pupils to organize their 
calculations in diverse ways. 
Several strategies can be employed, including: 

- Calculation by multiplication: 6·10 or 10·6 
- Addition: 10 +10 +10 +10 +10+10 or 6+6+6+6+6+6+6+6+6+6 
- Addition of blocks of tiles and the drawn tiles: 6 + 4 + 21 + 14 + 15. 

METHODOLOGY 
The research was conducted in the second grade of primary school with pupils 
aged 8-9 years old. 
In classroom, we presented Task 1 by a worksheet. Immediately after, individual 
interviews were made by the researcher, prompting each pupil to explain their 
answer and their reasoning behind it. Thus, it was possible to use artefacts of a 
dual nature for further research: written problem-solving responses and 
subsequent interview records, which were documented in writing. Both sets of 
research data were then analyzed systematically. 
The interview commenced with the following question: “What object was 
suggested from the drawing presented in the worksheet?”. This question was 
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designed to put the pupils at ease, as they provided various responses such as 
“floor”, “wall paintings”, “tablecloth”, and so on. 
Subsequently, the pupils explained their solutions, providing insights into their 
thought processes and reasoning. 
Task 2 was introduced in the classroom using a multimedia interactive 
blackboard. Pupils were asked to observe the projected figure and provide a 
written answer to a question identical to that presented in Task 1, but in this case 
without having the possibility of draw the floor in a paper. This choice is 
motivated by the intention to discourage drawing and instead encourage 
observation of the figure and reasoning skills. In this way, we want observe if 
the recourse on multiplication appears. We believe that this choice may have 
increased the task’s difficulty, which may have more incorrect solutions than 
these furnished for Task 1.  
In CR, the pupils were not yet familiar with the operation of multiplication. In 
particular, they never used the scissors and square grid. This context allows for a 
clearer observation of pupils thought processes and problem-solving approaches.  
In IT, the teacher clarified that despite being in the third grade, the pupils' 
competencies were similar to those of second-grade pupils due to disruptions 
caused by the COVID-19 epidemic, which had slowed down the execution of 
usual activities. Multiplication had been recently introduced in the current 
school year, and the pupils had limited experience with it. However, in the 
previous year, pupils worked with Laisant’s table. A week later, the researcher 
went in classroom submitting again Task 2 by blackboard, and giving a white 
paper to each pupil asking to write not only its answer to the question, but also 
her/his reasoning. The aim was to verify if pupils use multiplication or not.  
On the contrary, in CR researcher presented the Task 2 furnishing also to the 
pupils a paper for writing their solutions since when the task was given on the 
board (as well as IT) the pupils asked to redraw the picture. They were allowed 
to draw.  
RESULTS 
Analysis of pupils’ solutions to Task 1 
In CR 18 pupils, 9 girls and 9 boys, are involved in the experiment. In IT, the 
total number was 22, 12 boys and 10 girls. 
Two basic phenomena emerged from the analysis. The first was the need for the 
drawings of missing tiles, as an integral part of the solution to the problem. By 
sketching vertical and horizontal lines, all tiles were visible on the floor, 
allowing them to focus on determining the total number of tiles, both present 
and missing. The second phenomenon was the method of determining the 
number of tiles. 
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From the pupils’ solutions, their written comments and the subsequent 
interview, we traced five different strategies. 

a. After drawing the missing tiles, pupils proceeded to count the tiles in each 
row one by one, numbering them sequentially from 1 to 30. To facilitate 
the counting process, each tile was marked, either with a dot or a circle or 
a number.  

b. Calculation of the number of tiles drawn on the floor and the number of 
missing tiles and addition 14+16 (four pupils). 

c. Addition of all tiles in the rows 5+5+5+5+5+5 (eight pupils), or of all tiles 
in the columns 6+6+6+6+6 (two pupils).  

d. Multiplication 6·5 or 5·6 (two pupils). One of them knew multiplication 
from older sibling.  

In CR, only two pupils did not take advantage of the opportunity to draw the 
missing tiles in their solutions. In one instance, a pupil determined the number 
of tiles by mentally counting them one by one, row by row. Another girl counted 
the current number of tiles shown; while counting the missing tiles, she pointed 
to the locations of each missing tile. She then added the two counts together.  
One boy did not solve the problem correctly. He made a mistake when reciting 
the series of natural numbers, omitting the number 16. The pupil who did not 
solve the problem correctly used a functional strategy.  
In IT, 7 pupils used multiplication (strategy d), 11 used addition (strategy a), and 
3 counted only the missing tiles. 
We want to note that the question ‘How many …?’ suggests the use of counting, 
influencing the chosen strategies of solution. Moreover, the possibility to draw 
on the worksheet appears to promote counting one by one of the tiles. Some 
pupils separately calculated the number of drawn tiles (14), the number of 
omitted tiles (16) and subsequently they added them: 14+16=30 (strategy b). 
Sometimes they stop after the counting of omitted tiles. In particular, a girl 
finished with this strange statement: “The tiles will be available after 15 days”. 
Pupils who used multiplication without hesitation, explain in this way: 5 in 
horizontal, 6 in vertical, so 5·6=30. This language was employed in the previous 
year during the activities with Laisant’s table. Some of them confused 
‘horizontal’ with ‘vertical’. 
Analysis of pupils’ solutions to Task 2 
In CR the development of the research investigation was the same as for the first 
task. After solving the task independently (about 10 minutes) each child was 
again interviewed by the researcher. In individual interviews pupils verbally 
explained, justified and commented their procedures recorded in writing. 



Non-standard problems as resource to verify multiplication understanding 133

 
 

From the pupils’ solutions, their written comments and the follow-up interview, 
we again identified different strategies. Only two girls did not develop any 
solution strategy. We can distinguish four strategies for solving the problem: 

a. A group of four pupils chose a procedure based on counting one by one to 
determine the number of squares, often reaching an incorrect conclusion. 
Some pupils failed to redraw the picture correctly. One boy gave an 
incorrect result because he made an image of seven rows instead of six.  

b. Five children first noticed the number of tiles in one row and then realized 
that there would be the same number of tiles in all the rows. 
Consequently, they counted the number of rows using the number of tiles 
in the drawn column and calculated the resulting number of tiles by 
repeatedly adding the number of tiles in one row (10+10+10+10+10+10).  

c. Another strategy, also based on addition, was chosen by three pupils. 
They noticed that except for the third column with marked tiles, there 
were 5 tiles missing in each column. In the floor there are 9 such columns, 
calculating this they found that there are 45 missing tiles. To obtain 45 
they used a memory addition (5+5+5+5+5+5+5+5+5). Later they added 
the 15 tiles that are marked in the figure to obtain the total number of 
tiles. They were aware of the necessity to avoid counting the same tile 
twice, so they added 10+5.  

d. Four children utilized the same initial situation, counting 10 tiles in a row 
and 6 tiles in a column. However, these children approached their solution 
focusing on the relationship between the number of tiles in the columns 
and rows and they intuitively arrived at determining the result through 
multiplication. When expressing their solution orally, they articulated the 
number of tiles as the result of the 6·10 reasoning.  

In IT only seven pupils chose strategy (a), two chose strategy (b), two chose 
strategy (c), six chose strategy (d). Sometimes counting occurred by imagining 
the omitted tiles and mentally counting them, obviously with various and 
approximate results such as 57, 58, 64, 52, 88.  
It is interesting to observe that a new strategy appears: counting of the tiles of 
white rectangles (4 + 6 + 21 + 14), counting of drawn squares (15) and then 
adding them together (4+6+21+14+15= 60). We suppose that the previous work 
with Laisant’s table influenced their performances moving to observe the ‘white 
rectangles’ in Fig.3. Some pupils mistakenly counted the square placed at the 
intersection of the horizontal and vertical lines twice, obtaining a total of 61 
tiles. Additionally, four pupils considered only the omitted tiles obtaining 45. 
This indicates that they applied their multiplication knowledge on the ‘small 
rectangles’ and not on the biggest. The majority of pupils used multiplication, 
probably influenced from a revision made in classroom by the teacher.  
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CONCLUSIONS 
At the end of the activities, pupils mentioned that initially the tasks seemed 
trivial or easy, but they found difficult to explain their reasoning. 
In CR only two pupils used multiplication to solve the first problem, four pupils 
used multiplication in the second. One boy remarked: “Rows and columns have 
something in common. There are 10 squares in a row and 6 in a column. Six 
times ten is sixty”. This observation suggests that the second task prompted the 
pupils to think differently.  
In IT only five pupils employed multiplication in both tasks, indicating that for 
them this operation appears internalized. When we reintroduced Task 2 one 
week later, the percentage of Italian pupils who used multiplicative strategy 
passed from 32% to 58%. 
Here we want to underline the role of the activities proposed in classroom. We 
believe that the difficulties and obstacles presented by the proposed tasks 
prompted the pupils to see the multiplication as a useful tool for organizing 
calculations of objects in an array. In other words, we think that our tasks 
provoked the need for a link between the existing understanding of 
multiplication and its mental representations, promoting a deeper understanding 
of the concept. 
With reference to research question 1, we can affirm that both tasks led to the 
identification of pupils' preconceptions in the area of multiplication. 
Additionally, we observed that for some children who used multiplication in 
both tasks, the employment of this operation came later. For the other pupils the 
understanding begins slowly, step by step, as the figures drawn in Tasks 1 and 2 
confuse their visualization of rectangular models.  
With reference to research question 2, we can observe that perhaps after 
numerous attempts children come to see multiplication as better tool to solve the 
problems. The transition from additive to the multiplicative field must be 
promoted, but it is important to emphasize that each pupil has his/her own time 
of understanding, which must be respected. 
With reference to research question 3, in Italian classes we observed the 
influence of the previous work on Laisant’s table, particularly in some pupils. 
The teachers of the classes involved in the experimentation initially considered 
the tasks difficult and hard to solve. However, by the end, they were surprised 
by the performance of pupils, particularly they observed a deeper understanding 
of multiplication. As mentioned earlier, Task 2 played this role, as we can verify 
during the last intervention in classroom. In other words, as Barmby et al. (2009, 
p. 219) state, “representations were used earlier on, but only for the purpose of 
illustrating multiplication and rarely for the purpose of supporting calculation”, 
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while our experience documents the need for continuous, rather than episodic 
use of the rectangular model when working on multiplication.  
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THE DEVELOPMENT OF THE SIMPLE STRATEGY FOR 
SOLVING MATHEMATICAL WORD PROBLEMS 

Qendresa Morina 
Charles University, Faculty of Education, Prague, Czech Republic  

 
This study draws on the literature focusing on successful interventions to 
improve word problem-solving. Two important factors of such interventions 
have been shown to improve pupils’ performance: visual representations and 
the development of metacognitive skills. Based on these factors, a specific 
teaching strategy (“the SIMPLE Strategy”) is designed to suit the educational 
context in Kosovo. The study’s main goal is to determine its suitability for 
developing Grade 8 pupils’ ability to solve word problems using iterations of 
design-based research. The results of the first cycle were encouraging, 
demonstrating the strategy’s impact in solving word problems and developing 
visual skills. 
INTRODUCTION 
Word problems (WPs), an important aspect of mathematics education, remain an 
essential topic of discussion in pedagogy and research endeavours. They are 
considered challenges that require pupils to bridge the gap between abstract 
mathematics and real-world situations. Because of the challenges in their 
solution, various educators and researchers have investigated different strategies 
and approaches focused on improving pupils’ skills in solving such tasks. In this 
paper, we investigated contemporary viewpoints on WPs as well as the 
innovative strategies that have emerged to handle the complexity involved in 
their solution. Authors like Polya (1945) and Schoenfeld (1979) believed that 
teaching and learning heuristic strategies would help pupils progress on the 
solution of WPs and help them enhance their problem-solving abilities. When 
solving WPs, teachers encourage pupils to read, point out important information, 
guess the results, consider alternative solutions, and reflect on the processes. 
This helps pupils to apply metacognition even if it is not consciously (Kusaka & 
Ndihokubwayo, 2022). Besides metacognition, another critical aspect of the WP 
solution is visualization. Many authors suggest that visualization is a crucial tool 
for problem-solving (e.g., Csikos et al., 2011; Hembree, 1992; Gani et al., 
2019), and it is neglected as a method by teachers and educators. In our study, 
we combine visualization—precisely, the block model method—and a few 
metacognitive strategies presented by other authors to produce a new innovative 
approach known as the SIMPLE strategy. Through a carefully planned 
intervention, the study seeks to assess the development and effectiveness of this 
strategy in enhancing pupils’ problem-solving skills. This study took place in 
Kosovo, and the participants were eighth-grade pupils. By carefully examining 
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the intervention’s progression, we aim to investigate whether pupils are able to 
solve WPs easily after practising the strategy within a short intervention time.  
THEORETICAL FRAMEWORK 
WPs are important in school mathematics as they link mathematics with the real 
world. According to Vondrová et al. (2019), these are problems in which 
numerical data are presented, some are not, and a question is given for pupils to 
answer using strategies, mathematical knowledge, and computational skills. 
Previous research has explored various variables that contribute to WP 
difficulties. Researchers began exploring the challenges pupils face while 
solving various WPs, starting with simple arithmetic WPs (Cummins et al., 
1988; De Corte & Verschafel, 1987) and proceeding to more complicated ones 
(Verschafel & De Corte, 1997). Daroczy et al. (2015) show that many linguistic 
and mathematical variables and their combination affect students’ strategies, 
mistakes, and success in solving WPs.  
Following the difficulties, many researchers tried to organize an intervention 
that would result in a better understanding of WP. An important focus was on 
developing pupils’ metacognition and visual representation.  
The first factor is based on the assumption confirmed by research (e.g., Csikos et 
al., 2011; Hembree, 1992) that visual representations help pupils solve WPs as 
they bridge the challenging step from reading a WP to creating a mathematical 
model (Gani et al., 2019). The block model method is one of them. It originates 
from Singapore and is one of the ways pupils are introduced to visual 
representations of the structure of WPs. Pupils depict unknown quantities and 
their interactions in a WP by drawing a pictorial model using strips, bars, or 
rectangular areas. 
The second factor is the development of metacognitive skills (e.g., Perry et al., 
2018; Teong, 2003). Metacognition helps pupils comprehend when, why, where, 
and how to apply their own knowledge to solve problems successfully (Carr & 
Jessup, 1995). Positive results for the effect of metacognitive strategy training 
were achieved by Özsoy and Ataman (2009), showing that these strategies had 
improved pupils’ skills.  
In Kosovo, WPs are rarely used in mathematics lessons, and similarly to other 
countries, pupils face difficulties solving them. Berisha et al. (2013) found that 
problem-solving strategies are not employed in Kosovo’s mathematics 
textbooks; teachers seldom use problem-solving heuristics and are presented 
implicitly and indirectly. This was further confirmed by Morina (2022), who 
showed that despite the new textbooks presented, they still do not give enough 
opportunities to develop pupils’ abilities in the solution of WPs. Considering 
this context, we devised and implemented a specific teaching strategy that 
combines the two factors above into what we will call the SIMPLE strategy. Our 
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main aim is to investigate whether the strategy will help pupils solve WPs with 
understanding. The research questions are as follows: 

1. How does pupils’ learning of word problem-solving progress through the 
SIMPLE strategy?  

2. How is the SIMPLE strategy related to the pupils’ problem-solving 
success in the post-test? 

The “SIMPLE” Strategy 
The SIMPLE strategy has been developed to support pupils in solving 
mathematical WPs based on the results of research (Powell & Fuchs, 2018; 
Teong, 2003; Xin, 2018; Ho & Lowrie, 2014). The name is an acronym from the 
initial letters of the stages presented in Table 1. Our strategy is considered a 
“scaffolding” process that enables a pupil to solve a problem, carry out a task, or 
reach a goal beyond his unassisted efforts (Wood et al., 1976). This scaffolding 
consists of the teacher “controlling” those elements of the solution that are 
initially beyond the learner’s capacity.  
Study the problem Read the problem and paraphrase it. 

Ask yourself: Have I understood what I am supposed to 
find? 

Involve block model  Draw a diagram. Use the block model method.  
Monitor the process Ask yourself: Is the block model method helping me 

reach the solution? Am I getting any closer to my 
objective? Am I following the right steps, etc? 

Prepare/Present the 
solution. 

Make the expression/calculation/equation, write the 
solution, and present it. 

Look over the solution 
again. 

Check the answer. Consider if the result is correct.  

Evaluate your answer Evaluate whether your solution makes sense and if there 
is a better way to solve the problem. 

Table 1: The SIMPLE strategy’s steps. 

Example of a WP solution with the application of the SIMPLE strategy: 
WP1: From 2100 kilograms of potatoes in the warehouse, 942 kilograms were 
sold on the first day, while on the second day, 118 kilograms less than on the 
first day. How many kilograms of potatoes are left in the warehouse? 
S (Study the problem): I have to 
find the kilograms of potatoes left in 
the warehouse after two days which 
are still unsold. 
I (Involve the block model method):      
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M(Monitor): Yes, I think I am on the right path and getting closer to the 
objective since now I know what and how much I must subtract to find the final 
answer.  
P (Present the solution) –  First day:             2100 – 942 = 1158  
                                           Second day:        1158 – (942-118) = 1158 – 824= 334     
L (Look over the solution again):            334   +      824       +     942      = 
2100 
E (Evaluate your answer): The result makes sense since we arrived at the 
warehouse’s total kilograms of potatoes by working backwards. 
METHODOLOGY  
This study implements design-based research (DBR) (DBSC, 2003). Design-
based research is a methodology that helps to increase education research’s 
impact, transfer, and translation into better practice. It underlines how important 
it is to build theories and design principles that may guide, inform, and improve 
both practice and research in the field of education (Anderson & Shattuck, 
2012). Our study consists of three stages, pre-test, intervention, and post-test, 
repeated in three cycles. In this study, we present only the results from the first 
cycle. 
The study population included 8th-grade pupils of Kosovo’s schools and their 
mathematics teachers. We chose 8th-grade pupils, particularly since they know 
introductory algebra and can solve more complex linear equations. We began 
with Selami Hallaqi’s school in the city of Gjilan. There were 25 pupils in this 
class; however, we only included 20 as participants because 5 of them missed 
lessons during the intervention phase.  
The experimental design  
Design experiments are the primary method for acquiring data in design 
research methodologies (Cobb et al., 2003). We started with the first design 
experiment cycle of intervention, and its experiences will be used to inform the 
following class until we see that the intervention is well-developed and 
enhanced.  
Pre-test. We began with a pre-test purposefully created to assess pupils’ 
baseline. The idea was to examine pupils’ knowledge of WPs, identify their 
strategies, and determine whether their solutions contain any visual 
representation.  
Intervention. Model method: After the pre-test, pupils received two lessons using 
the block model method. To become comfortable with the visual part of the 
strategy, they practised it in four WPs (e.g., WP1, the “I” step) and two as 
homework. 
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Describe: In this stage, the SIMPLE strategy and its benefits in WP solving are 
explained in general. 
Model it: After explaining the SIMPLE strategy, the teacher demonstrated how 
to execute each step by thinking aloud in one WP (e.g., WP1). In this lesson, 
pupils practised two WPs with the SIMPLE strategy and solved two others as 
homework.  
Practice: In the last lesson of the intervention, pupils were assigned six WPs and 
were asked to use the SIMPLE strategy in the solution. As pupils were 
practising, the researcher was allowed to assist them when they were confused.  
Post-test. The pupils solved six other WPs in a post-test phase. In this phase, we 
aimed to evaluate the strategy’s effectiveness and its effect on the WP solution.  
DATA ANALYSIS 
The data were analysed in both qualitative and quantitative ways.  
Pre- post-test analysis. We started the analysis by examining pupils’ 
performance in a pre-post-test using the criteria in Table 2.   

Criteria 
The incorrect 
solution, no 

solution at all 

Partial 
understanding 

The correct idea, 
but slight errors 

in the calculation 

Entirely correct 
solution 

 Incorrect solution Correct solution 
Points 0 1 2 3 

Table 2: The criteria for the evaluation of the pre-test. 

Next, we investigated whether pupils used visualizations in the problem-solving 
process. 
For the post-test analysis, we applied the same criteria as above, and we also 
determined whether there was some evidence that the pupil applied the SIMPLE 
strategy.  
The analysis was carried out in the Atlas.ti software. Each written solution was 
number-coded. First, we analyse the data based on three categories: „Clearly 
used the SIMPLE strategy, “Partially used the SIMPLE strategy”, and “No 
indication of the usage of the SIMPLE strategy”. For the first criterion, we 
evaluated every solution that clearly used all the strategy’s steps. We assessed as 
the partial application of the strategy every solution that incorporated some 
elements of the strategy into it. With the third criterion, we assessed any solution 
where there was no indication, or at least we did not see any element of the 
strategy applied to it. 
Furthermore, we investigated the link between strategy usage and solution 
success. Six categories emerged (see the arrows in Figure 1 for the categories 
analyzed). 



142 QENDRESA MORINA 

 
Figure 1: Framework for the usage of the SIMPLE strategy. 

RESULTS 
Pre-test: The pre-test analysis gave a baseline understanding of the pupils’ 
problem-solving abilities before any intervention. The findings were 
satisfactory, as 55.8% of the pupils solved the problems correctly. The 
distribution of scores among the participants is detailed in Table 3.  We noticed 
that none of the pupils did any visualization to solve the WPs. Their primary 
focus was solving them by direct calculation or converting words into equations 
using certain keywords. 

Points/WPs 1 2 3 4 5 6 N % 
Incorrect solutions (0,1) 10 6 11 3 14 9 53 44.2 
Correct solution (2,3) 10 14 9 17 6 11 67 55.8 

Total 20 20 20 20 20 20 120 100 

Table 3: The results from the pre-test of the first cycle. 

Post-test: In analyzing the post-test data, we first classified pupils’ solutions 
based on predefined criteria (Table 2). The results below reveal progress in 
pupils’ problem-solving proficiency. 74.2% of the solutions provided were 
correct, while 25.8% were deemed incorrect (Table 4). These results were 
analyzed considering 120 tasks and the 20 pupils participating in all study 
phases.  

Criteria/WPs 1 2 3 4 5 6 N % 
Incorrect solution (0,1) 2 5 5 6 7 6 31 25.8 
Correct solution (2,3) 18 15 15 14 13 14 89 74.2 

Total 20 20 20 20 20 20 120 100 

Table 4: The results from the post-test of the first cycle 

As for using the SIMPLE strategy, 40.8% of pupils clearly used it in post-test 
WPs, while 35.8 % partially employed it. Conversely, 23.4% of solutions 
showed no clear indication of strategy usage (Table 5). When we analysed the 
link between the strategy’s use and the solution’s correctness, we can say that 
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when pupils clearly used the SIMPLE strategy, they always arrived at the 
correct solution. There were also times when pupils partially used the strategy, 
but again, they got the correct answer. Differently, we can see that pupils mostly 
got incorrect solutions when they did not indicate the strategy’s usage. This can 
be a good indicator that the SIMPLE strategy helps pupils to improve their 
problem-solving skills (Table 6).  

Criteria/WPs 1 2 3 4 5 6 N % 
Clearly used the SIMPLE strategy 12 9 8 9 8 3 49 40.8 
Partially used the SIMPLE strategy 5 7 7 7 7 10 43 35.8 

No indication of the usage of the 
SIMPLE strategy 3 4 5 4 5 7 28 23.4 

Table 5: The use of the SIMPLE strategy in WPs of post-test. 

 Incorrect 
solution 

Correct 
solution Total % 

Clearly used the SIMPLE strategy 0 49 49 40.8 

Partially used the SIMPLE strategy 13 30 43 35.8 
No indication of the usage of the 

SIMPLE strategy 18 10 28 23.4 

Table 6: The correlation between the SIMPLE strategy and the problem-solving 
success. 

Furthermore, we analyzed the presence of the visualization, more specifically, 
the application of the block model method. The data shows that most pupils 
applied it within the WP’s solution (Table 7). 

Criteria/WPs 1 2 3 4 5 6 Total % 
Do not visualize the problem 4 5 5 6 5 10 33 27.5 

Visualize the problem using the block 
model approach 16 15 15 14 15 10 87 72.5 

Table 7: The presence of the visualization within the WP’s solution. 

These results highlight the importance of applying the SIMPLE strategy to 
achieve correct solutions. While the strategy proved beneficial for many pupils, 
other pupils may rely on different problem-solving approaches. Further 
investigation into these characteristics may be necessary to improve problem-
solving proficiency.  
CONCLUSION AND DISCUSSION 
The data collected showed that pupils were familiar with WPs and used them in 
their mathematics lessons. While familiarity with WPs was evident, the initial 
lack of strategy implementation, particularly in visualization, was notable. This 
supports the viewpoint arrived at by Berisha et al. (2013) and Morina (2022) that 
pupils in Kosovo lack familiarity with the visual aspects of problem-solving. 
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However, through a targeted intervention focusing on the SIMPLE strategy, 
significant improvement was observed. Pupils demonstrated rapid mastery of the 
strategy, leading to a noticeable enhancement in their WP solution accuracy and 
their application of the SIMPLE strategy. When pupils clearly used the SIMPLE 
strategy, they always arrived at the correct solution. There were also times when 
pupils partially used the strategy, but again, they got the correct answer. This 
finding corresponds to the findings that visual representation accuracy and 
metacognition are important for the success of the solution (Csikos et al., 2011; 
Hembree, 1992; Carr & Jessup, 1995). Unlike these two categories, we can see 
that pupils mostly got incorrect solutions when they did not indicate the 
strategy’s usage. This can be a good indicator that the SIMPLE strategy helps 
pupils improve their problem-solving skills.  
First, while the SIMPLE strategy proved beneficial for many pupils, it is 
important to mention that these findings cannot be generalized for all. The 
sample is small, limited to one school grade and one intervention cycle. Also, 
there were times when pupils partially used the strategy’s step, leading them to 
the incorrect solution. We suppose that the limited time of the intervention 
influenced these solutions. 
Therefore, we can conclude that the pupils quickly adapted to the SIMPLE 
strategy. This adaptation allowed them to improve the solution, resulting in 
better performance. This fact leads us to believe that implementing this strategy 
in early mathematics classes can positively impact pupils’ outcomes and 
improve their problem-solving skills. 
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We present the reasons for students’ cognitive barriers when dealing with more 
complex mathematical topics, focusing on the dual nature of some abstract 
mathematical concepts that require judgements about which perspective to use 
in a given situation. We focus on mathematical dialogue, which we see as an 
approach that provides insight into students’ misconceptions while raising 
awareness of one’s own thought process in solving a mathematical problem. 
Using the method of mathematical dialogue with secondary school students, we 
investigated the metacognitive processes present in the student who was 
instructed and the student who led the dialogue.  The analysis of the dialogues 
confirmed that the approach can be considered promising in the light of 
overcoming misconceptions about mathematical concepts and raising 
awareness of the students’ own metacognitive processes. 
INTRODUCTION 
When looking at an individual’s difficulty in understanding mathematical 
concepts, we need to be aware of a wider range of possible reasons. These may 
be genetic and psychological, didactic or of an epistemological nature (Cornu, 
1991; Brousseau, 2002; Sidik, Suryadi & Turmudi, 2021). Genetic and 
psychological barriers are due to the personal development of the learner, 
didactic barriers are due to the teacher's instructions and teaching style, and 
epistemological barriers occur when the cause of the difficulties is not related to 
the objects, but to the nature of mathematical subjects, which, due to their 
specificity and abstractness, can be difficult for learners to understand. 
Understanding a concept involves much more than just knowing the definition. 
Only when we are able to identify examples and counterexamples of a concept, 
when we are aware of how it is related to other concepts that we have known 
before, and when we understand its position within a given theory as well as its 
application, can we say that we understand the concept (Sierpinska, 1992). 
A systematic building up of such a hierarchy of concepts and ideas needs to be 
understood and woven together in order for concepts to build on one another 
(Ashlock, 2002; Sarawadi & Shahrill, 2014). If the old way of looking at 
a concept prevents us from moving to the new, then we can speak of 
epistemological barriers in the development of the concept or a hierarchy of 
concepts. This occurs when knowledge that works well in one field of activity 
no longer works satisfactorily in another context and creates contradictions.  
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In this paper we will focus on a group of epistemological difficulties rooted in 
students’ prior knowledge and the conflict that arises due to the gradual 
modification of the way they perceive some abstract mathematical concepts 
during their schooling. Sfard (1991) refers to the dual nature of these concepts, 
which means that they can be conceptualised in two fundamentally different 
ways: structurally, as objects, and operationally, as processes. The structural 
conception of a concept means seeing a mathematical entity as an object: we 
recognise the idea ‘at a glance’ and manipulate it as a whole without going into 
detail; the operational conception, on the other hand, involves treating the 
concept as a sequence of steps, paying attention to details. Gray and Tall (1994) 
see the duality between process and object in mathematics in that a single 
symbol is often used to represent both the process and the object. The authors 
introduce the term procept, which consists of three elements: a process that 
generates a mathematical object (or concept), and a symbol that represents either 
the process or the object. The development of abstract mathematical concepts 
has been the subject of much debate and theories over the last 40 years. 
According to Sfard mathematical concepts follow a progression from the 
operational to the structural conception (Sfard, 1991; Sfard 1994, Sajka, 2003), 
which means that the concept as a process is the starting point for the formation 
of the concept as an object. Under APOS theory the development of a concept 
also follows a progression from process to object. As an individual repeats and 
reflects on an action it may be interiorized into a mental process without having 
to execute each step explicitly. If one becomes aware of a process as a totality 
and realizes that transformations can act on the totality, then we say the 
individual has encapsulated the process into a cognitive object (Dubinsky et al, 
2005). In the context of recent theories, we highlight the theory of 
objectification (Radford, 2011, 2018, 2021) and the ontosemiotic approach 
(Godino et al., 2007, 1019; Font et al, 2013). According to Radford (2021, p. 88) 
algebraic knowledge as such cannot be shown in itself. In order for knowledge 
to be something that human consciousness can perceive or feel, individuals must 
perform a teaching–learning activity in order for knowledge to occur. The 
activity itself is a process: one that materialises knowledge into something 
intelegabile – knowing, which is the object. A slightly different view of the 
evolution of abstract concepts is presented by the ontosemiotic approach (Font 
et al, 2013). Every entity that intervenes in a mathematical activity is considered 
an object, and to operationalize this broad notion of object, some categories of 
objects are proposed (conceptual, propositional, procedural, argumentative, 
linguistic, situational, etc.) (Vegel et al., 2023). It focuses on the role of 
mathematical objects as fundamental building blocks for understanidng 
mathematical concepts, which then inform actions and the formation of 
schemas. 
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Both Radford and Sfard emphasise the social and cultural aspects of learning: 
the importance of participation in mathematical discourse and social interaction 
in the formation of mathematical concepts.  Accoring to Radford (2021, p. 92)  

a process of objectification occurs when students and teachers, through their joint 
labour, materialise the knowledge— transform it into something susceptible to be 
an object of consciousness—and the students start noticing or becoming conscious 
of it through such materialisation.  

 Unfortunately, practices often show that teachers prefer to choose tasks and 
activities that do not encourage students to engage in mathematical discussion. 
They do not use mistakes to promote inquiry, analysis, or learning 
(Schleppenbach et al., 2007; Tulis, 2013). Engaging students in fixing errors 
without substantial analysis of different types of errors and the conceptual 
(mis)understandings behind them can limit students’ opportunities to learn from 
their errors and prevent students from developing a sense of themselves as 
powerful mathematical thinkers (Alvidrez et al, 2022). Hansen (2017) 
emphasises that the first step is to change the view of the role of learner errors, 
which are not a failure of teaching and learning, but part of the learning process, 
enabling progress in understanding. The learning environment in which 
mathematics teaching and learning takes place needs to be supportive for the 
learner in the sense that it allows for interaction between participants and for 
mathematical dialogue.  
According to Ryan and Williams (2007), mathematical dialogue should involve 
a cycle of articulation, reformulation, reflection and resolution: students should 
have the opportunity to communicate and exchange their opinions.: I think that 
because ... (articulation); I listened to what X said and now I think that ... 
(reformulation). There should be criteria for assessing what is a good 
mathematical argument. In this phase, the teacher should guide the students by 
asking questions such as: Is this a good argument? How can you prove that this 
is a correct argument? Is there a more convincing argument? Which was the 
best argument? Then students should be given the opportunity to reflect on the 
discussion: What we thought, what we think now, what made us change our 
minds? After discussing the different points of view and reflecting on the 
debate, a resolution phase should follow: Now I think..., because... 
It can be observed that metacognition plays an important role in the process of 
conducting mathematical dialogue and resolving students’ misconceptions, as it 
guides us in the selection, evaluation of cognitive tasks, correction of errors, 
selection of appropriate goals and strategies, assessment of one's own abilities in 
relation to the task (Bakračevič Vukman, 2000). Hattie (2009) conducted a 
meta-analysis of research examining the effect of different factors on students' 
academic achievement. He identified the development of metacognitive skills as 
one of the most important factors for improving students’ achievement. One of 
the main purposes of metacognition is for students to learn how to understand 
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their own thought processes and to use this knowledge to improve their learning 
and understanding (Dunlosky & Metcalfe, 2009). Schoenefeld (1987) stresses 
the importance of creating an environment that allows for interaction and 
confrontation of viewpoints, perspectives, ways of thinking. He defines self-
regulation as one of the main broad areas covered by the term metacognition. 
According to Schoenefeld, monitoring, assessing progress and acting on 
progress assessments are key elements of self-regulation. Lester et al. (1989) 
conducted a large-scale study to investigate the role of metacognition in 
mathematical problem solving. They found out that there is a dynamic 
interaction between mathematical concepts and the metacognitive processes 
used to solve problems with these concepts. This means that control processes 
and awareness of cognitive processes develop in parallel with the understanding 
of mathematical concepts. Teaching problem solving, and in particular teaching 
metacognition, is likely to be most effective if it is carried out in 
a systematically organised way under the guidance of a teacher. 
Our research primarily aims to explore the role of mathematical dialogue in 
identifying learners’ understanding of mathematical concepts and the 
importance of the quality of mathematical dialogue in triggering metacognitive 
processes in participants. The topic of understanding mathematical concepts will 
be explored in the field of secondary school mathematics, which, due to the 
complexity and abstractness of some concepts, poses a challenge both to 
students who struggle with misunderstanding them, and to teachers who are 
struggling to find ways of teaching that would allow for a more permanent and 
better quality of students’ mathematical knowledge. 
EMPIRICAL PART 
Methodology and problem definition 
The empirical part is based on a descriptive, non-experimental method of 
pedagogical research (Hartas 2010), the approach is qualitative. We focus on the 
importance of constructive mathematical dialogue as one of the ways that we see 
as having the potential to contribute to a higher quality of mathematical 
knowledge for individuals and to removing epistemological barriers in the 
individual's understanding of the concept. 
The research aims and research questions 
The aim of the research is to investigate the role of mathematical dialogue from 
different perspectives: from the perspective of identifying misconceptions and 
from the perspective of deepening students’ metacognitive processes.  
The following research questions are posed: 

1. Does the quality of the mathematical dialogue contribute to the 
identification of students’ misconceptions? 
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2. To what extent does the mathematical dialogue stimulate metacognitive 
processes in the dialogue participants? 

Survey sample 
The study was conducted at the Faculty of Education, University of Ljubljana, 
Slovenia in the academic years 2022/23 and 2023/24. The data for the study 
were collected in the course Mathematical topics with didactics at the 2nd level 
of the university study programme Teaching - Subject Teaching. It encompassed 
21 research reports, written by 42 students studying to become mathematics 
teachers.  Students worked in pairs to prepare and carry out a research 
assignment related to a selected mathematical concept from a secondary school 
mathematics content.  To make it easier to distinguish between a mathematics 
student and a secondary school student, in the rest of this paper we will use the 
terms student for a mathematics student and pupil for a secondary school 
student.  
Measuring instruments and data collection procedure 

The two students, working in pairs, went through the following steps of the 
research project:  

1. Study of scientific papers on pupils’ understanding of the chosen concept 
and related misconceptions 

2. Creation of a measurement instrument - tasks to test pupils’ 
misconceptions 

3. Justification - the rationale for the choice of the task: why they chose it, 
what they predict will happen, where they expect the pupils’ difficulties to 
be identified and why... 

4. Critical examination of the measuring instrument  
5. Conduct a mathematical dialogue with the pupils (transcript of the 

dialogue) 
6. Reflection by the student on the dialogues carried out, referring to the 

theoretical points of misconceptions in the chosen mathematical concept 
In the first three steps of the research project, the two students collaborated and 
jointly developed a measuring instrument for the mathematical dialogue, which 
typically included 3 to 5 different tasks. These were sequenced in a meaningful 
order, each with a clearly defined objective which the student had to state in the 
instrument description. Step 4 refers to the exchange of measuring instruments 
between pairs of students who critically analysed each other’s instrumentation. 
The last two steps were carried out by each of the students on their own, each 
with his/her pupil. A pair of students produced a joint research report at the end 
of the research project.  
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The purpose of the present research is to analyse students’ research reports. 
Selected examples of mathematical dialogues are analysed from different 
perspectives: 

1. Analysis of the quality of the mathematical dialogue and the chosen task:  
i. At what level was the dialogue guided (narrowing or guiding 

questions (Hattie et al., 2017)?  
ii. Did the task achieve its purpose of revealing and correcting 

misconceptions? 
2. The presence of metacognitive elements in the student: self-reflection 

after the dialogue: did I guide the pupils well, did I take advantage of the 
right moments in the conversation, misconceptions?  

3. Presence of metacognitive elements in the pupil: how did I understand the 
problem at the beginning, how do I understand it at the end, did anything 
change in between, what convinced me…? 

RESULTS AND DISCUSSION 
In this section we present a more detailed analysis of two selected mathematical 
dialogues, the first concerns the topic of absolute value, and the second concerns 
combinatorial situations. Each dialogue is analysed according to the criteria 
defined above. We have selected an example of a dialogue where the weakness 
of the student’s guidance and the poorer awareness of their own thought 
processes in both participants is shown, and an example of qualitative guidance 
with a higher degree of self-regulatory processes present.  
Mathematical topic: absolute value 
The analysis of the first example - understanding absolute value in inequalities - 
is presented in the following order: first, we introduce the task, its objectives and 
students’ expectations (see Table 1), followed by the transcription of the 
dialogue and then its analysis in terms of the quality of the dialogue and the 
students’ and pupils’ metacognitive processes. 

Participants Student (S) and pupil (D). 

Task Solve the equation |𝑥𝑥 –  5| ≤ 5. 
Objective of 
the task 

The task tests the level of understanding of the concept of 
absolute value:  

− Operational: absolute value as a process of 
manipulating an algebraic expression  

− Structural: absolute value as distance/absolute value as 
a function 

Expectations The student expects that the problem will encourage the pupil 
to solve algebraically, using the calculation procedures that 
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follow from the definition of absolute value. However, the 
pupil is not expected to come up with a graphical solution to 
the inequality on his/her own, where the notation would be 
understood as a comparison of two functions. 

Table 1: Absolute value - task, objectives and expectations. 

Dialogue: 
1 D: (reads) Solve the equation |𝑥𝑥 –  5| ≤ 5. So this means that... (D draws a 

number line, labels zero and units from −5 to 5. Since it is less than 
or equal to 5 we can get to 9. 

2 S: How did you work out that all numbers up to 9 are appropriate? 
3 D: Oh no, we can go up to 10 because |10 − 5| = 5. On the other hand, we can 

go down to −5. But no, it can't be greater than −1 because |−1 −
5| = |−6| = 6 ≥ 5. 

4 S: What about the case 𝑥𝑥 = −0.5? 
5 D: Am, yes it still is … so the bound is 0. So x is greater than or equal to zero 

and less than or equal to 10. 
6 S: Yes, that’s right. Now I wonder if you would be able to solve this equation 

graphically?  
7 D: Am... I don’t know exactly how to go about it.  
8 S: What if we imagine that the left-hand side of the equation represents a linear 

function and the same for the right-hand side, would you be able to 
plot these two functions in a coordinate system? 

9 D: Yes, for this example (shows the right hand side of the equation, 𝑦𝑦 = 5) we 
have a line passing through 5 (draws a line). But for 𝑦𝑦 = |x –  5| 
(thinks for a moment, then continues), if I draw a line 𝑦𝑦 = 𝑥𝑥 − 5 
(thinks for a moment) and insert 0 I get −5, that is here (draws the 
point (0, −5)), if x =1 we get −4 (draws the point (1,−4), so for the 
next one it will be like this (draws the points 
(2, −3), (3, −2), (4, −1), (5,0) correctly, then draws a line through 
the points drawn). 

10 S: Great. We have a function in absolute value, so what will the graph be? 
11 D: If it’s in absolute value, then that’s how it will be mapped (the student uses 

his hand to map the part below the abscise axis above the abscise 
axis). 

12 S: That’s right. 
13 D: (draws the mapped part of the line) 
14 S: So what is the solution if we look at the two drawn lines? 
15 D: Hm, since it must be less than or equal to 5, then the solution is this triangle.  
16 S: Do the edges of this triangle belong to the solution?  
17 D: Yes, because we have less than or equal to. 
18 S: Do the values you determined earlier on the number line match the resulting 

graphic? 
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19 D: Yes, because these vertices of the triangle are between 0 and 10. 

Analysis of the quality of the dialogue:  
In examining the quality of the dialogue presented, we will refer to Herbel-
Eisenmann and Breyfogle (2005) who distinguish between two patterns of 
teacher-student interaction: questions that narrow the conversation (funneling 
questions) and questions that guide the conversation (focusing questions). The 
key difference between the two is who does the cognitive work in the learning 
process: in the case of narrowing questions it is the teacher, in the case of 
guiding questions it is the learner. Narrowing questions limit learners’ answers 
to short answers, guiding questions, on the other hand, support learners in 
finding their own ways to solve a problem. 
In the dialogue described above, we can recognise the presence of both types of 
questions. At the beginning of the dialogue, there is an open-ended question to 
gain insight into the pupil’s way of thinking: “How did you work out that all 
numbers up to 9 are appropriate?” (line 2), but later the dialogue switches to the 
use of narrowing questions: “What about the case x = - 0.5?” (line 4), where the 
student himself points out the value of the variable x at which the pupil will 
notice his mistake, or e.g. “What if we imagine that the left-hand side of the 
equation represents a linear function and the same for the right-hand side, would 
we be able to plot these two functions in a coordinate system?” (line 8), where 
the pupil is guided to a new strategy of solving by graphing functions: the 
student has a clear goal of guiding the conversation and, by asking questions, 
leads the pupil to solve the problem by graphing. However, we may notice that 
the new method of solving triggers a new misconception that would be worth 
exploring further, but which the student fails to exploit: where on the graph can 
we see the solution to the inequality? It seems that the pupil sees the solution in 
the area defined by the triangle and not in the interval on the abscissa axis (line 
15). 
Analysis of metacognitive processes in a pupil:  
The pupil follows the student’s guidance to a new solution procedure by 
drawing a graph of the two functions in the inequality notation, but there is no 
evidence that the pupil is aware that the two procedures are equivalent in 
determining the solutions. This can be inferred from the end of the dialogue 
when the student points out that in both cases the same solution to the inequality 
was obtained (line 18). 
The representation in the form of a number axis, which the learner initially 
drew, suggests that he associates the concept of absolute value with distance and 
that he will use the drawn number axis to help him. However, we notice later 
that this is not the case, because instead of finding the solution to the equation 
by identifying the numbers that are less than or equal to 5 from x = 5, the pupil 
proceeds to use a computational procedure - inserting concrete numbers into the 
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equation and checking whether or not the statement is true or false. It can be 
concluded that the pupil’s understanding of the concept of absolute value is at 
the level of operational understanding. The same applies to the understanding of 
the concept of function, which is reflected in the way the graph of a linear 
function is drawn (inserting values and drawing points on the graph) (lines 9 and 
10). While the task could act as a trigger to reflect on one’s own way of solving 
and to see the equivalence of three different solution methods, this is only on 
condition that the pupil has reached an appropriate level of understanding of the 
concept, i.e. understanding the notation of an absolute value inequality in a 
structural way - as a function. Without this insight, even metacognitive 
processes are reduced to a basic level of checking one’s own computational 
procedures, which can be observed during the actual process of computing 
concrete values (line 3). Findings from other studies (Almog & Ilany, 2012) also 
confirm that students prefer an analytical approach, based on algebraic 
manipulation of symbols, to a geometric interpretation - seeing mathematical 
notation as a relation between two functions - when solving inequalities with 
absolute values. 
Analysis of metacognitive processes in the student: 
Based on the student's research report, it can be summarised that the student’s 
reflection on the dialogue with the pupil focused mainly on the analysis of the 
reasons for the pupil’s difficulties. There is no reflection on whether he guided 
the pupil well by asking questions or whether he identified critical moments in 
the conversation. The student is aware of the importance of presenting different 
ways of solving such problems, which should allow the student to move flexibly 
between different ways of solving them. 
Mathematical topic: combinatorics 
As already noted, the second dialogue concerns the understanding of 
combinatorial situations. The description of the example follows the same 
sequence of steps as the previous example: The task is presented in Table 2. 

Participants Student (S) and pupil (D). 

Task Task 3: 
Matic has four cars of 
different colours: black, 
orange, white and grey. 
He has decided to 
distribute them among 
his friends Sara, Nejc 
and Neza. How many 
different ways can he 
divide the cars? An 
example: Sara can get 

Task 5:  
Jure, Katja, Luka, Marta and Nika 
will stay overnight at their 
grandmother's house. She has two 
different rooms (green and yellow) 
where she could put all or some of 
the grandchildren. How many 
different ways can the 
grandmother put her grandchildren 
in two different rooms? For 
example, a grandmother could use 
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all three cars. just one room to accommodate all 
five grandchildren… 

Objective of 
the task 

To examine the strategies that pupils will use when solving 
problems of variations by repetition:  whether they will rely on 
formula, or whether they will start from the context of the 
problem and move away from the use of formulas  

Expectations Errors may occur in understanding the verb 'to distribute', as the 
pupil might understand that he has to give at least one car to 
everyone. If the pupil relies on formulas, it may also happen 
that he/she confuses base and power (write 43 instead of 34). 
Two tasks of the same type were chosen in order to see if the 
pupil will recognise the similarity between the two tasks and 
therefore might use the same strategy to solve them.   

Table 2: Combinatorics - task, objectives and expectations. 

Dialogue: 
1 D: Is it easier to draw lines for cars or for friends? Is it easier with a calculation? 
2 S: You have to think about what makes sense. 
3 D: But do lines help at all? 
4 S: They do help, but you have to think about what they are for. They are for one 

thing, but not for another. 
5 D: If I do 4 lines for cars. And who can get a black one? Three can get it. Who 

can get the orange one? (draws 4 lines and writes the numbers 3 on 
them) 

6 S: Okay, for cars it makes sense to you. 
7 D: And then here comes 34. If I give the lines to my friends. e.g. How many cars 

can Sara get? Nejc can also get 4 and Neza can get 4. 
8 S: Does the number of cars Sara gets have any effect on the number of cars Nejc 

gets? 
9 D: Yes. If Sara gets them, Nejc doesn't. 
10 S: What if the lines are cars? Do we have any interdependencies there too? 
11 D: So three people can get the black car. 3, 3, 3 (as she wrote earlier). 
12 S: Is there any dependency between these threes? For example, if the black car 

goes to Neza, does that have any effect on who the orange car goes 
to? 

13 D: No. So it's 3 again. 
14 S: Yes, now you just have to work out whether there are pluses or minuses 

between the 3s. 
⋯ 

15 D: (reads the text of the task) U, this task seems to me to be similar to task 3. 
Here we have 5 people and 2 rooms. So we have 5 lines belonging to 
one person each. Jaka can choose between the green or the yellow 
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room, so he has 2 choices. The same goes for Katja and everyone 
else. 

16 S: Are these choices related to each other? 
17 D: No, which means that there are times and no plus between them. 
18 S: Yes, it is. 
19 D: So 25, which is 32. 
20 S: Are you sure that's OK? 

Analysis of the quality of the dialogue:  
The student showed very good expertise in managing the dialogue. The 
questions are open-ended and guide the pupil to make his own decisions about 
whether to draw lines for cars or for people (line 2), nor does he give an 
explanation of why the lines are useful, because he wants the pupil to come to 
his own understanding (line 4). The student also asks conceptual type of 
questions, which encourage the pupil to think about whether it makes more 
sense to find out how many people can choose a car of a certain colour, or vice 
versa: how many different cars can one person choose (lines 8 and 10). When 
solving task 5 (lines 15 to 20), the student does not actually have much cognitive 
work to do, as the pupil recognises the similarity of the two problems and 
transfers the strategy already used to the new situation. We can conclude that the 
management of the conversation is based on deepening understanding, not on 
finding the appropriate formulas. 
Analysis of metacognitive processes in the pupil: 
The pupil questions the usefulness of the line-drawing procedure (line 3), which 
is an indication of self-regulation, and we also notice that thinking aloud and 
articulating the procedure helps her to judge which of the two possible 
approaches is appropriate (lines 5 and 7). In the second part of the dialogue 
(solving task 5), the pupil immediately shows an understanding of the problem: 
she recognises that it is the same type of problem-situation as in Task 3, 
although the context has changed. To summarise, the pupil has transferred the 
knowledge used in one example, to a new, related example.  Again, the degree 
of metacognitive processes perceived in the dialogue is related to the degree of 
understanding of the problem and the development of mathematical thinking, 
which is in line with the findings of Lester et al. (1989), who state that control 
processes and awareness of cognitive processes develop in parallel with the 
understanding of mathematical concepts. 
Analysis of metacognitive processes in the student: 
The student’s report on his own perspective on how he saw the conversation was 
interesting. After the discussion was over, he was satisfied with his guiding and 
questioning, but his opinion changed drastically after listening to the recordings 
of the dialogue and realising that he had actually helped the student much more 
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than he had thought he had. Listening to his own recording provided a tool that 
stimulated his awareness of his own role in guiding the dialogue with the pupil. 
CONCLUSION 
The difficulties learners have in understanding abstract mathematical concepts 
and the search for ways to overcome or at least alleviate these difficulties are the 
source of countless debates among didactic mathematics experts. As this is an 
epistemological problem stemming from the complexity and abstractness of the 
concept, the solution to the problem is not necessarily linked to the teaching 
method, but to the development of the individual’s mental schema. We are 
aware that we cannot bypass the individual’s current stage of development, but 
we can, through appropriate pedagogical approaches, help the individual to 
move more quickly between the stages of understanding a concept and to reach 
a level of objectification of the concept. Thompson et al. (2014) point out that 
understanding the concept is the cognitive state of an individual, which 
represents the balance of all acquired knowledge that is created in the process of 
knowledge assimilation. A thoughtfully guided mathematical dialogue that leads 
the learner to carry out his or her own mental inferences can contribute to 
deepening the connections between different representations of a concept, which 
is crucial for concept reification.  In this paper, we analysed in more detail two 
dialogues between a mathematics student and a secondary school pupil. The two 
cases differ, among other things, in the level of the pupil's understanding of the 
abstract concept. While the pupil in the absolute value case reaches the level of 
operational thinking, the pupil in the second example shows a higher, structural 
level of understanding, which also allows her to reflect more easily on her 
thought process and to make connections between different contexts.  
Analysis of the research reports has highlighted another important fact. 
Flexibility in the way the dialogue is conducted depends on the student's 
mathematical competence and on his/her being prepared for the dialogue in 
advance (i.e. having prepared possible actions in advance, having thought about 
how to respond to a particular situation). Some students reported that it was only 
during the interview itself that they realised they were not well prepared and did 
not know what to ask or how to ask the question - they were not happy with the 
way they asked, but could not think of anything else. 
In summary, the quality of the dialogue depends on the interplay of different 
stakeholders: the level of the learner’s reasoning and reflection, the selection of 
a good, productive task that will stimulate cognitive conflict and, above all, the 
teacher's competence to conduct a quality dialogue which is based on 
professional and didactic preparation of the teacher.  
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This paper introduces the concept of mathematical literacy as a starting point 
for developing mathematical literacy competences at the national level, from 
kindergarten to secondary school. We have made an important addition to the 
otherwise fairly well-known concept of mathematical literacy (e.g., in the 
context of PISA international mathematical literacy assessment) within the NA-
MA POTI project by defining in detail two cornerstones of mathematical 
literacy: 1) mathematical thinking, the understanding and application of 
mathematical concepts, procedures and strategies, and communication as the 
basis of mathematical literacy, and 2) problem-solving in a variety of contexts 
(e.g., personal, social, professional and scientific) that allow for mathematical 
treatment. The latter also highlights mathematical modelling, which is generally 
about explaining observations of the material world in conceptual 
(mathematically structured) language. The concept of mathematical literacy was 
the starting point for the design of mathematical literacy tasks that were used to 
measure mathematical literacy competences in Slovenian primary schools in 
2020 and 2021. We present the results of students’ achievements according to 
the cornerstones and learning outcomes of mathematical literacy. A total of 30 
primary schools (10 schools in each of the three educational periods) or 1,380 
students were included in our study. The students’ results in a knowledge test, 
which were analysed qualitatively, showed a statistically significant correlation 
between mathematical literacy and conceptual mathematical knowledge. 
INTRODUCTION 
Achieving competences in mathematical literacy enables individuals to respond 
to the challenges of the modern world, especially in areas where mathematics is 
involved or where there is a need to deal with a situation mathematically. This 
means that school mathematics is taking on new dimensions, or that the 
understanding of mathematical knowledge is changing to some extent (perhaps 
even more than we would like or can yet manage). Goos and Kaya (2020) note 
that, in a large number of countries, the concept of mathematics is being 
reconsidered as part of curricular reform in terms of changes to the selection and 
organisation of mathematical content. It is quite clear that the complexity of the 
changes we are witnessing and the associated rapid growth of technology mean 
that there are many definitions of mathematical literacy competences.  
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In our view, the OECD definitions of mathematical literacy within the 
framework of the PISA survey from 2003 to 2017 (OECD, 2003; OECD, 2017) 
best correlate with the current understanding of mathematical literacy. They 
define mathematical literacy as the activity of an individual who is able to 
formulate, use and interpret mathematical content in different contexts. This 
definition makes it clear that it is not only about the individual’s recognition and 
understanding of the role of mathematics in everyday life, but also about their 
ability to interpret and articulate mathematical content in more complex 
contexts.  
Niss and Hojgaard (2019) define mathematical literacy as the individual’s 
insightful mathematical performance and response to the challenges of a given 
situation. It is important to note that the situations do not have to be 
mathematical. Suciati et al. (2020) define a mathematically literate person as 
someone who is sensitive to identifying mathematical concepts that are inherent 
to situations that are not mathematical in the starting point. A mathematically 
literate person thus understands, analyses, interprets, evaluates and synthesises 
the data of a problem situation, builds a mathematical model and determines a 
solution, while effectively managing mathematical concepts. 
According to Stacey and Turner (2015), mathematical literacy is the individual’s 
ability to formulate, apply and interpret mathematical concepts in a variety of 
contexts, including mathematical reasoning and using mathematical procedures, 
facts and tools to describe, explain and predict phenomena, which helps the 
individual to respond to the challenges of the world and to reflect on his or her 
choices. Suciati et al. (2020) add that mathematical literacy can be seen as the 
individual’s mastery of reasoning, concepts, facts and mathematical tools and 
strategies in solving everyday problems. The problems that are investigated 
within mathematical literacy are so-called life problems, which require real-
world data and mathematical modelling (Kula Unver et al., 2018; Manferda 
Kolar & Hodnik, 2021). Such definitions of mathematical literacy can be a good 
starting point for developing a concept of mathematical literacy in the context of 
a particular education system. For us, they provided a basis for conceptualising 
mathematical literacy in the project Scientific and Mathematical Literacy: 
Promoting Critical Thinking and Problem Solving (the NA-MA POTI project), 
which is presented in detail below. 
THE NA-MA POTI PROJECT 
The NA-MA POTI project was implemented in Slovenia from 2016 to 2022, 
with the primary aim of developing mathematical literacy competences at the 
national level, from kindergarten to secondary school (NA-MA POTI - Zavod 
RS za šolstvo (zrss.si)). In the NA-MA POTI project, we defined mathematical 
literacy and elaborated this concept into cornerstones, sub-cornerstones and 
descriptors, so that it can be applied as effectively as possible in the classroom. 
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This elaboration was developed for the whole vertical: kindergarten, primary 
school and secondary school.1 
The main objective of the NA-MA POTI project was to develop mathematical 
literacy in students and to train teachers to reflect on mathematical literacy and 
integrate it appropriately into the learning process. The first phase of the project 
aimed at defining mathematical literacy. It is not possible to simply copy the 
definition and the related competences of mathematical literacy from other 
projects. We advocate the view that the formulation of such important concepts, 
which may have long-term implications for the Slovenian education system, 
should actively involve researchers in the relevant research field and 
practitioners who have a reflective and therefore qualitative knowledge of the 
functioning of the Slovenian education system and its development, as well as of 
the problems of education, and who are familiar with the documents that define 
the education system. In the NA-MA POTI project, we followed this approach 
to the greatest extent in defining mathematical literacy, which we defined as the 
ability of an individual to use mathematical thinking and mathematical 
knowledge in order to: 

• apply mathematical concepts, procedures and tools in different structured 
environments; 

• analyse, justify and effectively communicate their ideas and results in 
formulating, solving and interpreting mathematical problems in different 
structured environments; 

• perceive and be aware of the role of mathematics in everyday and 
professional life, relating it to other areas and making responsible 
decisions based on mathematical knowledge, and have a willingness to 
accept and co-create new mathematical insights. 

Starting from the definition of mathematical literacy, we identified two 
fundamental cornerstones (CS) of the concept: 
CS 1 Mathematical thinking, the understanding and application of mathematical 
concepts, procedures and strategies, and communication as a basis for 
mathematical literacy; and 
CS 2 Solving problems in a variety of contexts (personal, social, professional 
and scientific) that allow mathematical treatment. 
Both of the CSs of mathematical literacy were elaborated into learning outcomes 
(LOs).  CS 1 was elaborated into seven LOs and the CS 2 into three LOs. 

 
1 This article presents selected results of the NA-MA POTI project exploring mathematical literacy in 

kindergarten, primary school and upper secondary school, in which researchers Tatjana Hodnik, Zlatan 
Magajna and Vida Manfreda Kolar (University of Ljubljana, Faculty of Education) conceptualised the 
research project, developed the tasks and interpreted the results. The project produced ongoing annual reports 
and the results were also published in Slovenian (Magajna et al., 2022).  
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Under CS 1, students: LO 1.1 understand information containing mathematical 
content; LO 1.2 know and use mathematical discourse and symbology; LO 1.3 
present, justify and evaluate their own thought processes; LO 1.4 recognise, 
understand and apply mathematical concepts in a variety of contexts; LO 1.5 
know and apply the relevant procedures and tools in different contexts; LO 1.6 
predict and evaluate results, and justify claims, procedures and decisions; LO 
1.7 apply different strategies to solve mathematical problems. 
Under CS 2, students: LO 2.1 address a wide variety of life problems (problems 
that do not require mathematical modelling); LO 2.2 handle situations with 
mathematical modelling; LO 2.3 understand mathematical practices in different 
contexts. 
Each LO was further refined with descriptors for each level of schooling: for 
kindergarten, for the final grade of each three-year period of nine-year primary 
school (3rd, 6th and 9th year) and for the final year of upper-secondary school.  
In a sense, the LOs of CS 1 summarise the learning objectives that are much 
more operationally defined in the curriculum (Curriculum, 2011), and it could 
even be argued that they bring nothing fundamentally new. What needs to be 
highlighted, however, is the role of the LOs of CS 1 in the implementation of CS 
2 and in the development of mathematical literacy in general. The two 
components CS 1 and CS 2) of mathematical literacy differ in certain elements, 
but above all there is a relationship of interdependence between them: the 
strengthening of one component contributes to the development of the other. 
In CS 1, we placed special emphasis on the learner’s understanding and use of 
mathematical discourse, the learner’s role in the interpretation of different 
mathematical representations, communication, and the critical evaluation and 
recognition of mathematics in different contexts. The aim is to contribute to the 
realisation of focusing on the aspect of ‘rigor’, which in teaching, as stated by 
Hattie et al. (2017), means a balance between conceptual knowledge, procedural 
knowledge, and fluency and application of knowledge. CS 1 is rounded off by 
LO 1.7, which highlights the individual’s ability to use different strategies in 
solving mathematical problems. The coherence of all of the learning outcomes 
of CS 1 can be summarised according to Dubinsky (2001); namely, that an 
individual’s mathematical knowledge is reflected by solving a variety of 
mathematical problems in which s/he uses complex thought processes to 
manipulate the mathematical processes and objects needed to solve the problem 
s/he is working on. 
The key goal of CS 2 is to develop the student’s ability to deal with 
mathematical concepts in different structured environments. Within CS 2, we 
have identified three LOs, with mathematical modelling certainly being the 
biggest innovation in terms of mathematics teaching in Slovenia. Let us first 
examine LO 2.1 the learner considers a variety of life problems (which do not 
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require mathematical modelling). How do these differ from the mathematical 
problems (LO 1.7) we have considered within CS 1? The answer is relatively 
simple: whereas, in a mathematical problem, the mathematical content of the 
problem is clear and transparent, in a life problem it is yet to be discovered. An 
example of such problems is Fermi problems, which are characterised by the 
very fact that one first has to figure out how to break down the problem in order 
to use the data to get an answer, after which one uses (depending on the 
problem) the skills of data estimation, results, computation, reasoning, extending 
the situation, etc., to arrive at a solution to the problem in the form of a rough 
estimate (Manfreda Kolar & Hodnik, 2023). For instance, a Fermi problem may 
be to find out how many bricks there are in the walls of a given school building. 
In dealing with life situations, we are not only interested in the solution, but also 
in the process of solving and translating the situations into the mathematical 
symbolic world, after which we move into the field of mathematical modelling. 
Mathematical modelling is understood as the process of translating a life 
situation/problem into a mathematical model, which is then used to solve the 
problem (Greefrath & Vorhölter, 2016). When translating a life situation 
(realistic problem), we apply certain mathematical procedures to the 
mathematical model and design rules to derive the mathematical calculations. 
This process of transformation into mathematical discourse is called 
mathematisation, a process guided by the question: What mathematical 
knowledge can be used to solve a realistic problem (Stillman, 2012)? LO 2.3 
understand mathematical practice in different contexts is linked to modelling.  
PROBLEM DEFINITION 
In the 2019/20 school year, the NA-MA POTI project tested the mathematical 
literacy of preschool children and primary and secondary school students by 
means of knowledge tests that included tasks to assess their knowledge of CS 1 
and CS 2. The tests were designed to measure the participants’ progress in 
mathematical literacy, and were planned to be administered twice: at the 
beginning and at the end of the school year. However, due to the Covid-19 
pandemic, the pre-test was not conducted; only the final test was conducted in 
2022. In the meantime, preschool, primary and secondary mathematics teachers 
were systematically developing the children’s and students’ mathematical 
literacy competences in the classroom, supported by project collaborators 
through the project’s planned activities (seminars, workshops, exchange of good 
practices, etc.).  
In our research, we focused mainly on the relationship between the learning 
outcomes that are particularly emphasised in relation to mathematical literacy 
and represent a novelty in terms of a systematic approach to the development of 
mathematical literacy in Slovenia, as well as focusing on the other learning 
outcomes. The first group of tasks measure achievements in LO 1.6 and LO 1.7, 
and all of CS 2 (especially LO 2.1 and LO 2.2), which are associated with 
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mathematical literacy in a narrower sense. The second group of tasks measure 
achievements in four learning outcomes of CS 1 (LO 1.1 to LO 1.4), in which 
we identify elements of conceptual knowledge, and LO 1.5 in the area of 
procedural knowledge. We are aware that the two types of knowledge 
(conceptual and procedural) cannot be completely separated, but are 
complementary. When researching the issue, we were interested in the question: 
Is the level of conceptual and procedural knowledge related to the level of 
knowledge of mathematical literacy in primary school students?  
RESEARCH METHODOLOGY 
We used a quantitative research approach with descriptive and causal non-
experimental methods. The results form part of a larger study on the monitoring 
progress in scientific and mathematics literacy in the NA-MA POTI project, 
which was co-funded by the Republic of Slovenia and the European Union from 
the European Social Fund. 
Sample 
The tests in mathematical literacy were administered in the final year of each of 
the three educational periods (VIO1, VIO2, VIO3) of primary school. The 
number of participating schools and students is given in Table 1. 

 VIO1 VIO2 VIO3 

Number of participating schools 10 10 10 

Number of students 487 491 402 

Table 1: The sample of students. 

Instruments 
The knowledge tests used to investigate the issues were piloted with primary 
school students and evaluated by university teachers/researchers and school 
teachers. The teachers’ comments and the difficulty and discriminability indices 
calculated from the pilot tests were taken into account in the final design of the 
tests used to assess mathematical literacy. The tests included multiple-choice 
and short-answer tasks, which could be either correct or incorrect. Below is a 
brief presentation of the tests for each VIO. 
The tests included a different number of tasks for each VIO. Most of the items 
contained several parts (assessment units), which were answered separately by 
the students and then independently categorised (according to sub-items) and 
evaluated. Thus, the test for VIO1 contained a total of 39 assessment units in 20 
items, VIO2 students also solved 20 items containing a total of 30 assessment 
units, and VIO3 students solved 13 items containing a total of 36 assessment 
units.  
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Presentation of selected mathematical literacy tasks 
Below we present short descriptions of selected tasks to illustrate the 
interpretation of learning outcomes in the tasks of mathematical literacy and the 
performance of the students in these tasks. In doing so, we will limit ourselves to 
tasks that represent a certain novelty in terms of systematically developing 
mathematical literacy. 
LO 1.6: predict and evaluate outcomes, and justifies claims, procedures and 
decisions 
VIO1: Certain information is underlined in a word problem. The students had to 
judge whether the underlined information in the word problem was too much, 
too little or just right for the problem. The task was solved correctly by 35.7% of 
the students. 
VIO2: The task provided information about passengers on a ship and the number 
of passengers who visited certain places. The students had to find out whether 
each passenger had visited at least one city by a complex comparison of the 
number of total passengers with the number of visits. The task was solved 
correctly by 32% of the students. 
VIO3: The students determined whether a quadrilateral in which the diagonals 
intersect at right angles is necessarily a rectangle, a square, a kite or none of 
these. The success rate for this task was only 12.7%.   
LO 1.7: apply a variety of strategies to solve mathematical problems 
VIO1: The students were given the total number of legs and the total number of 
heads of foxes and penguins. They were asked to choose the correct answer 
from the given answers about the number of one and the other. The task was 
solved correctly by 37.4% of the students. 
VIO2: The students were given the perimeter of a rectangular garden and the 
information that the measurements of the lengths of the sides of the garden are 
natural numbers. The task was for them to think about how long the sides of a 
rectangle can be, how many different possibilities there are, and what the 
maximum area of the garden can be. Slightly less than 24% of the students were 
successful in this task. 
VIO3: The task we have chosen as an illustration requires students to be able to 
generalise. In it, the elements of a sequence (a picture pattern made of 
matchsticks) is represented graphically. The pattern was continued correctly by 
60.4% of the students, but the general rule was identified correctly by only 
22.9% of them. 
LO 2.1: addresses a variety of life problems that do not require mathematical 
modelling  
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VIO1: The task required the students to read a table with the number of siblings 
for each child. The students had a great deal of difficulty reading the table or 
answering the questions (e.g., How many children do not have any brothers or 
sisters? How many children have the same number of brothers as sisters? etc.). 
Less than 25% of the students were successful in this task. 
VIO2: The life context of the task is taking medication, while the mathematical 
context is finding the lowest common multiple. The task gives information about 
various medicines that a patient has to take at different time intervals. The 
question was: If she takes all of the medicines at the same time the first time she 
takes them, when is the next time she will take all of the medicines at the same 
time again? Only 29.7% of the students were successful in this task. 
LO 2.2: handle situation through mathematical modelling 
LO 2.2 is made up of four parts. Part 2.2.1 concerns the meaningful linking of 
the situation under consideration to mathematical objects or to the field of 
mathematics. Part 2.2.2 refers to the construction of a mathematical model for 
the situation at hand. Part 2.2.3 concerns the application of the new model given 
and part 2.2.4 concerns a critical judgement on the appropriateness of the model. 
The last three parts were tested with tasks only for VIO3. 
Part 2.2.1: put the situation into a mathematical context 
VIO1: In the task, the students were asked to identify the most suitable way to 
cut and sew Slovenian flags using three strips of the same width but different 
lengths in the colours of the Slovenian flag. The task was solved correctly by 
31.6% of the students. 
VIO2: In one of the tasks, the students linked statements (e.g., a student scored 
at least 8 points on a knowledge test, fewer than 8 people can go on a boat, etc.) 
to inequalities. Less than 30% of the students were successful in this task. The 
terms ‘at most’ and ‘at least’ were the most difficult for them. 
VIO3: The task asks for the length of a ramp for the physically handicapped that 
would be built along a staircase that includes a platform. Only just over 30% of 
the students related the situation to the Pythagorean theorem; of these, two thirds 
were inaccurate in their use of the theorem. 
Part 2.2.2: develops mathematical models for a given situation 
VIO 3: In one of the tasks, the students were asked to determine whether the 
forms given in the task give a value that is too large or too small for the area of a 
non-standard character (a chicken egg viewed from the side, as if it were a 
shape). The task items essentially required modelling the area of different shapes 
with areas of circles, rectangles and triangles. The percentage of students who 
provided correct answers to the various task items was in the range of 40–61%. 
Part 2.2.3: uses mathematical models 
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VIO3: In one of the tasks, the students were presented with a realistic model to 
calculate the number of fire extinguishers needed in buildings. The model was 
presented in the form of a longer instruction, a description of the parameters 
taken into account, and two tables with the necessary data. The students were 
relatively successful in reading the tables or observing the individual conditions, 
but the performance in combining the data from the tables was much lower, with 
a success rate of 14% of the students.  
Data collection and processing process 
The student tests were administered in the first months of the 2019/2020 school 
year. The results of the tests were analysed descriptively, measures of mean and 
variance are presented, and Pearson correlation coefficients were used to 
determine the correlation between performance in each LO. 
Results with interpretation 
Analysis of the test results 
Table 3 shows the average performance in the assessment units of the 
mathematical literacy tests for the students by VIO and by LO. Some of the 
entries in the table are blank because we did not test achievements in all LOs in 
all VIOs. 

LO VIO1 VIO2 VIO3 
M SD M SD M SD 

1.1 0.550 0.237 0.407 0.212 0.740 0.441 
1.2 0.427 0.254 0.500 0.501 0.593 0.373 
1.3     0.427 0.332 
1.4 0.326 0.282 0.760 0.428 0.629 0.191 
1.5 0.343 0.342 0.465 0.263 0.300 0.458 
1.6 0.497 0.376 0.260 0.442 0.423 0.273 
1.7 0.230 0.261 0.293 0.247 0.420 0.323 
2.1 0.432 0.170 0.292 0.230   

2.2.1 0.320 0.465 0.309 0.243 0.100 0.300 
2.2.2     0.426 0.229 
2.2.3     0.489 0.241 
2.2.4     0.143 0.296 
2.3       

Table 2: Average student achievement by LO and VIO. 

In Table 2, we have shaded the performance of the lower half of the students’ 
achievement in the LO for each VIO. The shading of the cells indicates that, in 
general, the performance in the LO whose development in teaching was 
emphasised in the project is lower than the performance in the LO related to 
conceptual and procedural knowledge. This is particularly evident for VIO 2 and 
VIO 3. 
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In the description of the LOs, we emphasised that LOs 1.1–1.4 refer to 
conceptual knowledge, LO1.5 to procedural knowledge, and LO 1.6 and LO 1.7 
to problem-based knowledge, while CS 2 is entirely concerned with modelling 
or applying knowledge in contexts that are structured differently from school 
contexts. In the project, the importance of LO 1.6, LO 1.7 and CS 2 was 
specifically emphasised in relation to mathematical literacy. We examined their 
correlation with the LOs related to conceptual knowledge (LO 1.1–1.4) and the 
LOs related to procedural knowledge (LO 1.5). Table 3 shows the correlation 
coefficients between the achievement in the LOs under consideration 
(mathematical literacy) and the average achievement of the participants in the 
LOs of a conceptual or procedural nature. The calculated correlations that are 
not statistically significant at the 5% risk level are in brackets; all of the other 
calculated coefficients are statistically significant. In the table, we have slightly 
shaded cells with correlations between 0.200 and 0.300; cells with correlations 
above 0.300 are shaded more strongly; all other cells are unshaded. 

LO 
VIO1 VIO2 VIO3 

1.5 1.1-1.4 1.5 1.1-1.4 1.5 1.1-1.4 

1.6 0.140 0.350 (0.076) 0.103 0.249 0.350 

1.7 0.183 0.448 0.096 0.018 0.219 0.359 

2.1 0.155 0.494 0.170 0.230   

2.2.1 (0.054) 0.104 0.190 0.172 (0.037) (0.024) 

2.2.2     0.225 0.229 

2.2.3     0.142 0.182 

2.2.4     0.209 0.187 

2.3       

Table 3: Pearson correlation coefficients between average student achievement in 
selected LO by VIO. 

The interpretation of the coefficients is based on the fact that, in the classroom, 
students are mainly confronted with situations related to the understanding of 
concepts (conceptual knowledge) and procedures (procedural knowledge). In 
Table 4, we can see relatively high correlations of problem knowledge (LO 1.6 
and LO 1.7) with conceptual domain building blocks and lower correlations with 
procedural domain building blocks. This is particularly evident for VIO1 and 
VIO3. Given that problem situations are present in the process of learning 
mathematics, albeit perhaps to a lesser extent, the difference in the magnitude of 
the correlations is attributed to the nature of the domains or LOs. Procedural 
knowledge is, of course, an important basis for problem solving, but the role of 
conceptual knowledge is more crucial. If the problem solver does not possess 
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the necessary conceptual knowledge to solve the problem, s/he cannot proceed 
using the appropriate mathematical procedures (Hodnik Čadež & Manfreda 
Kolar, 2015; Manfreda Kolar & Hodnik Čadež, 2013). A similar observation 
applies to LO 2.1, which is concerned with solving simple life problems that do 
not require modelling. Such problems are, of course, a standard part of existing 
mathematics teaching and their success correlates reasonably well with the level 
of conceptual knowledge. 
Another important observation concerns the correlation of parts of LO 2.2 with 
the LOs related to conceptual and procedural knowledge. In no case are the 
correlations high, and there are no differences between the correlations with the 
conceptual and procedural LOs. This suggests that students have less and 
unsystematic exposure to modelling in the classroom. 
In summary, the lower correlation of a given LO with the LOs of the conceptual 
or procedural domain can be attributed to the modest and non-systematic 
presence of the development of mathematical literacy in the learning process. 
DISCUSSION 
In this discussion, we would like to highlight the key findings of our research on 
mathematical literacy in the Slovenian context within the NA-MA POTI project. 
The aim of the project was to develop mathematical literacy in preschool 
children, and primary and secondary school students. Therefore, we first came 
up with a concept of mathematical literacy, taking into account the findings and 
research in this field. The concept is defined by two cornerstones with a number 
of learning outcomes, each of which has descriptors for the specific educational 
period. Our research confirms that the concept of mathematical literacy is 
appropriate for the purpose for which it was developed, i.e., to develop 
mathematical literacy in primary school students. This is justified by the 
following findings: 

• the concept is conceived both in the separation of basic mathematical 
knowledge (conceptual and procedural) and mathematical literacy, and in 
their interconnection; 

• the concept allows for the creation of a variety of tasks covering different 
areas of mathematical literacy; 

• the concept brings a significant difference to mathematics education 
compared to the existing curriculum, which is reflected in the 
performance of students in mathematics tests, as well as in the frequency 
with which the teacher includes mathematics activities (lower 
achievement correlates with a lower occurrence of mathematical literacy 
activities in mathematics education). 

The mathematical literacy tests developed in the project were administered in all 
of the VIOs. The results suggesting that conceptual and procedural knowledge 
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are related to mathematical literacy are encouraging, as we see opportunities for 
raising mathematical literacy in students in the interdependence of knowledge. 
Good mathematical knowledge, both conceptual and procedural, is 
a prerequisite for developing mathematical literacy. The real challenge is to find 
contexts in which a student who is well equipped with mathematical knowledge 
can demonstrate mathematical literacy competences. 
A more detailed analysis of the correlation between students’ performance in 
mathematical literacy tests and procedural and conceptual knowledge shows that 
students perform less well in problem-solving and modelling tasks than on tasks 
that assess conceptual or procedural knowledge. The results also show that good 
conceptual knowledge is more important than procedural knowledge for the 
development of problem-solving skills. 
Some of the learning outcomes of the cornerstones of mathematical literacy 
developed in the project are already present in the existing curriculum, but they 
are not sufficiently recognised at the level of curriculum implementation. These 
include areas such as problem-solving strategies, critical thinking, modelling 
strategies and procedures. Emphasising these processes for literacy development 
by no means involves reconstructing mathematics education. Although these are 
peripheral skills, they need to be made visible and systematically developed in 
mathematics teaching with well thought-out tasks. They are skills that enable 
preschool children and primary and secondary school students to think more 
easily and effectively mathematically in out-of-school contexts. 
Knowing that innovations in mathematics education were introduced in the NA-
MA POTI project – meaning that they also represent innovations for the 
teacher’s practice, especially in terms of selecting appropriate contexts for 
developing mathematical literacy, which are structured differently from those in 
school – we can conclude that the results of our research demonstrate that the 
project achieved its main objective, i.e., to create an environment for the 
systematic development of mathematical literacy in primary school.  The 
students’ test results reflect the fact that the NA-MA POTI project provided 
teachers with knowledge that they have applied to their teaching, as well as 
providing guidelines for further development in this area. However, we would 
like to stress once again that mathematical literacy objectives can complement 
mathematical knowledge to a very limited extent, but they cannot replace 
existing mathematical content. 
Could the results of our survey be linked in any way to the results of the 2022 
PISA survey, where our 15-year-olds scored an average of 485 (OECD average 
472)? The highest average score was achieved in the subject of shapes and 
solids (492 points), while in mathematical competences the highest average 
score was achieved in the competence ‘interpreting’ (487 points), although there 
were no significant differences in the average scores for the other competences: 
formulating (482 points), applying (483 points) and reasoning (485 points). The 
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lowest scores achieved by Slovenian pupils were in tasks on change and 
relationships, probability and working with data (Educational Research Institute, 
2023). Although we have not had the opportunity to analyse the tasks in depth, 
the PISA results suggest that the mathematical literacy performance of 
Slovenian 15-year-olds may correlate with their conceptual knowledge rather 
than their procedural knowledge, where procedural knowledge is not simply 
about using familiar procedures, but about using a procedure in a context that is 
less structured than a school context (in our case CS 2). It is not possible to 
make more detailed comparisons of the PISA results with the NA-MA POTI 
project results. Although it seems clear to everyone what mathematical literacy 
is, it turns out that this is not the case in tasks that test mathematical literacy. It 
can only ever be said that students have demonstrated a certain level of 
mathematical literacy in the selected tasks.  
Study limitations 
Finally, let us mention again some of the limitations of our study. The first is 
that the tests were designed to measure students’ progress in mathematical 
literacy, but due to the Covid-19 pandemic, they were not administered in the 
planned way. The second limitation is that the tests include tasks that are not 
balanced in the sense of having the same number of tasks of similar difficulty 
for each learning outcome defined in each CS.  
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Digital media is increasingly finding its way into the classroom as educational 
resources. However, the question of how digital media can be used beneficially 
and integrated into subjects is by no means new. While there are certainly a 
number of positive examples of the use of digital media, it can be stated that 
their integration has not yet been as successful as one might have hoped. The 
reasons for this can certainly be manifold. In order to specifically address 
concepts for teaching and learning mathematics with digital media, this paper 
will focus on subject-specific potentials which arise primarily through the 
availability of digital media. These potentials are first illustrated with examples 
and then, based on empirical studies, their use by learners will be discussed. 
INTRODUCTION – DESIGNING MATHEMATICS TEACHING  
The shared goal of researchers, teachers and all other people who contribute 
directly or indirectly to the design of teaching mathematics is to create high-
quality mathematics lessons. Given the sometimes-sobering findings in school 
assessment studies, such as TIMSS (Mullis et al., 2020), at least with regard to 
the performance of students in Germany, the question of enhancing subject-
related teaching quality is more pressing than ever. Especially in recent times, 
there has been a growing interest in examining how digital educational resources 
can contribute to this effort. However, this interest is not new; Freudenthal 
(1981) articulated the following major problem of mathematics education over 
four decades ago: “How can calculators and computers be used to arouse and 
increase mathematical understanding?” (p. 146). 
In order to find solutions, it is first necessary to clarify what constitutes good 
mathematics teaching. In this context, there is often a focus on three generic 
dimensions of teaching quality, which are formulated as follows and their 
integration has been shown to promote the design of quality instruction 
(Praetorius et al., 2018): 

• Classroom management 
• Student support 
• Cognitive activation 

Regarding the contribution of digital media to high-quality teaching, it appears 
that in the general societal and educational policy discourse, aspects of 
classroom management are predominantly emphasized, with only occasional 
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references to subject-specific didactic aspects of teaching. While it is certainly 
helpful and welcome that common tablet apps are intuitive to use, this alone is 
by no means a guarantee of the presence of a digitally rich learning resource 
with substantive subject-specific didactics.
However, in order to address the two dimensions of student support and 
cognitive activation, which are more influenced by subject-specific didactics, 
and at the same time to unfold the complexity of these two dimensions for 
subject-specific learning, the following five principles of effective mathematics 
instruction have been developed at the German Centre for Mathematics Teacher 
Education (DZLM) 1:

Principle of 
Conceptual Focus

Establishing
concepts, strategies, procedures

Principle of 
Longitudinal Coherence

Enabling
long-term learning

Principle of 
Enhanced Communication

Talking
about mathematics

Principle of 
Student Focus and Adaptivity

Addressing
learning levels

Principle of 
Cognitive Demand

Encouraging
active learning processes

Table 1: Five principles for high-quality mathematics teaching (Prediger et al., 2022).

This article aims to demonstrate to what extent specific subject-specific 
potentials of digital media can support the implementation of these five 
principles and report empirical findings on their usage. To achieve this, the 
following potentials will be examined section by section:

• Understanding and structure representations
• Support representation processes
• Aligning concrete und mental actions
• Provide informative feedback

• Outsource calculus 

1 Homepage of the DZLM: https://dzlm.de/en/international-visitors
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UNDERSTANDING AND STRUCTURE REPRESENTATIONS 
The potential and how it can support learners 
The first potential, Understanding and structuring representations, focuses on 
the in-depth understanding and structuring of representations. Understanding 
representations can be supported by digital media insofar as a mathematical 
object can be represented through various forms (enactive, iconic, and symbolic 
representations). Furthermore, these representations can be designed so that 
changes made to one representation automatically adjust the other 
representations accordingly (Drijvers & Sinclair, 2023). This aspect of design is 
internationally established under the term multiple equivalent linked 
representations (MELRs) (Harrop, 2003). 
Accordingly, number representations in the ‘Calculation field’ app can be 
changed on a symbolic level, for example, by increasing a summand by +1 using 
a swipe gesture over the number sign. The iconic representation automatically 
adapts synchronously to the enactive change of the symbolic representation level 
by displaying ten additional counters (see Figure 1). Moreover, a 
complementary approach is also feasible, whereby a counter is added, prompting 
adjustment in the symbolic representation. 

 
Figure 1: Multiple equivalent linked representations in ‘Calculation field’. 

Meanwhile, the structuring of representations is automated by the software. For 
example, if another red counter is added, it appears directly to the right of the 
sixth red counter. The blue counter positioned there would be automatically 
shifted to the second row immediately next to the last placed blue counter. Thus, 
the counters are consistently arranged in a decimal manner (Walter, 2018). If 
individual counters are moved, altering the structure, a simple touch on the 
‘Calculation Field’ can prompt a restructuring of the counters. 
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The illustrated potential primarily addresses the Principle of Conceptual Focus. 
In order to enable learners to establish foundational concepts, strategies, and 
procedures, it is essential that the representations used in respective grade levels 
are thoroughly understood. This requires the ability to not only utilize 
mathematical objects on a single representation level but also to relate various 
representations – even in different number ranges. The above software facilitates 
this by allowing not only number representation up to 20 but also up to 100 or 
1000 when additional counters are added, as the ‘Calculation Field’ 
automatically adjusts. In this way, the continuity of educational resources is also 
ensured. 
Selected empirical findings regarding the potential 
Various studies have examined how and which MELRs are used by learners in 
the process of representing numbers. This includes the study conducted by 
Walter (2018), in which the ‘Twenty Frame’ software – a precursor to the 
‘Calculation Field’ app – was utilized in a qualitative investigation involving 19 
learners experiencing difficulties in learning arithmetic at the beginning of the 
second grade. It was observed that learners often demonstrated isolated 
perspectives on individual representations when representing tasks within the 
number range up to 20, rather than considering the various representations in 
their process. For instance, when representing 8+7, learners would either focus 
solely on the symbolic representation at the bottom of the screen and place tiles 
until the desired number was visible. Another approach involved a narrow focus 
on the iconic representation in the centre of the screen, with counters being 
added until they reached a desired field (in this case, the eighth field for the first 
summand). Finally, a third approach was observed, wherein some children 
focused on the button for counter selection (‘add 1’) and tapped it multiple times 
while concurrently counting in increments of one. 
After the individual representation processes focusing on specific 
representations were completed, the children were asked to relate their 
approaches to the other available representations, which they were able to do in 
most cases. Consequently, it became apparent that, at least in the group of 
learners classified as relatively low-performing, the utilization of MELRs is not 
solely guaranteed by their availability. Targeted stimuli are required to initiate 
appropriate usage patterns. 
SUPPORT REPRESENTATION PROCESSES 
The potential and how it can support learners 
The second potential, Support representation processes, can help learners to 
represent mathematical objects in a skillful manner. This will be illustrated 
below with an example from early arithmetic instruction, where a central hurdle 
for children is to understand numbers cardinally as compositions of other 
numbers, as they often perceive them solely in an ordinal manner. This fact 
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frequently leads to many learners adhering to non-sustainable counting 
procedures, such as laying down eight individual counters one after the other, 
while structures remain unused (e.g., laying down a group of five and three 
single counters) (Gaidoschik, 2019). 
In this context, touch-based digital devices can promote the more skillful 
representation of numbers by utilizing multitouch technology (Meletiou-
Mavrotheris et al., 2015). For example, in the ‘Math Tablet’ app, it is possible to 
touch the screen surface with multiple fingers simultaneously, so that counters 
appear simultaneously exactly where the fingers touch the screen (here: 4 and 2 
fingers), resulting in the appearance of tiles simultaneously (here: 6, see Figure 
2). Simultaneous representation of numbers can support thinking about numbers 
cardinally (Segal, 2011). 

 
Figure 2: Multitouch representation when using the ‘Math Tablet’ app. 

The described potential can primarily contribute to the implementation of the 
Principle of Longitudinal Coherence, which aims at the necessity of long-term 
learning. It is stated that in earlier grade levels, it is essential to establish the 
concepts and strategies necessary for further mathematical development. In 
relation to the example, this means that the skillful representation of numbers in 
early mathematical instruction can be considered as a fundamental foundation, 
allowing learners to adeptly represent large numbers and understand their 
relationship to the decimal number system. 
Selected empirical findings regarding the potential 
Although multitouch technology is a relatively recent technological 
development, several studies have already explored the extent to which the 
resulting potential to support representation processes is utilized by learners. In 
their experiments using the multitouch table, Ladel and Kortenkamp (2014) 
investigated how internalization and externalization processes unfold. They 
observed that the formulation of a task influences children’s approaches. For 
tasks structured as ‘Please put x counters on the table’, children tended to 
sequentially place individual counters. However, when children were 
additionally encouraged to represent the counters ‘all at once’, many learners 
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changed their approach by quasi-simultaneously representing the quantities with 
their fingers (Ladel & Kortenkamp, 2014). 
This finding was also confirmed in the studies conducted by Walter (2017), 
where children used the ‘Math Tablet’ for number representation. Here, the role 
of fingers as the primary medium of representation was also evident: It was 
often observed that learners initially represented numbers on their fingers 
sequentially to subsequently position all outstretched fingers simultaneously on 
the screen. 
Difficulties that learners encounter when using multitouch technology are also 
documented. For example, learners may position multiple fingers too closely 
together, causing the digital device to recognize them as a single finger (Sinclair 
& Heyd-Metzuyanim, 2014; Walter, 2017). Thus, it remains to be noted that the 
use of multitouch technology does not guarantee that numbers were represented 
cardinally on the fingers. 
ALINGNING CONCRETE AND MENTAL ACTIONS 
The potential and how it can support learners 
The third potential, Aligning concrete and mental actions, aims to orientate the 
actions conducted on digital educational resources closely to the intended mental 
actions. This is particularly important because the transition from concrete 
actions on materials to mental actions can be supported if there is a structural 
match. 
In this context, virtual materials offer the potential to closely align actions with 
normatively desired mental operations. This alignment can be even closer with 
certain tablet apps than with their respective physical counterparts (Peltenburg et 
al., 2009). This is illustrated using the example of the task 11–2 with the 
assistance of (physical and digital) tens system materials. 
With physical tens system materials, the number 11 is initially represented using 
a ten rod and one unit cube, and then two unit cubes are subtracted. To visualize 
the difference, it is essential to substitute the ten rods with ten unit cubes. Only 
then is it possible to subtract the last unit cube. 
Without physical materials – purely mentally – the task would probably not be 
solved in this way. For 11–2, it seems somewhat unreasonable to perform a 
mental substitution process of the ten for ten ones after calculating 11–1=10 
before subtracting a one. The more intuitive approach seems to be to subtract 
one unit directly from the ten – without the detour of a substitution process. 
Digital equivalents of base-ten-block material, as used in the app ‘Practicing 
place value’, can realize this aspect: The number 11 is represented using a ten 
rod and one unit cube, after which the ten rod is moved to the ones column and 
automatically unbundles into ten-unit cubes (see Figure 3). Sarama and 
Clements (2006) assess this by stating that “[s]uch actions are more in line with 



Potentials of digital educational resources in the mathematics classroom 185 

 
 

the mental actions that we want students to carry out.” (p. 113; Thompson, 
1992) 

 
Figure 3: Aligning concrete and mental actions in ‘Practicing place value’. 

The described potential relates to the Principle of Enhanced Communication, 
which emphasizes the importance of productive discourse in mathematics 
instruction, so that mathematics is primarily understood as a process, not just a 
product. The question of which actions with the material best align with 
intended mental operations can serve as such a discourse opportunity. For 
example, the approach outlined in Figure 3 can be compared with actions using 
physical tens system materials, and discussed with the children to explore which 
approach might be considered more skillful and why. 
Selected empirical findings regarding the potential 
Schulz and Walter (2019) conducted an interview study with 29 second and 
third graders, investigating the extent to which children utilize the potential of 
aligning concrete and mental actions when representing numbers. After working 
with the children to understand how to use the software (especially unbundling 
hundreds and tens), the children were asked, among other tasks, to first represent 
the number 200, which all children accomplished using two hundred-squares. 
Following this, the children were asked to ‘take away twenty’. Some children 
utilized the potential by unbundling one hundred-square and then deleting two 
ten-rods. However, most children imitated the actions familiar to them from 
their previous instruction: they deleted one hundred-square, added ten ten-rods, 
and then deleted two ten-rods. This finding suggests that previous experience 
with concrete physical material overlaps and influences the intended use of the 
implemented feature. 
These findings align with those of Litster et al. (2019). Based on their interview 
study with 100 primary grade children using the Montessori Number Base-10 
Blocks app, they suggest that children do not automatically incorporate the 
existing potentials into their usage patterns. 
However, various studies also indicate that working with virtual tools “at certain 
phases of learning may be more efficacious than their physical counterparts” 
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(Clements, 1999, p. 56; Thompson, 1992). For instance, Burris (2013) found in 
an app with similar features that children could generate more efficient and 
diverse representations of numbers through bundling (depicted by materials 
sticking together) and unbundling (depicted by materials being hammered 
apart). 
PROVIDE INFORMATIVE FEEDBACK 
The potential and how it can support learners 
Especially in the context of digital educational resources, the fourth potential, 
Provide informative Feedback, plays a significant role. For example, educational 
software can provide immediate feedback to a child right after completing a 
task, indicating whether it was solved correctly or incorrectly. Given a class size 
of nearly 30 children, this is not feasible for a single teacher to accomplish. 
From a teaching organisation perspective, computer-generated feedback can 
therefore be seen as having great potential. 
However, the majority of available software seem to primarily include feedback 
that is purely product-oriented, merely informing learners whether they have 
provided a correct or incorrect answer. Feedback that also incorporates the 
processes of the children and provides specific feedback on specific responses is 
only found in isolated cases (Walter & Schwätzer, submitted). Accordingly, 
most apps seem to have a rather limited understanding of feedback, which is 
minimally informative and learner-centered, and not designed as postulated by 
Pardo (2018): “A process to positively influence how students engage with their 
work in a learning experience so that they can improve its overall quality with 
respect to an appropriate reference and increase their self-evaluative capacity” 
(p. 433). 
An example of how digital educational resources can provide informative 
feedback is implemented in ‘Practicing place value’. In Figure 4, children are 
tasked with verbally stating the displayed number (here: 49) after touching the 
microphone icon at the bottom of the screen. The software then recognizes the 
spoken number word (in German: neunundvierzig; in English: nine-and-forty) 
and provides feedback on whether it is correct or incorrect. If it is incorrect, the 
app also indicates which number it understood (here: “incorrect (understood as 
94)”). This additional information allows the child, for example, to realize that 
they have spoken the number inversely. The correct digits are included in the 
spoken number, but not in the correct order – a mistake often observed due to 
the inverse way of speaking numbers in German (Möller et al., 2015). 
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Figure 4: Informative feedback in ‘Practicing place value’. 

Informative Feedback addresses primarily the Principle of Student Focus and 
Adaptivity, as it particularly takes into account the individual learning levels of 
children. The intention of informative feedback is to understand the child's 
approach and offer as adaptive feedback as possible, providing guidance for 
individual constructive further work. 
Selected empirical findings regarding the potential 
The extent to which the feedback function exemplified above in the ‘Practicing 
place value’ app is utilized by learners has not been empirically examined. 
Previous research on the use of other digital media primarily suggests that 
automated and computer-supported feedback is utilized very differently by 
learners and that the effectiveness of the feedback depends on the learners’ 
prerequisites for learning.  
For instance, Steffen (2019) found in her research with 142 preschool children 
on the feedback function of the ‘Osmo Tangram game system’ that digital 
feedback was perceived by learners and used for targeted work, such as 
repositioning incorrectly placed shapes. However, contradictory findings were 
also observed, as some children did not perceive the feedback functions or could 
not derive any benefit for their own further work. Harras (2007) examined how 
60 learners dealt with error feedback when using software for arithmetic 
automation. She found that automated error feedback (such as offering 
additional representations) was only useful when learners could recognize and 
classify their errors themselves. 
OUTSOURCE CALCULUS 
The potential and how it can support learners 
There is consensus that learning mathematics involves more than just 
determining results. Rather, it also involves providing children with cognitively 
challenging tasks that target not only products but also learners’ processes 
(Mullis et al., 2020). To prevent the focus in mathematics instruction from 
(solely) being on routine tasks, these tasks can be delegated to software, which 
is where the fifth potential, Outsource calculus, comes into play. 
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The aim of this potential is to enable children to concentrate on cognitively 
activating tasks without being distracted by individual calculations. However, 
this idea is not a didactic innovation born out of tablet apps but has been 
established for almost three decades under the term computational offloading 
(Scaife & Rogers, 1996). In mathematics education, this approach is particularly 
recognized in relation to ‘mathematically weak’ children (Krauthausen & 
Lorenz, 2011). Many students, especially when dealing with routine tasks, have 
such great difficulties that they can hardly examine connections between tasks 
based on them. 
An example of the practical implementation of Outsource calculus can be found 
in the digital version of the traditional NIM game (Holton, 2006). The NIM 
game (whether analog or digital) is a strategy game in which two players 
compete against each other, taking turns placing 1 or 2 counters of their color 
(determined at the beginning) on a game board consisting of 10 fields from left 
to right. The player who occupies the last field wins. 
The NIM game offers rich learning opportunities for children, as they can 
discover, for example, that certain fields are ‘special’ or can be characterized as 
‘winning fields’. For instance, a player who occupies the seventh field with a 
counter will win the game because the opponent must occupy either the eighth 
or ninth field with a counter. From these two fields, the game can then be won 
directly by moving to field 10. Similarly, fields 1 and 4 are winning fields, and 
even the decision of who starts the game has a crucial influence on the course of 
the game. Thus, a player who is aware of the winning strategy can make their 
first move to field 1 and then be confident in occupying fields 4, 7, and 10 with 
skillful play. 
The author of this article has had teaching experiences showing that many 
children gain initial experience playing and develop an intuition that field 7 is 
‘special’. However, many children have significant difficulties explaining why 
field 7 is important to occupy and understanding that fields 1 and 4 are also 
winning fields. Therefore, focused support is needed for the children to enable 
more targeted analysis. 
The digital version of the NIM game can realise this by saving played game 
rounds in an archive in which the playing fields are arranged according to 
criteria (chronological, field length, starting player) so that hypotheses about 
winning fields can be developed (see Figure 5, left). In addition, individual 
games played can be selected and analysed in detail, leading to the question of 
whether, for example, the player with the blue counters could have won the 
game in Figure 5 (right) if he had played differently.  
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Figure 5: Outsource calculus in ‘NIM’.

The illustrated examples clarify that children are not meant to merely play the 
NIM game without reflecting on their approaches. Instead, through the 
automatic compilation of the archive and the conveniently usable sorting 
mechanisms, opportunities are created for them to exchange ideas about clever 
strategies. Accordingly, the Principle of Cognitive Demand is addressed, as 
children are encouraged to reflect on their actions, develop strategies, and 
discuss potential solution paths.
Selected empirical findings regarding the potential
Krauthausen et al. (in press) used semi-standardised interviews with 14 children 
from third and fourth grade to investigate the extent to which Outsource calculus 
can support learners in discovering the winning strategy in the NIM game by 
focusing on the archive. They found that pupils can be supported in discovering 
the winning strategy by focussing on analysing individual game sequences and 
by analysing multiple game sequences compiled in the archive - and not just by 
playing the NIM game themselves several times. These findings are in line with 
other study results that recognise the potential of Outsource calculus to promote 
learning processes (e.g. Bezold & Ladel, 2014).
SOME CONCLUDING THOUGHTS
In this article, five mathematics didactic potentials of digital media were 
characterised, related to principles of high-quality mathematics teaching and 
selected research findings were compiled. Overall, the outlined potentials offer 
new opportunities for developing mathematical competencies. Nevertheless, 
various ways of using them were identified, not all of which appear to be 
equally useful for mastering the tasks assigned to them and it is therefore 
unlikely that learners will automatically and intuitively utilise their potential. 
This leads to three desiderata for future research and development work:

• Prepare teachers for different types of use: To anticipate conceivable 
uses and to be able to make instructional planning decisions on how to 
deal with these uses, teachers need to receive tailored training. They must 
be empowered to provide appropriate stimuli and tasks.
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• Support teachers in the effective embedding of potentials: Teachers must 
be able to use the respective apps in such a way that the implemented 
potentials are utilised. The mere existence of potentials is no guarantee of 
a 'good' app - they must be recognised and used by the teachers. 
Accordingly, mathematics edcuation needs to contribute more to the 
development of professional development concepts that support teachers 
in utilising the potentials. 

• Implementing potentials in maths apps: There are already numerous 
promising maths apps that contain the outlined potentials. Some of these 
have been presented in this article. Nevertheless, there are relatively few 
apps in the extensive inventory of maths apps that contain any of the 
potentials (Walter & Schwätzer, under review). This highlights the need 
for mathematics education to become more involved in the research-
based development of maths apps in the future – and thus provide more 
impetus for high-quality mathematics teaching. 
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THE ROLE OF NEW TECHNOLOGIES IN SHAPING 
VARIOUS WAYS OF SOLVING AN UNUSUAL 

MATHEMATICAL TASK 
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The article offers an extensive literature review concerning the utilization of ICT 
tools within mathematics education. It integrates the author’s empirical 
research findings and outcomes derived from sequential survey investigations 
among prospective mathematics and computer science educators. The primary 
objective of these surveys was to evaluate the attitudes and utilization patterns 
of these tools by students. The conclusions indicate a significant recognition 
among students of the importance of ICT tools in mathematics education, 
particularly in terms of enhancing motivation and shaping cognitive 
approaches. Over 80% of respondents acknowledged the significance of ICT 
tools, with more than half noting their positive impact on motivation and 
cognitive processes. Thus, the study suggests that the integration of ICT tools 
can enhance the attractiveness and efficacy of mathematics education. 
INTRODUCTION AND THEORETICAL FRAMEWORK 
In the process of learning and teaching mathematics, tasks play one of the most 
important roles. Each type of task serves different didactic purposes, provokes 
and enhances various skills, and presents unique challenges. Overcoming these 
challenges enriches the student's mathematical potential. In the concept of 
problem-based teaching, tasks are divided into exercise tasks, ordinary 
applications of theory, and problem-type tasks (Krygowska, 1977). The first 
serve to consolidate simple operations and schematic mathematical habits, the 
aim of the second is to develop the skill of choosing the solution path along with 
the correct application of concepts and their properties, while problem-type 
tasks are challenges that do not yield to a single correct solution path or familiar 
patterns from everyday school life; they provoke a creative attitude as well as 
curiosity and perseverance. This type of tasks can be classified as non-standard 
mathematical tasks, which according to Schoenfeld’s (1980) definition are 
simply tasks that are unlike any previously solved. The idea of solving such 
tasks arises from: 

• the result of many different approaches to solving, often many 
unsuccessful ones, which, however, ultimately allow discovering the 
correct course of action, 

• unconsciously, seemingly out of nowhere, but simply as a result of 
previously acquired mathematical experiences, 
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• diligent use of heuristic techniques such as finding a similar problem, 
establishing variables, or generalizing constants, etc., 

• finally, the proper use of mathematical ‘scaffolding’ in the form of a 
teacher or educational tools such as ICT. 

Problem-type tasks, as non-standard tasks, can always be solved in several ways. 
According to Polya (1964), an effective process of solving such tasks proceeds 
through four stages: 

1. Understanding the task 
2. Formulating a plan of solution 
3. Execution of the plan 
4. Looking back 

It seems that the first two stages are the most demanding because they verify the 
mathematical potential of the solver. This potential includes knowledge of 
mathematical concepts and their properties, as well as the ability to apply them; 
the language of mathematics – the ability to read and interpret words, symbols, 
expressions, formulas, formulations, and finally whole sentences; knowledge of 
many methods of working on tasks and ways of reasoning; the ability to ask 
questions and verify hypotheses, and finally, the ability to select the appropriate 
mathematical tools that can help answer them. Executing the plan and looking 
back is the verification of the so-called ‘good work’, which Zofia Krygowska 
often wrote about in her publications. Polya (1964) in his work How to Solve It? 
argued that it is not the result of the task that is most important but finding and 
understanding all possible ways to solve it. 
Many studies have already been conducted to examine and describe the role of 
information technology tools (ICT) in the process of solving non-standard 
mathematical tasks. The turn of the 20th and 21st centuries became a time of 
intensified research on ways to incorporate ICT into coping with mathematical 
challenges in the form of various types of tasks and shaping mathematical 
concepts. Efforts were made to discover ways and moments of their use at 
various levels of intellectual development, while also examining threats or 
limitations that should be avoided. It is worth remembering the words of Prof. 
Konior: (as cited in Pawlak, 2004, p. 302)  

The accelerated technological development of the world and the growing progress 
of science mean that the modern school is no longer able to equip its graduates with 
a body of knowledge sufficient for their entire period of active life and professional 
activity [...]. Conservative estimates suggest that in the coming decades, a person 
will face the need to change their profession two or even three times. 

From the research conducted so far, it follows that the use of computer programs 
or graphic calculators, as well as other ICT tools, can improve the understanding 
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of mathematical concepts, especially the concept of function (Dunham, 2000; 
Juskowiak 2004, 2010; Waits & Demana, 1996). Students using ICT, as a result 
of studying a larger number of representatives, have a broader base of function 
examples, better understand the relationships between graphical, algebraic, and 
numerical representations, connect graphs with equations, interpret and read 
graphical information. Large-scale research conducted by Polish educators has 
shown that the systematic use of graphic calculators, for example, has enabled 
the development of activities related to coding and algorithm creation (Herma, 
2004; Kowalski, 2020). 
Research shows that the use of calculators can lead to an improvement in 
mathematical problem-solving skills. Students then need to focus less on 
memorizing formulas and computational patterns and more on the actual 
problem-solving process (Dunham, 2000; Kutzler, 2000; Waits & Demana, 
1996). It has also been observed that students, when working with a calculator, 
have a more flexible approach to problem-solving, engage more in solving tasks, 
and are less likely to give up in case of failure. They solve atypical tasks that 
cannot be solved using algebraic methods (Dunham, 2000; Demana & Waits, 
2020; Waits & Demana, 1996). An important and often appreciated function of 
ICT tools by teachers is the graphical illustration of algebraic and numerical 
data, known as visualization. Graphic calculators and computer programs help 
students visualize problems, enabling them to create better and faster graphs, 
which aids in learning mathematics. Graphs generated using new techniques can 
be used to teach important mathematical concepts. Until recently, the ability to 
draw graphs of more complex functions appeared after calculus. Now, one can 
view graphs of such functions without introducing such advanced theory 
(Legutko, 1990; Waits & Demana, 1996). New technologies are also beginning 
to be used in situations that were previously unacceptable, such as in 
mathematical proofs. Classical deductive reasoning should be free from any 
inaccuracies and informalities. New technologies allow for the observation of 
details invisible to the naked eye. Working with a capable student and one who 
struggles with mathematics has recently been the subject of many experiments 
and considerations. Perhaps ICT tools will help solve many problems related to 
this. Kutzler (2000) notices the possibility of building ‘scaffolding’ using a 
graphic calculator over an incomplete floor of knowledge. It compensates for the 
lack of more basic knowledge and allows for the avoidance of errors. The 
calculator enables the introduction of far-reaching facilitations in teaching 
through the trivialization of certain activities, experimentation, visualization, 
and focusing attention on the problem of the task. Using calculators is beneficial 
for students with spatial imagination problems, students from special classes 
with reduced requirements, and those lacking self-confidence (Dunham, 2000; 
Waits & Demana, 1996). In Duda’s research (2011) on the mathematical 
creativity of talented students, a graphic calculator was used in the process of 
solving problems. It turned out that this tool allowed students to perceive and 
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formulate new problems, new and subjective theorems, proofs, and problem-
solving methods, learn discipline and critical thinking, and also provided an 
opportunity for initial contact with many mathematical concepts, as well as 
deepening the understanding of already known mathematical concepts. The 
necessity of using calculators at moments when the teacher and the student 
encounter various difficulties – often impossible to overcome using traditional 
teaching methods and previously used teaching aids – is emphasized (Dałek, 
1993; Kąkol, 2002). The role of robotics and artificial intelligence has played a 
significant role in recent years, each properly implemented in the learning-
teaching process, whether as a mandatory or additional element, allowing the 
development of each component of critical thinking, especially needed in the 
process of solving non-standard tasks. In Borkowicz’s doctoral dissertation 
(Borkowicz, 2024), one of the aims was to examine the role of robotics classes, 
specifically classes using LEGO, in different age groups (from elementary 
school students to university students), to examine the impact of systematic 
work with these tools on changes in skills, attitudes, and soft competencies in 
solving substantive problems. One of the most significant conclusions of this 
study is contained in the following quote:  

Research has also shown what difficulties in students can cause any negligence in 
the education process, including in the areas of cooperation skills, communication, 
problem-solving, creativity, information searching and verification, and logical 
thinking. It has been observed that elements such as exchanging experiences and 
ideas and constructing statements about one's current actions are for students not so 
much difficult as essentially foreign elements in the education process. Working 
with robotics tools can support the formation of attitudes allowing for effective 
teamwork. (Borkowicz, 2024, p. 105) 

Openness to various ways of solving mathematical tasks, as well as patience and 
cooperation, must be learned in the process of education. It turns out that 
incorporating ICT into the process can not only help methodologically, 
materially, and heuristically (as described above) but also the use of ICT tools, 
including robotics, can prepare for dealing with precisely these challenges. 
There is still little research on the role of artificial intelligence and its full 
implementations. We see in the attempts at implementation that AI, like other 
ICT tools, can help in all the above-mentioned areas, and in the teaching-
learning process, it can support the teacher in organizing personalized education, 
adjust tasks and problems to the student's level (Alshater, 2022; Baidoo-Anu & 
Owusu Ansah, 2023). According to Pokryshen (2024, p. 62): 

By providing all necessary data (text) for analysis to the ChatGPT 3.5 system, it 
performs its analysis very well and displays results. Therefore, it is important not 
only to formulate suggestions correctly but also to present input data. Tasks such as 
paraphrasing, translating, and changing the tone of text demonstrate all the 
capabilities of modern AI systems. 
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ChatGPT 3.5 can become a good assistant to a teacher or an assistant in preparing 
various documents. Tasks related to helping write lesson plans, preparing 
educational activities, formulating project topics, or technological project maps are 
performed by the system at a high level. In such queries, it is important to provide 
the duration of the event (45 minutes), the class of students, the name of the 
educational subject, and any additional parameters, if necessary.  

In the article Artificial intelligence in mathematics education: A systematic 
literature review (2022), the results of the analysis of 20 research publications 
published between 2017 and 2021 are presented, examining how AI can 
influence and improve the results of mathematics students during the teaching-
learning process. AI can be implemented in mathematics education through 
various approaches: systems, teaching agents, autonomous agents, machine 
learning models, digital technology devices, and comprehensive approaches. 
However, it seems that robotics was the most commonly used among 
mathematics students, teachers, and educational researchers among all these 
approaches. Different attitudes exist among students, and teachers towards the 
use of ICT tools (Franczyk & Rajchel, 2024; Shen et al., 2023); it turns out that 
AI is closer to those who have education in the field of exact sciences, while the 
rest are still looking at this tool. In the study on the use of technologies such as 
ChatGPT in education, it was noticed that the main disadvantage is the lack of 
human interaction (Terwiesch, 2023). Technology cannot understand human 
emotions and various behaviors, which can lead to inappropriate reactions, 
including potentially harmful to students. Alshater (2023) emphasizes that 
ChatGPT cannot verify incorrect or biased data and has limited specialist 
knowledge, requiring additional verification and evaluation by experts.  
GOALS, ORGANIZATION AND METHODOLOGY 
The author of this article has investigated what is the role of ICT tools in the 
process of learning and teaching and to what extent ICT tools are effectively 
used in the mathematics education process: 

• Research on students using a graphic calculator (2005). 

• Research on future mathematics teachers regarding ways of using ICT 
tools in the process of solving non-standard tasks, several years of 
qualitative research (2014-2019). 

• Research on future mathematics and computer science teachers regarding 
ways of using ICT tools in the process of solving non-standard tasks 
(beginning of 2023).  

Over the past 20 years, the author of the article has conducted qualitative 
research several times to examine the role of ICT tools in shaping mathematical 
concepts (Juskowiak, 2004, 2010), solving non-standard tasks (Juskowiak, 
2021), and organizing the education process – the result of these analyses 
became the direction of studies in mathematics and computer science teaching 
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(Juskowiak, 2019). After the pandemic, which both allowed most of the 
population to learn to use these tools and at the same time tired of its excess, the 
author decided to find out again what the belief of future mathematics and 
computer science teachers (observation will last for the next 3 years) is 
regarding the inclusion of ICT (all possible tools), while also examining their 
ideas for implementing ICT themselves in the process of solving a non-standard 
mathematics task. This article will present the results of the survey and ideas for 
the implementation of ICT by future mathematics and computer science teachers 
during the solution of one mathematical task. The study involved students of 
mathematics and computer science teaching participating in the mathematics 
didactics subject (22 students). This was the second year of studies, so the time 
was not so distant from their student experiences, but at the same time, a 
moment when they have already worked through the basic issues of 
mathematics didactics, computer science didactics, learned various ICT tools, 
and participated in internships at primary school as observers or supporting 
observers. It was therefore a time when future teachers were very open to 
finding the best way to organize lessons. Unfortunately, it often happens that 
after the first continuous internships, future teachers become discouraged from 
previously discovered ideas for organizing the teaching process, or simply due 
to the good care of the school teacher, they change their way of thinking about 
organizing this process. The study involved women (19) and men (3). A survey 
was developed by the author of the article and the students were given a week to 
complete it. This took place after the end of mathematics didactics classes, the 
aim of which was to discuss the role of the teacher in the process of solving 
mathematical problems in many ways using various didactic tools. During these 
classes (3 meetings of 1.5 hours each), students, working in groups of 3 or 4, 
attempted to solve several tasks in many ways themselves, and in one of the 
geometric tasks, they were required to consider whether it would be possible to 
solve them using ICT and if so, how. Each group wrote that they would use the 
Geogebra program to visualize the situation given in the task and animations 
that would allow them to cut and move individual parts of the figure. 
 The content of this task was as follows: Check what part of the rectangle’s area 
is the area of the shaded figure. 

 

 

 

Figure 1: The drawing attached to the task. 
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It is worth noting that none of the 6 tasks that preceded the task requiring the use 
of ICT were solved using ICT, nor was any idea for using ICT described during 
their solution. 
The survey included the following questions: 

1. How often do you use information technology (e.g., computer, tablet, 
etc.)? 

2. How do you use information technology in teaching? 
3. Do you believe that using information technology facilitates solving 

mathematical tasks? 
4. What benefits do you see in using information technology in teaching 

mathematics? 
5. Do you think that teaching mathematical skills using information 

technology helps in getting students interested in mathematics? Why? 
6. In solving which types of tasks do information technologies bring the 

most benefits? 
7. In which branches of mathematics do you think tasks need support from 

new technologies? 
8. What are your observations regarding students' reactions to using 

information technology in learning mathematics? 
9. Do you think there are any limitations or challenges associated with using 

information technology in teaching mathematics? What are they? 
10. Are you aware of any scientific research or good practices related to the 

use of information technology in teaching mathematics? If so, please 
provide examples. 

11. What suggestions would you have for other mathematics teachers who 
would like to start using information technology in their work? 

12. Are there any additional comments or observations you would like to 
share regarding the use of information technology in teaching 
mathematics? 

Students were asked about their method of contact with students. 21 of them 
provide tutoring, 3 work in schools, 1 conducts classes as part of a science club, 
and 1 conducts extracurricular activities as part of alternative education. Some 
students chose multiple options. 
The results of selected survey questions are presented below in the form of pie 
and bar charts, showing the number of responses and the percentage value. 
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Graph 1: The number of responses to question 1.

Graph 2: The number of responses to question 2.

Do you believe that using information technology facilitates solving 
mathematical tasks?
Answer Number
Yes, thanks to various tools, one can better understand the 
problem. 17
Yes, because it allows for quick checking of results. 15
Yes, because they present several ways to solve a task, while 
in books authors often focus on one method. 1
Yes, it allows for quick correction of errors not resulting 
from misunderstanding of the material (e.g., computational 
errors) and focusing on the main content being conveyed. 1
They have a better impact on engaging students in the task. 1

Table 1: The number of responses to question 3.
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What benefits do you see in using information technology in teaching 
mathematics?
Answer Number

The ability to tailor materials to different learning styles. 13
Development of technological skills alongside mathematical 
skills. 2
Faster assessment of student progress due to process 
automation. 5

Improved student engagement through interactive lessons. 15
Development of technological skills. 2
Enhancement of lessons, topics can be presented in an 
interesting way for students, thereby helping them remember 
more information. 1
Pointing students to reliable sources of information (which 
they will use for their own learning anyway). 1

Table 2: The number of responses to the question 4.

Graph 3: The number of responses to question 5.

In solving which types of tasks do information technologies bring the most 
benefits?
Answer Number
Exercise-type tasks 11
Problem-solving tasks 8
Tasks involving the application of 
theory 10

Table 3: The number of responses to question 6.

1 1
1

18

Do you think that teaching mathematical skills using 
information technology helps in getting students interested 

in mathematics? Why?

I don't have an opinion on this matter.

I believe that students get distracted more quickly with interactive materials.

No, I don't see a significant difference in student engagement.

Yes, interactive tools can make mathematics more accessible and engaging.
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Graph 4: The number of responses to question 7.

It is also worth noting that surveyed students clearly recognized the need for 
utilizing ICT primarily in the context of geometry, suggesting that this area of 
mathematics is particularly amenable to modern tools. The overwhelming 
majority of respondents emphasized that the use of ICT in the teaching and 
learning process of mathematics contributes to making classes more engaging 
and aids in better understanding of the material. Moreover, the surveyed 
individuals often utilize various ICT tools in their work with students, 
demonstrating their practical involvement in employing modern technologies in 
education.
Despite these positive trends, there is a noticeable discrepancy between the 
theoretical recognition of the value of ICT and the actual practice of its 
utilization. Although respondents expressed their belief in the benefits of using 
ICT, especially in the context of geometry and student engagement, the data 
indicate that the practical application of ICT is less common than one might 
expect. This discrepancy suggests potential barriers or limitations in the use of 
technology in mathematics education, which merit further investigation and 
understanding.
It is noteworthy that students expressed positive opinions about the facilitating 
role of ICT in problem-solving, citing benefits such as improved understanding, 
quick error correction, and increased engagement. Additionally, the data 
revealed preferences regarding the use of ICT in exercise-type tasks, problem-
solving, and theoretical application, indicating its potential effectiveness in 
various mathematical domains. However, the gap between theoretical 
recognition and practical implementation warrants further consideration of 
obstacles hindering consistent utilization of ICT in pedagogical practices.
Furthermore, the diverse responses regarding perceived benefits and challenges 
suggest the need for individualized approaches to integrating ICT based on 
individual teaching contexts and student needs. Further research on the 
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effectiveness of specific ICT tools and strategies in promoting mathematical 
proficiency and student engagement may provide valuable insights for teachers 
seeking to improve their instructional practices. It is also worthwhile to consider 
ways of effectively educating teachers on integrating ICT into their daily work 
and raising awareness of the potential benefits and limitations of this integration. 
In the context of further research, it is important to identify factors that may 
inhibit the full utilization of the potential of Information Technology in 
mathematics education. Longitudinal studies tracking changes in students’ 
attitudes toward the use of ICT as they progress in their education and 
pedagogical experience could be conducted. Additionally, comparative research 
analyzing the effectiveness of different ICT tools and strategies in various 
mathematics teaching contexts could yield valuable insights. 
CONCLUSIONS 
From the conducted research, albeit local and conducted only on one group of 
students - future teachers, one can clearly see the evident need for using various 
ICT tools. Students believed that “Frequent use of information technology helps 
students visualize the task and facilitate finding the solution”, Geometry and 
probability calculus, in which all types of tasks are equally open to the 
possibility of using ICT. Students admitted to frequently using these tools when 
working with students, which they experience, for example, during tutoring 
sessions. Although they acknowledged that they did not know the results of 
research on the benefits of ICT in the process of teaching and learning 
mathematics, they described exactly the same benefits from their use as those 
described in this article in its theoretical part. However, they rightly believed 
that “Not every lesson must be based on technology; it is worth taking several 
different courses with the same tool” and “I believe that information technology 
can be used in math lessons, but it should not be used all the time. It can be 
limited to review lessons – my suggestion here is Kahoot – I saw that students 
really liked the review in the quiz during my practices”. They emphasized that 
the most important thing is to properly and comprehensively prepare future 
mathematics teachers during their studies to work with these tools. Students in 
the survey did not mention the possibility of using artificial intelligence even 
once. 
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In the wake of the COVID-19 pandemic, schools around the world made 
dramatic changes to the modalities of their teaching and assessments. One such 
unprecedented change was the dynamic shift from traditional paper-pencil tests 
to test administration via remote learning systems and secured platforms, such 
as Moodle, Exam.net, Respondus and Proctorio. The purpose of this study was 
to compare the performance of International Baccalaureate students on paper-
pencil tests with the results obtained on the same test when administered via the 
Exam.net computer-based platform. 
INTRODUCTION 
The unprecedented COVID-19 pandemic elicited an unraveled transformation in 
the landscape of teaching and learning across the globe (Engelbrecht et al., 
2020). Educational institutions around the world, from K-12 schools through 
universities, were compelled to make pedagogical adjustments that would 
inadvertently affect over 1.5 billion students around the world (UNESCO, 
2020). Mathematics education was not spared, as teachers had to harness 
expedient tools to ensure the continuity of teaching, learning and assessments 
for their students (Chirinda et al., 2021). Needless to say, digital technology 
became the panacea for mitigating the impending learning losses facing schools 
during the global lockdown (Gopika & Rekha, 2023). The abrupt transition to 
remote learning forced faculty to ponder on ways to innovate their traditionally 
offline summative assessments and course examinations (Sletten, 2021). 
Initially, many school systems quickly resorted to postponing examinations, but 
as the pandemic lingered beyond several months, it became increasingly urgent 
to seek sustainable alternatives to traditional paper-pencil assessments 
(Crawford et al., 2020). The pursuit of pragmatic alternatives to in-person paper-
pencil assessments incited the emergent of electronic examinations via secured 
learning management systems, such as Moodle, Microsoft Teams, Respondus, 
Proctorio, Canvas, Exam.net, and Blackboard Collaborate.  
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THEORETICAL FRAMEWORK 
Lev Vygotsky’s theory of constructivism served as the framework for this study, 
Constructivists theorize that adapting cognition-enhancing tools stimulates 
learner engagement, and motivates desired learning outcomes (Vygotsky, 1978). 
With regards to this study, computer-based testing (CBT) is hypothesized as a 
stimulus that could elicit differences in test scores when compared to traditional 
paper-pencil mathematics tests. Advocates of constructivism perceive that 
technology invigorates learning and alters the landscape of student achievement 
(Lotter & Jacob, 2020). Researchers have documented a higher probability of 
academic success with students taking online examinations when compared to 
their paper-pencil benchmark performances (Alonso-Conde & Zúñiga-Vicente, 
2021). Other researchers have also reported that remote examinations geared 
learners to out-perform their paper-pencil prometric data from pre-COVID 
across several courses (Zheng et al., 2021).  
STATEMENT OF THE PROBLEM       
Although online examinations have been tapped as credible platforms for 
evaluating student learning with fidelity (Ardid et al., 2015), the problem is that 
online assessments have remained controversial in academia (Itani et al., 2022). 
Skeptics argue that cheating, inequitable access to technology, internet mishaps, 
and concerns about test security render virtual assessments unsustainable 
(Crawford et al., 2020). Diverse studies have been conducted regarding user-
friendliness, teachers’ acceptance, and the cost-savings of e-Examinations 
(Eltahir et al., 2021; Ocak & Karakus, 2021; Pettit et al., 2021). However, 
empirical evidence to substantiate the efficacy of administering assessments 
using online platforms is limited, and deserves extensive investigation (Sletten, 
2021; Vicario et al., 2023). Therefore, this study sought to compare mathematics 
students’ performance on paper-pencil examinations with the performance 
recorded on the online version of the examination, when administered via 
Exam.net. The following research questions were posed to examine the 
objectives of this study: 

1. How did the overall students’ mathematics performance on 2019 paper-
pencil examinations compare with overall performance in the first year of 
online CBT administration on Exam.net (2020)? 

2. How did the overall students’ mathematics performance on 2023 paper-
pencil examination compare with overall performance in 2021 and 2022, 
where online CBT administration on Exam.net were used? 

METHODOLOGY 
This quantitative causal-comparative study utilized existing verifiable archived 
data from the end-of-course International Baccalaureate (IB) exams that was 
administered to 251 final year secondary students between 2019 and 2023 from 
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an International Baccalaureate Diploma Programme in a private high school in 
Poland. Causal comparative analysis is used to test for analyzing causes of 
differences in retrospect between two or more pre-existing groups (Schenker & 
Rumrill, 2004). Permission was duly obtained from the school administrators, 
and all prometric data gathered were cleaned, de-identified for any divulged 
demographic information, and sorted using Microsoft Excel. Figure 1 illustrates 
the enrolment of distribution of all 251 students by course levels from paper-
pencil tests in 2019 and 2023 versus online Exam.net administration from 2020 
through 2022.  

 
Figure 1: Student Enrolment in Standard Level versus Higher Level Mathematics. 

In the light of the results presented in this study, it is worth paying attention to 
how the conducted tests were carried out before, after and during online 
education. The research covers the years from 2019 to 2023, where the results of 
mathematics tests in the international IB DP program were examined, during 
traditional and remote learning. In years 2019 and 2020, the scope of the 
assessed material was exactly the same, but the method of conducting classes 
and assessment differed. In 2019, students were taught in the classroom, while 
in 2020 they used remote education. Moreover, the final tests varied 
significantly. In 2019, students had to take the exam in person, which consisted 
of several components such as tests written under supervision and research work 
sent for evaluation (so-called Internal Assessment). In 2020, due to the outbreak 
of the Covid-19 pandemic, it was impossible to conduct stationary tests, so the 
final grades were based on one component – Internal Assessment. Therefore, the 
first research question concerns the comparison of grades from the last year of 
traditional education in 2019 with grades from the first year of CBT (year 2020). 
Then, the mathematics syllabus has changed in 2021, therefore the scope of the 
assessed material in 2021-2023 was different than in 2019-2020. Additionally, 
remote learning was used in 2021 and 2022, and traditional education in 2023. 
The way exams are conducted in these years is also an important variable. In 
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2021 (as in 2020), grades were awarded on the basis of works written by 
students, and there were no written in person examinations conducted. In 2022 
and 2023, students took their examination in standard mode and their assessment 
included all components. For this reason, in the second research question, we 
decided to compare the results from three years: 2021, 2022 and 2023, using 
analysis of variance. It is also worth mentioning that exams written in person in 
2019 has exactly the same number of questions and points as in new 
examination in 2022 and in 2023 where in person written exams were 
conducted.   
Inferential statistical analysis was performed on Statistica 13.1 software. To 
answer the first research question, we needed to analyze the assumptions of the 
independent t-test. This type of test is used to compare results for two 
independent groups. If the difference in means is large enough, it is assumed 
that the two compared groups differ statistically significantly in terms of the 
value of the dependent variable. The t-test for independent samples has the most 
assumptions to meet: normality of samples and the homogeneity of variances of 
the compared groups. It is worth noting that if this assumption is not met, it is 
possible to perform this test with a correction taking into account the lack of 
homogeneity of variances. To verify if the assumption of normality is met, we 
will use the Shapiro-Wilk test. The Shapiro-Wilko test is considered the best test 
to check the normality of the distribution of a random variable. The main 
advantage of this test is its high power, i.e. for a given α (in our case 0.05), the 
probability of rejecting the null hypothesis (if it is false) is higher than in the 
case of other tests of this type. To check the homogeneity of variances we will 
use Fisher’s F test (used to compare variances), Welch test (statistical test of 
equality of expected values in two populations; it is a generalization of the 
Student’s t-test to populations with different variances), and Levene’s test (is 
used to check whether the assumptions necessary to conduct the analysis of 
variance are actually met). We excluded outliers and independence of selected 
groups. To answer the second research question, we needed to compare results 
from three groups (grades from years 2021, 2022 and 2023). In this case, we 
used the ANOVA to test the difference between three means. Analysis of 
variance or ANOVA is a linear modeling method for assessing relationships 
between variables. For key factors and insights related to multiple charts, the 
ANOVA test checks whether the average predicted value differs across 
categories of multiple input variables. In our case we compare three groups that 
is the reason why we needed to apply ANOVA instead of simple t-test for 
independent samples as before. Then, similarly to the previous study, we used 
the Shapiro-Wilk test to verify the normality of the distribution of the tested 
samples. To assess the homogeneity of variances, we used Levene’s test. 
Finally, we used the post-hoc test - Fisher’s least significant difference test 
(smallest significant differences last significant differences – LSD. It involves 
determining the smallest significant differences between data in the samples) 



210 ELIZA JACKOWSKA-BORYC, ABIMBOLA AKINTOUNDE, KATARZYNA CHARYTANOWICZ 

which allowed us to assess exactly which groups of the respondents are different 
from each other. 
RESULTS 
For the first research question, the following hypotheses were posed: 
𝐻𝐻0: There is no significant difference in the overall mathematics performance 
(SL+HL) on the 2019 paper-pencil examinations and the overall performance in 
the first year of online CBT administration on Exam.net (2020) 
𝐻𝐻1 : There is a significant difference in the overall mathematics performance 
(SL+HL) on the 2019 paper-pencil examinations and the overall performance in 
the first year of online CBT administration on Exam.net (2020). 
The Shapiro-Wilk test indicated that the condition of normal distribution was 
met in the two independent samples. However, a p < 0.05 on the Levene’s test 
indicated the heterogeneity of variances. Hence, the Welch test, which corrects 
for unequal variances in the F statistic, was adapted in lieu of the independent 
student t-test. Due to the resultant p < 0.05, the H0 hypothesis was rejected, 
consequently leading to the conclusion that there is a statistically significant 
difference between the results obtained by overall SL+HL students on paper-
pencil (2019) and the students’ performance in the first year of testing on 
Exam.net (2020). 

  
 2019 (paper-pencil) SL+HL 

(All students’ results) 
 2020 1st year administration of 

the Exam.net (All students) 
Mean 53.61 65.79 
Observations n = 46 n = 38 
p-value 0.00017   

Table 1: Overall SL+HL results on the paper-pencil (2019) vs. Exam.net (2020). 

For the second research question the following hypotheses were posed: 
𝐻𝐻0:  There is no significant difference in the overall mathematics performance 
(SL+HL) on the 2023 paper-pencil examinations and the overall performance in 
2021 and 2022, where online CBT administration on Exam.net were used. 
𝐻𝐻2: At least one of the means in the overall mathematics performance (SL+HL) 
on the 2023 paper-pencil examinations and the overall performance in 2021 and 
2022, where online CBT administration on Exam.net were used differ from the 
others. 
Table 2 presents the number of observations and means in each of the three 
groups. 
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 2021 2022 2023 

Mean 

Observations 

66,4 
n=50 

47,95 
n=56 

59,4 

n=65 

Table 2: Overall SL+HL mean results on the paper-pencil (2023) vs. Exam.net 
(2021 and 2022). 

The assumption of normal distribution was satisfied via the Shapiro-Wilk test. In 
turn, the variances for both groups were equal, as shown by Levene’s test (p -
value>0.05), which means that the condition regarding homogeneity of 
variances was met. After conducting the ANOVA, we received p-value= 
0.000000000042<0.05, which means that we reject the H0 hypothesis once 
again and conclude that there is a statistically difference between the results at 
least two samples. Additionally, we applied the post-hoc test - Fisher’s least 
significant difference test to find out which pairs of data is a statistically 
significantly different. All p -values are less than 0.05, that means the 
differences are statistically significant between each pair of data. The results of 
this test are presented in Table 3.  

 
2021 2022 2023 

2021 - p=0.000000000011 p=0.0061 
2022 p=0.000000000011 - p=0.0000021 
2023 p=0.0061 p=0.0000021 - 

Table 3: Overall SL+HL mean results on the paper-pencil (2023) vs. Exam.net 
(2021 and 2022). 

DISCUSSION AND CONCLUSION 
The aim of this study was to compare mathematics students’ performance on 
paper-pencil examinations with the performance recorded on the online version 
of the examination, when administered via Exam.net in years 2019-2023. The 
research results indicated a statistically significant difference between the results 
of mathematics exams of students who took exams in a traditional way in 2019 
and students who used remote learning. Students studying remotely obtained 
statistically higher exam grades than students in 2019 despite the same syllabus 
for the exams. One of the factors that influenced the results is the fact that in 
2020, final exam grades were based on one component, not three as in 2019. 
Moreover, the uncertain epidemiological situation meant that students could feel 
safer working from home while learning remotely. It should be added that this 
was the very beginning of remote learning, so students who took their final 
exams in 2020 had previously spent many months on traditional education at 
school. 
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The second research question presented equally interesting results. Statistical 
tests conducted for three independent groups (student results in 2021, 2022 and 
2023) showed statistically significant differences between each pair of data 
tested. It is worth mentioning that in these years the same scope of material was 
comparable, which differed significantly from the scope of material in 2019-
2020. Therefore, we could not conduct a statistical study comparing the 
differences between students’ results obtained in 2019-2020 and 2021-2023. 
After conducting statistical tests, it turned out that students taking final exams in 
2021 had significantly higher results than students in 2022 and in 2023. A 
significant factor was the fact that in 2021 students’ final grades were awarded 
on the basis of one component (as in 2020), while in 2022 and 2023 all 
components were taken into account. Moreover, it is worth noting that in 2021, 
just like in 2022, students used remote learning, while in 2023 they used 
traditional forms of learning. In terms of how the exams are administered, in 
2022 and 2023 students wrote all exams in a traditional, in-person manner. In 
2021, final exams were replaced by an assessment of one component that had a 
significant impact on the final grade. After comparing the results from 2021 and 
2023, it turned out, as before, that students in 2021 achieved higher results. The 
reasons may be similar to those mentioned earlier. Moreover, when comparing 
the results of students from 2022 and 2023, it turned out that the results of 
students in 2023 are statistically much higher than the results of students in 
2022. To sum up the answer to the second research question, statistically the 
highest results were achieved by students in 2021 who studied in the mode 
remotely, and their final grades were based on one component. Then, students in 
2023, during traditional learning, achieved statistically higher results than 
students in 2022. The students in 2022 who learned remotely, and their final 
grades were based on all components, performed the worst. The comparative 
analysis conducted in the study concerned only those groups that were 
comparable in terms of the mathematics material covered. Other comparisons 
would not be reliable. 
This study was limited in scope to the International Baccalaureate end of course 
examination at one Polish school, and data was only archived for one CBT 
platform, namely the Exam.net. The interaction of potential confounding factors, 
such as teaching practices, variety of rigor in test items, student motivation and 
demographic differences, test anxiety and sample size on CBT performance 
could further investigated on a larger scale.  Nonetheless, the results of this 
study could inform policymaking regarding technology use for assessments. 
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This study sought to examine the impact of teaching algebra with APLUSIX 
software on students’ performance in a College of Education (CoE) in Ghana. 
Two colleges code-named A and B were assigned as the experimental and 
control groups. The students were taught algebra with APLUSIX and without 
APLUSIX respectively. The intervention sessions lasted for of six weeks. Pre and 
post-test were respectively conducted before and after the treatment. One way 
analysis of variance (ANOVA) revealed that the students at College A who were 
taught using APLUSIX performed higher than students at College B who were 
taught without using the APLUSIX. It was concluded that APLUSIX is effective 
in enhancing students’ performance in algebra.  
INTRODUCTION 
The use of computers as an educational tool has continued to grow rapidly as a 
new way to teach. Computer-assisted instruction (CAI) is an instructional 
method that has been developing for years (Liao & Chen, 2007). This idiom 
equates with other modern terms such as Computer-Based Instruction (CBI) 
(Hannafin & Foshay, 2008, Computer-Based Learning Environment (CBLE) 
(Moos & Azevedo, 2009), or Computer-Aided Learning (CAL) (Santally et al., 
2004). CAI allows the use of a computer to provide instructional content (Seo & 
Bryant, 2009). It also gives immediate feedback when being interacted with by 
the user. Some CAI programmes can be adjusted according to students’ ability 
levels, and others limit advancement until skill mastery is achieved. Instruction 
may also involve using the stand-alone software (Seo & Bryant, 2009).  
The importance of Information and Communication Technology (ICT) in 
education is growing in significance as the globe quickly shifts to digital media 
and information (Dei, 2018). ICT has grown to play a significant role in the field 
of education, both as a subject and as an essential component of how instruction 
is delivered in schools (Du Plessis & Webb, 2012). With reference to the revised 
curriculum in mathematics in Ghana, ICT is required to be integrated into the 
teaching and learning of mathematics (MoE 2019). APLUSIX provides students 
with quick feedback, comprehensive guidance, and individualised learning 
experiences, it is preferred for teaching algebra over other software (Nicaud et 
al., 2004). This interactive approach has been shown to improve students’ 
knowledge and performance in algebra (Tsikliras et al., 2018). The APLUSIX 
software was adopted to teach algebra at a CoE and the results compared with 
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the teaching of algebra without the APLUSIX software, in another CoE, in 
Ghana, to ascertain the impact of using APLUSIX to teach algebra on students’ 
performance in algebra. This study aimed to examine the effect of teaching 
using APLUSIX on pre-service teachers’ performance in algebra. 
LITERATURE REVIEW 
Educational research has focused on using technology-based aids in 
mathematics instruction, especially in algebra. For example, (Bouhineau et al., 
2002; Nicaud et al., 2006) assert that programmes such as APLUSIX can 
improve student achievement. Janvier (1987) states that use of representations in 
mathematical thinking is fundamental and most of the textbooks today make use 
of a wide variety of diagrams and pictures in order to promote mathematics 
understanding. Again, Vlassis (2004) asserts that students encounter difficulties 
with algebraic concepts, including handling the negative sign in equations and 
algebraic expressions. Also, Printer (2010) asserts that in elementary algebra, 
the fundamental symbols and methods are grasp and this aids in understanding 
how real-world issues can be simplified into equations and solved. The author 
discussed that the skill of converting complex problems into symbolic 
representations forms the cornerstone of advanced mathematical and scientific 
pursuits, showing the remarkable capability of human thought.  
ICT use in the Ghanaian society is dated back to the 1990s, but the country’s 
national ICT agenda and the corresponding legislative framework were adopted 
in the 2000s (Frempong, 2011). The school computerization initiative launched 
in 2011, aimed to massively introduce ICT resources into classrooms and 
provide instructors with training (Natia & Seidu, 2015). According to Quaicoe 
and Pata (2018), the national ICT agenda was envisioned to accelerate Ghana’s 
transition to an information communication and technology society. As a result, 
the Ministry of Education established a national agenda for ICT in education in 
2008 (Quaicoe & Pata, 2018). A New Education Reform (NER) that was 
implemented in 2007 was influenced by this goal (Quaicoe & Pata, 2018). ICT 
was first introduced in schools during the NER 2007 academic year, both as a 
stand-alone subject and was integrated in all other subjects taught in primary 
schools. The fundamental national ICT agenda in Ghana aims to give 
learners the ability to confidently and creatively use ICT resources and tools in 
order to develop the necessary abilities and expertise to be fully engaged in the 
worldwide economy of knowledge (Frempong, 2011). APLUSIX is an 
interactive software that allows students to work through algebraic problems 
step-by-step, providing immediate feedback and guidance (Bouhineau et al., 
2002; Nicaud et al., 2006). This interactive nature of the software can help 
students develop confidence in using ICT resources. The flexibility of 
APLUSIX, allows students to input their mathematical expressions, this can 
foster a sense of creativity in using ICT tools and solve algebraic challenges 
(Herrington, 1999).  
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ICT as a tool has the ability to change how education is provided, according to 
Fisher (2005). It allows for the customisation of both the subject matter's 
delivery and content to meet each student's unique requirements and experiences 
(Fisher, 2005). According to Schiller and Tillett (2004), primary school teachers 
must incorporate and use ICT tools in their lessons since both the teachers and 
the pupils benefit from the experience. Similarly, Onasany (2009) asserts that 
ICT can be used to prepare the present generation for the future workforce, and 
it can also make the teacher more effective and efficient thereby increasing the 
school’s productivity. ICT can support students in becoming autonomous 
learners capable of creating collaborative projects, inquiry, and critical thinking 
and problem-solving skills (Onasany, 2009). It also enables information 
searches, software programming, group collaboration, idea generation, and 
revision (Dei, 2018). In recent times, students’ performance in mathematics has 
been a subject of intense discussion and research interest. Students’ weaknesses 
have been identified in algebra. For example, the chief examiner’s report on the 
West African Senior School Certificate Examinations for core mathematics for 
2014 and 2017 revealed that among other topics, students had 
weaknesses/difficulties in the following areas: word problems, variations, binary 
operations, logarithms, and which are heavily dependent on algebra (WAEC, 
2014; 2017).  
Observations at College A and College B revealed that students have major 
issues when it comes to solving problems in algebra. Issues such as wrong 
manipulations and applications of mathematical operations (division, 
multiplication addition and subtraction), inappropriate application of laws in 
indices and logarithms, and wrong application of mathematical concepts easily 
come to the fore. This has reflected in the number of students who do not 
perform well during the end of semester examinations each year in University of 
Cape Coast, Institute of Education. Colleges of Education, Three Year Diploma 
in Basic Education. For instance, 20% and above are referred in Number and 
Basic Algebra each year (Analysed result for End of First Semester Examination 
2014-2017 in College A). With reference to the revised curriculum in 
mathematics, ICT should be integrated into the teaching and learning of 
mathematics (Agyei & Voogt, 2011). It is for this reason that APLUSIX 
software is being adopted to teach algebra at College A to ascertain the impact it 
can make on the performance of students in algebra. As we already mentioned, 
the aim of the study was to examine the effect of teaching using APLUSIX on 
pre-service teachers’ performance in algebra. The following research question 
was developed to guide the study: What is the effect of teaching using 
APLUSIX on pre-service teachers’ academic performance in algebra? 
DESCRIPTION OF APLUSIX 
APLUSIX, as introduced by Bouhineau et al. (2002), is a software which stands 
out as a learning platform tailored for formal algebra. It incorporates an 
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advanced expression editor that presents expressions in their conventional 
format and allows seamless modification. This editor operates based on the 
structural properties of algebraic expressions outlined by Kieran (1991), 
facilitating actions like selection, cut, copy, paste, drag, and drop, wherein only 
valid sub-expressions can be manipulated. APLUSIX empowers students to 
make and learn from their errors by freely developing calculation steps 
represented as rectangles containing expressions. The system systematically 
verifies these steps for equivalence, with results promptly displayed. 
These editors facilitate numerical calculations and formal algebraic tasks such as 
expansion, factorization, and solving equations, inequalities, and systems of 
equations. They also provide immediate feedback on the equivalence of 
consecutive expressions. The allowed domain includes numerical expressions 
with integers, decimals, fractions, and square roots, as well as algebraic 
expressions with degrees up to 4 (including polynomials and rational 
expressions with a sum of degrees up to 4), equations, inequalities, or systems of 
equations. Students receive strategic guidance about the problem's state to aid 
them in reaching a solution. Gauges like ‘Reduced’, ‘Sorted’, ‘Expanded’, 
‘Factored’ (for numerical and polynomial factors), and ‘Equation’ can assist 
users (Bouhineau et al. 2002). 
METHODOLOGY  
Research design 
This study’s quasi-experimental design made use of already-existing intact 
groups. This study used this method to assess students taught with the 
APLUSIX software. According to Creswell (2012), a quasi-experimental design 
is a form of experimental design in which both groups remain intact while an 
independent variable (treatment) is manipulated. 
Study area 
Two CoEs were selected from Ghana and code-named College A and College B 
were used for the study. The colleges were code-named due to anonymity. The 
selected participants were already in intact groups in the selected CoEs, with 40 
students in each group. Participants in College B were assigned to the control 
group, whereas those in College A were assigned to the experimental group.  
Data collection instruments 
Two different tests but equivalent forms were used to assess participants. One 
was used for the pre-test, and the other was used for the post-test. Pure 
mathematics test items were selected from the test bank of the CoE and were 
used to gather the required data and a few of the items are shown below. Both 
tests were made up of 14 constructed-response-item formats each. Fifty minutes 
was allowed for the test. Students were asked to simplify, factorise, and find the 
truth set the following. 
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1. 2(4𝑥𝑥 − 5) − 6 (5𝑥𝑥 + 5𝑦𝑦 − 4) 

2. (−2𝑥𝑥2𝑚𝑚𝑚𝑚)(−4 𝑥𝑥𝑦𝑦2𝑚𝑚2𝑚𝑚) 
3. 54𝑥𝑥2𝑦𝑦2𝑡𝑡 ÷ 6𝑥𝑥𝑦𝑦 

4. 𝑎𝑎2𝑏𝑏 − 2
3  𝑎𝑎𝑏𝑏3 

5. (2𝑥𝑥 − 4)(𝑥𝑥 + 1) − (𝑥𝑥 − 2)(𝑥𝑥 + 2) = 0 

6. 2𝑦𝑦(1 − 𝑥𝑥) − 3(𝑥𝑥 − 1) 
7. 5𝑥𝑥2 − 13𝑥𝑥 − 6 

8. 9𝑦𝑦2 − 10 + 1 
9. 2𝑥𝑥2 + 3𝑥𝑥 + 1 

10. 5 + 8 (𝑥𝑥 + 2) = 23 − 2(2𝑥𝑥 − 5)   

11. 𝑥𝑥3 − 𝑥𝑥
5 = 4 

12. 𝑥𝑥3 − 1
3

(𝑥𝑥 − 4) =  2𝑥𝑥 + 3
2  

Data collection procedures 
An introductory letter was collected from the Head, Department of Mathematics 
and ICT Education, University of Cape Coast (UCC) to the Principals of 
College A and College B to enable easy access to the students and classes where 
participants were selected for the study. The intervention was implemented 
during the normal classes’ hours for six continuous weeks in the respective 
classroom for College B students and the computer laboratory for College A 
students.  
Intervention  
Participants were briefed on the purpose of the study and made aware of the 
ethical considerations regarding the confidentiality and anonymity of the results 
of the study. Unfortunately, they had no option to withdraw from the study since 
they were intact groups, and the intervention was done during regular 
mathematics lessons. As part of pre-intervention preparation, the APLUSIX 
software was installed on all the computers in the computer laboratory in 
College A. The control group in College B was taught algebra by the subject 
tutor without using the APLUSIX software while the researcher taught the 
experimental group in College A using the APLUSIX software. This 
intervention was done twice a week for six weeks during the regular 
mathematics class. The experimental group was introduced to the software (i.e., 
how to boot the device, where to locate, open, set and get the software ready for 
work). Intensive tuition and solving of problems with the APLUSIX software 
continued for the next weeks till the sixth week. After the intervention, both 
groups were taken through the final post-test and the test scores were recorded 
for comparison and analysis. 
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RESULTS 
The study’s purpose was to examine the effects of teaching algebra with 
APLUSIX on students’ performance in selected Colleges of Education (CoEs). 
Our research question was What is the effect of teaching using APLUSIX on 
pre-service teachers’ academic performance in algebra? 
ANOVA was used to compare the post-test scores of the experimental and 
control groups using their pre-test score. Table 1 presents the descriptive 
statistics of the two groups.  
 

  Pre-test Post-test 

Groups N M SD M SD 

Control 40 56.35 8.23 56.83 7.38 

Experimental 40 62.83 9.64 66.15 8.14 

Table 1: Descriptive Statistics of test results (Source: Field survey (2019)). 

Table 1 shows that the mean scores for the control group before and after the 
intervention were 56.35 and 56.83 respectively, whereas the mean scores for the 
experimental group before and after the intervention were 62.83 and 66.15 
respectively. The experimental group started with a higher mean score (62.83) 
than the control group (56.35). This suggests that, before any intervention, the 
experimental group might have had a higher proficiency or ability, in algebra 
compared to the control group. A one way between-groups analysis of variance 
was conducted to compare the effectiveness of teaching with APLUSIX on 
students’ performance in algebra. The independent variable was the intervention 
(teaching with APLUSIX), and the dependent variable was the scores of 
students after the intervention. Participants’ scores before the intervention (pre-
test) were used as the variate in the analysis. Table 2 shows the test for the 
differences in the groups on their post-test scores. 
 

Source Df Mean 
Square F Sig. 

Partial 
Eta 

Squared 

Corrected 
Model 2 1155.309 21.470 0.000 0.358 

Intercept 1 3266.644 60.707 0.000 0.441 

Pre-test 1 571.506 10.621 0.002 0.121 

Group 1 958.047 17.804 0.000* 0.188 
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Error 77 53.810    

Total 80     

Corrected Total 79     

Table 2: ANOVA Test of Between-Subject Effects of the Post-Test Scores (Source: 
Field survey (2019); *Significant at 0.05 level). 

Preliminary analysis was done to ensure that there were no violations of the 
assumptions. As presented in Table 2, after equating groups on their pre-test 
scores, there was a statistically significant difference in the post-test scores for 
the two groups, F(1, 77) = 17.80, p < 0.05, partial eta squared = 0.19. There was 
a weak relationship between the pre-test scores and the post-test scores in 
algebra, as indicated by a partial eta squared value of 0.12. To further explain 
the findings, adjusted means of each group after controlling for their pre-test 
scores are presented in Table 3. 

Groups Adjusted Mean Standard Deviation 

Control 57.80 1.20 

Experimental 65.17 1.20 

Table 3: Adjusted Means (Source: Field survey (2019)). 

From Table 3, after controlling for the pre-test scores of the groups, the adjusted 
mean score for the control group was 57.80, with a standard deviation of 1.20. 
However, the adjusted mean score for the experimental group was 65.17, with a 
standard deviation of 1.20.  
DISCUSSION 
The results showed that the experimental group performed better in algebra than 
the control group after controlling for their pre-test scores. This implies that the 
APLUSIX intervention was effective in enhancing students’ performance in 
algebra. The content for this study was algebra, which happens to be one of the 
fundamental topics in the Ghanaian curriculum for mathematics. APLUSIX is a 
computer application that allows students to freely build and transform algebraic 
expressions and solve algebra exercises like it is done on paper. It also gives 
feedback on the correctness of steps. This feedback is done by a function that 
organises and statistically analyses the data and displays the learner's results on 
the screen (Nicaud et al., 2006). The teacher can use these results to analyse 
individual learners’ performances. Students were able to concentrate on 
comprehending the fundamental algebraic concepts since APLUSIX provided 
them with step-by-step coaching and fast feedback, which probably optimised 
the cognitive load (Tsikliras et al., 2018). This was made possible by the 
interactive and personalised features of the APLUSIX programme (Nicaud et al., 
2004). The APLUSIX-based instruction was significantly more effective in 
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encouraging meaningful learning and improving students’ algebraic ability. In 
this study, the computer provided a reality of the situation in which the students 
may learn vicariously through interaction with the model (APLUSIX). Based on 
the findings of the study, it can be concluded that APLUSIX is effective in 
enhancing students’ performance in algebra. 
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The purpose of this study was to analyze the relationship between students’ self-
efficacy in graphing calculators and their attitude towards calculator usage in 
mathematics instruction. Graphing calculators provide learners with the 
opportunity for making conjectures and bridging complex mathematical ideas. 
Student voices have been historically ignored in calculator research in 
pedagogy. Therefore, this quantitative study randomly sampled the opinions of 
32 upper-level secondary mathematics students in the United States to correlate 
the relationship between students’ self-efficacy and their attitudes towards 
utilizing the graphing calculator. A significant correlation was found between 
their self-efficacy and their dispositions regarding calculator usage in 
mathematics. 
INTRODUCTION 
Mathematics has remained a challenging subject for many secondary students 
(Clark, 2011). It was expected that the advent of technological innovation, such 
as the calculator would offer a glimpse of hope as a versatile tool for aiding 
students in problem-solving. For decades, the calculator has been revered as a 
vital classroom technology, yet its usage has been deterred by divergent 
perspectives held regarding this classroom technology (Neubauer, 1982; 
Parkhurst, 1979). Initially, educators were sparingly open to negotiating the use 
of 17th Century four-function calculators to aid the arithmetic of emerging 
mathematics, the advent of 19th Century graphing calculators (with automated 
capabilities for graphing, solving equations, analyzing statistics) further tainted 
the tone of the already-contentious debate (Ellington, 2003). Although, the 
National Council of Teachers of Mathematics credited the emergence of this 
new technology as a natural partner in the emergence of problem solving 
(NCTM, 1989), opponents argued that the demerits outweigh the potential 
benefits obtainable from its integration in mathematics (Sigg, 1982).  
Technology avails learners with the opportunity for making conjectures and 
bridging complex mathematical ideas (Zembat, 2008). The National Council of 
Teachers of Mathematics recommends that technology should be incorporated 
into reinforcing the conceptual understanding of mathematics (NCTM, 2000). 
Advocates of calculators argue that students should be allowed to harness 
technology tools to problem solve (Crawford et al., 2016; Orellana & Barkatsas, 
2017). On the contrary, skeptics have rejected the call as an attempt to use 
technology to circumvent the natural order of learning by productive struggle 
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(Boyle & Farreras, 2015). Others have condemned graphing calculators as a 
cheating device due to the possibility of maneuvering the programming app for 
storing formulas and algorithms (Bain, 2015; Migicovsky et al., 2014). Students 
are becoming more dependent on calculators to perform the most basal 
mathematics operations that they should have mastered with automaticity 
(Lightner, 1999). Over reliance on graphing calculators could adversely affect 
secondary students’ success in college calculus, especially if they become 
accustomed to using this technology tool to evade the mastery of underlying 
mathematical (Mead, 2014). As graphing calculators are now becoming more 
ubiquitous, more affordable, and more sophisticated in their capabilities, the 
need for evidence-based guidance on the role of calculators in mathematics 
instruction has become imperative (Miles, 2008). 
THEORETICAL FRAMEWORK 
Lev Vygotsky’s Social Constructivist Theory and Social Cognitive Theory 
(SCT) postulated by the renowned Canadian American psychologist, Albert 
Bandura, were tapped to build the theoretical framework for this study. Social 
Constructivism opines that knowledge construction requires epistemological 
access to an individual via an affective stimulus (Vygotsky, 1987). The attitudes 
of students towards graphing calculator usage are postulated to be critical to 
their learning. Bandura also postulated that learning does not take place in a 
vacuum, but in a social setting in which variables such as self-efficacy and 
attitudes influence the production of effort by an individual (Bandura, 1986). 
Self-efficacy has been described as an inherent belief or confidence in one’s 
own ability to fulfill a task (Osborne & Dillon, 2008; Pajares, 1996). Self-
efficacy does not emanate from one’s skill proficiency, rather it evolves as a 
product of self-judgement of one’s capacity to execute, cope and persist in 
accomplishing a task (İnce, 2023). On the other hand, attitudes have been 
described as a learned favorable or unfavorable disposition towards a task or 
object (Fishbein & Ajzen, 1975). Enabling an attitudinal affinity towards a task 
or object is contingent on the individual’s self-efficacy (Broekman et al., 2002). 
Attitudinal studies on calculators have correlated students’ dispositions with 
their mathematics achievement (Munger & Loyd, 1989). Previous studies have 
also correlated self-efficacy with students’ achievement in mathematics (Pajares 
& Miller, 1994). The higher a student’s self-efficacy, the longer they persevere 
through mathematical productive struggle until accurate results are obtained in 
problem solving (Fast et al., 2010; Peters et al., 2013). Researchers compel that 
graphing calculators increase students’ self-confidence, lowers anxiety, and 
subsequently enhances learner engagement in mathematics (Waits & Demana, 
2000). By identifying and mitigating any existing antipathy towards calculators, 
educators could alter the landscape of student achievement in mathematics 
(Abdullah et al., 2005).  
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STATEMENT OF THE PROBLEM 
The problem is that there is limited empirical evidence to substantiate a 
relationship between students’ self-efficacy in adapting the features of graphing 
calculators and their attitudes towards calculators for mathematics problem 
solving. While an enormous number of studies have examined the academic 
gains ensuing from teacher resistance or adoption of calculators as a pedagogical 
tool, researcher have excluded students who are the eventual users of this 
technological tool (Hembree & Dessart, 1986). Self-efficacy and attitudinal 
disposition towards technology have not garnered adequate attention enough to 
substantiate policy making for mathematics classrooms (Thurm & Barzel, 
2020). Therefore, students’ attitudes and their self-efficacy regarding calculators 
need to be investigated. 
JUSTIFICATION FOR THE STUDY  
An individual’s attitude towards technology could deter the acceptance or 
rejection of a seemingly advantageous tool, such as the graphing calculator 
(Rogers, 1983). It has been reported that calculators serve as a positive 
motivation for students to develop a positive attitude and more confidence in 
mathematics as a subject (McCauliff, 2003). Their rationale was that students 
who were allowed to take assessments with the graphing calculator demonstrate 
a positive attitude towards calculator usage (Hembree & Dessart, 1986). Yet, 
others contend that the attitudes of students towards mathematics have remained 
indifferent despite their calculator affordances (Ellington, 2003). Aside from the 
chasm in empirical evidence regarding students’ attitudes with non-usage and 
usage of calculators in mathematics, the efficacy of students in adapting these 
technology tools requires further investigation. Some studies have shown that 
students who have low self-efficacy in utilizing calculators were more likely to 
avoid using it to check their work in mathematics classrooms (Graham et al., 
2008). The inconclusive nature of existing empirical evidence to correlate the 
relationship between mathematics students’ self-efficacy and their attitudes 
towards utilizing the graphing calculator demands extensive investigation. 
THE PURPOSE OF THE STUDY  
This study analyzed the relationship between students’ self-efficacy in utilizing 
the typical features of a graphing calculator and their attitude towards its 
incorporation in mathematics instruction. The following research questions were 
posed for the objectives of this study: 

1. To what extent does gender account for variations in students’ attitudes 
and self-efficacy towards graphing calculator usage in mathematics 
instruction? 
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2. To what extent do students’ self-efficacy in using graphing calculators 
differ based on the frequency of use allowed by their mathematics 
teachers? 

3. To what extent do students’ dispositions towards graphing calculators 
vary based on the frequency of use allowed by their mathematics 
teachers? 

4. How are students’ self-efficacy related to their attitudes towards utilizing 
graphing calculators? 

METHODOLOGY 
This quantitative study was conducted by disseminating an anonymous 
electronic survey to 32 grade-12 students randomly selected from a list of 105 
graduating students in the advanced mathematics track of an International Public 
High School in the Washington DC area of the United States. Students’ use of 
the TI-84 Texas Instruments calculators in both curricula were strictly 
determined by their teachers’ regulations, ranging from always, to sometimes or 
never allowed. All responses were coded, cleaned, sorted and analyzed using 
Microsoft Excel. Descriptive statistics were illustrated as frequences and charts, 
while the inferential analysis of the hypotheses were implemented using the 
Analysis of Variance (ANOVA) and Pearson’s Product Moment Correlation 
Coefficient (PPMC). 
RESEARCH RESULTS 
Five of the mathematics students in this study claimed that their teachers 
completely ban the use of graphing calculators, 21 students (65%) had teachers 
who sparingly allowed graphing calculators, while six students stated that their 
teachers always allowed graphing calculators. Respondents were asked to select 
the frequency of graphing calculator usage in their math classes. Eleven items 
regarding attitudes towards calculators in the mathematics classroom were posed 
for students to rate on a 5-point Likert scale, ranging from Strongly Disagreed 
through Strongly Agreed. Six items were also posed on a 5-point Likert scale 
regarding students perceived self-efficacy in utilizing the graphing calculator. 
Students whose teachers limited calculator access were the least confident in the 
use of programming, statistical, and calculus features of the graphing calculator. 
On the contrary, students whose teachers frequently integrated graphing 
calculators into instruction reported the highest self-efficacy in utilizing 
graphing calculators (see Figure 1). 
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Figure 1: Bar chart of self-efficacy in utilizing graphing calculator apps. 

Students whose teachers always allowed calculator use exhibited a more positive 
attitude towards graphing calculators, but only 50% of them reportedly indicated 
an interest in pursuing more rigorous mathematics. Similarly, students who are 
sometimes allowed showed the highest hesitation for pursuing harder 
mathematics (29%) if given a calculator.  

 
 Figure 2: Histogram of students’ positive disposition towards graphing calculators. 

Students who were always deprived access to graphing calculators still indicated 
some interest in pursuing harder mathematics, if availed a calculator. Students 
from classrooms where graphing calculators were banned ranked highest 
(100%) in the disposition that calculators could salvage students from arithmetic 
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errors. Most students did not agree to preferring showing work compared to 
graphing calculator, neither did they agree that using the calculator was 
equivalent to cheating. Many of the students perceived that calculator usage 
reduces the rigor expected by teachers. 

  
Figure 3: Negative dispositions regarding graphing calculator. 

There was a significant difference in H1 attitudes (F(1,63) = 5.28, p = 0.0077) by 
gender and there was also a significant difference in H2 self-efficacy (F(1,20) = 
6.06, p = 0.02) towards graphing calculators by gender. In contrast to females 
and non-binary students, males demonstrated a higher self-efficacy and positive 
disposition towards using graphing calculators. 
H3 There was a significant difference in the students’ self-efficacy by the 
frequency of calculator usage (F(2,29) = 4.18, p = 0.025). The mean self-efficacy 
of students from classrooms that always allowed students to use graphing 
calculators was greater than those of students who never got a chance to use 
graphing calculators. 

 Table 1: Analysis of Variance for self-efficacy by frequency of usage. 

H4 The result of the Pearson rank correlation coefficient indicated a moderate 
positive relationship between self-efficacy and students’ overall attitude towards 
using graphing calculators in mathematics (r = 0.40, p = 0.024).  
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Table 2: Correlation coefficients for self-efficacy and dispositions to calculators. 

DISCUSSION AND CONCLUSION 
This study was limited in scope to the small sample of students from one high 
school in the United States. The validity of this study could have been impacted 
by the small sample size and potential bias in selection. However, the results of 
this study contribute to the existing body of knowledge regarding technology 
use in mathematics pedagogy. Gender differences were prominent in students’ 
attitudes towards graphing calculator usage in mathematics instruction and also 
in their self-efficacy in utilizing graphing calculator features in mathematics. 
Boys were more confident in their ability to adapt diverse features of the 
graphing calculators than their female and non-binary peers. Students were 
mostly unanimous in their preference of calculators than showing work by hand. 
Students who hailed from classrooms with the most frequent usage of 
calculators surpassed others in self-efficacy on performing programming, 
statistics, calculus on TI-84 graphing calculators. Students who were always or 
occasionally allowed to use the device demonstrated a more positive attitude 
towards the integration of calculators into mathematics instruction. However, 
these students showed more hesitation for pursuing harder mathematics, and 
perceived that mathematics errors were still possible with the use of calculators 
than students whose teachers outrightly banned calculators. 
In conclusion, this study reinforces the notion that students embrace calculators 
as an integral addition to the modern mathematics classroom (Clark, 2011). 
However, based on the respondents’ attitudes towards calculators and their 
perception of the rigor experienced with or without calculator usage, over-
reliance on the graphing calculator might be counter-intuitive to students’ 
readiness for higher level of rigorous mathematics beyond the capacity of 
graphing calculators. Although, calculator usage tends to improve learners’ 
efficacy in acquiring proficiency in the technology applications reposed in 
graphing calculators, teachers should ensure that graphing calculator technology 
does not become a deterrent to their students’ ability to formulate efficient and 
accurate computations (NCTM, 2000). Further investigation is needed to 
explore how students’ attitudes and self-efficacy in calculator usage influence 
their mathematics proficiency across diverse classrooms. 
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