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INTRODUCTION
Mathematics is a discipline which is related to most – if not all – other 
disciplines in one way or another. This fact is eloquently expressed in the phrase 
that mathematics is the queen of sciences, a quote attributed to Carl Friedrich 
Gauss, one of the most famous mathematicians. Having said that, one may 
notice the route of mathematics and mathematicians throughout human history 
and observe the various phases that the discipline has gone through: from 
a practical human endeavour in prehistoric times to a formal construct in 
Ancient Greece and then from an elitist science to a ‘tool’ for the informed 
citizen to cope with everyday life. The latter has led to new terms, such as 
numeracy and quantitative thinking, which showcase a shift from theory to 
practice. At the same time, theoretical mathematics is still progressing as 
a science and provides other sciences with validated theoretical constructs. From 
artificial intelligence and supercomputers to cosmology and nanotechnology, 
mathematical concepts play a prominent role and their manipulation requires 
very specific and very sophisticated knowledge. 
Although the presence of mathematics is manifested in a multitude of scientific 
and everyday contexts, the anxiety associated with teaching and learning 
mathematics is still present. On the one hand, preservice and in-service teachers 
struggle with the mathematics they are expected to teach; on the other hand, 
students usually resort to rote memorisation of processes and decline critical 
thinking. So, how can mathematics become more attractive? 
The present volume offers a clear response to the above question: we believe 
that by engaging students at all educational levels (including preservice 
teachers) in contextualised tasks, mathematics teaching and learning becomes 
interesting, meaningful and even pleasant for all participants.  
The papers contained in the volume address various topics in mathematics 
education; in order to assist the reader, they are placed in four parts. Part 1, 
entitled Mathematics and other Disciplines contains papers which address the 
issue of the coexistence and the interrelations of mathematics with other 
disciplines, whether in a classroom context or in a more holistic view. Part 2, 
entitled Issues in Teaching and Learning Mathematics contains papers which 
address specific issues related to mathematics teaching at all educational levels. 
Part 3, entitled, Emerging Mathematics through Realistic Situations contains 
papers which present cases of students being engaged in meaningful 
mathematical tasks. Part 4, entitled Professional Approaches to Constructing 
Mathematics contains papers which present various approaches to the 
construction of mathematical concepts, mainly by preservice teachers. 

Poland, June 2018 
The Editors
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and other Disciplines

Part 1





 

MATHEMATICS AND THE REAL WORLD
IN A SYSTEMIC PERSPECTIVE OF THE SCHOOL

Fragkiskos Kalavasis
University of the Aegean, Greece 

We will approach the variety of the ongoing debates about mathematics and/or 
reality in the framework of the interdisciplinary and institutional environments 
of teaching and learning mathematics. This framework is surrounded and 
perversely influenced by digital and networked, extracurricular mathematical 
educational productions. These are extracurricular practices but with very 
impressive and often superficial representations on the mathematical-reality 
link, very easily accessible in the real world of students. Thus, understanding the 
relationship between mathematics and the real world becomes an educational 
and moral responsibility for teachers. I think this makes the theme of the present 
volume more important. 
These environments form a complexity, including and, at the same time, 
included in the didactic of mathematics situations. Therefore, a new variety of 
approaches of the relation between mathematics and reality emerges, within 
which the cognitive, the psychological, the social and the digital are 
interconnected. It is hard (or impossible) to model the interactions of the 
aforementioned variety with the underlying epistemological or philosophical 
variety, because of the complexity of the roles and intentionalities that are 
interwoven within and in the frontiers the school unit.  
The educational need to employ various discipline sources, in order to 
comprehend the complex phenomena, implies a permanent presence of 
mathematics and this further complexifies their relationships with reality, 
because it let the discrete interaction of mathematics with the others disciplines 
to pass implicitly, which is often ignored by the formal, institutionally 
constituted, school reality. Within these environments, the boundaries amongst 
the priorities of the real world and of the noetic structures, which constituted the 
opposite poles in the philosophical disputes about mathematics and/or reality, 
become permeable and porous. In the mathematical thinking, observation and 
intuition, comprehension and invention, modelisation and application, 
adaptation and transformation seem to be synchronous. 
The role of representations and symbolic languages, playing a crucial role in 
mathematics, becomes an obstacle in the interdisciplinary learning path of the 
students in the everyday school timetable across their differentiated uses in the 
different disciplines. Thus, the widely studied didactical transposition is 
effectively enriched with the praxeological transposition. 
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We will present concrete examples of the history and epistemology of
mathematics, as well as reforms in mathematical education and, in particular, 
we will discuss the influence of the work of Jean Piaget, to animate the 
discussion between mathematics and the real world in this systemic approach to 
the didactics of mathematics. 
INTRODUCTION: PLURALITIES 
In 1990, in Poland in the city of Szczyrk the 42nd Conference of the CIEAEM 
(International Commission for the study and improvement of mathematics 
education) was organised. The theme of the meeting was “The teacher of 
mathematics in the changing world”. It was indeed the years that followed 1989, 
when change was the most tangible feature of the world, especially in Europe. 
A mixture of liberal politics and technology places its traces in the spirit of 
democratic freedom of the time, gently guiding it towards neoliberalism, 
globalism (mondialisation) and the financial market. Effectiveness and 
efficiency should be sought in all areas, including mathematics education. 
Efficiency was related to skills. Efficiency had to be measurable and the 
effectiveness to be evaluated. A globalist perspective, developed primarily by 
the National Council of Mathematics Teachers (NCTM) in the United States, 
hoped to include the diversity of mathematical knowledge and skills in the 
concept of skills to be used.  In fact, the first recommendation of An Agenda for 
Action (NCTM, 1980) was that “Problem solving must be the focus of school 
mathematics” (p. 2). The document went on to say that “Performance in problem 
solving will measure the effectiveness of our personal and national possession of 
mathematical competence” (p. 2). It was the period of the Standards, described 
in the Curriculum and Evaluation Standards for School Mathematics (NCTM, 
1989).  
Many international commissions, as CIEAEM, have been critical, especially in 
Europe, where the constructivist perspective was more powerful and mixed with 
the French structural aspect of modern mathematics reform and with the 
phenomenological point of Hans Freudenthal and the perspective of realistic 
mathematics. Since, critical mathematical education became a special field of 
research (Ernest, Shiraman & Ernest, 2016) through which the theories of 
Didactic of Mathematics approach crucial dimensions of real world, even the 
recent economic crisis (Kalavasis, 2017). 
Back at Szczyrk (CIEAEM 42 Conference), the international research 
community of mathematical didactic practices directed its efforts towards the 
study of common mechanisms in the mathematical reasoning activity of the 
researcher and the student, in order to design adequate teaching situations for 
efficient schools. In fact, the first question asked by the scientific committee of 
this conference was: The teacher must be both educator and expert in 
mathematics. How does the teacher cope with the changes in emphasis in these 
roles? 
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I think that this plurality of approaches in mathematics education emerged the 
decade of the 90’s, implicitly diffused even in this concern for equilibrium 
between the two poles of mathematical expertise and teaching effectiveness, has 
oriented many important initiatives to edit new school books. For example, in 
Poland it was the “Blue Mathematics” series. We can observe in the front pages 
of two of them the invariant mathematical pattern background, un-influenced by 
the changes of the colours and of the real world images.  

 
Figure 1: From left to right: CIEAEM 42 Proceedings and two Polish textbooks from 

the “Blue Mathematics” series (1996)  

Now, 28 years later, the two poles of our problematic are mathematics and the 
real world. This means that it is not only the real world that is changing, but also 
the mathematics as well as the environment of mathematics education. So, our 
approach to learning and teaching mathematics is influenced by the interaction 
of these three evolutions, and we will try to view this tripolarity from a systemic 
and complexity point of view. 
Andre Revuz (1914-2008), my first Professor in Didactics of mathematics, 
published in 1963 the book Mathematique moderne, Mathematique vivante 
(Modern mathematics, living Mathematics). His choice of wording in the title 
seemed strange to me: Why did he decide to use the term mathematique in 
singular and not the more frequent term of mathematiques in plural? In the 
Greek language, we only have the plural noun mathematics (μαθηματικά). But, 
in contrast, we have singular nouns for Geometry, Arithmetic, as well as for 
Analysis and Algebra. In English, the term mathematics, although ending with 
the s, is a singular noun. 
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Figure 2: From left to right: Revuz (1965), Bourbaki (1939) and Bourbaki (1974) 

Then, I noticed the strange singular noun mathématique in the title of Éléments 
de mathématique, the treatise on mathematics by the collective Nicolas 
Bourbaki; an edition started at 1939 (composed of twelve books), published by 
the Editions Hermann. Like Euclid’s Elements (13 books), twenty-three 
centuries ago, the famous group Nicolas Bourbaki tried to recompose the at the 
time current mathematics evolution and dispersion, in line with the prototype of 
the Elements. They based this unification effort in the modern notion of 
structure. Moreover, they used the term in plural when referring to the history: 
Éléments d’histoire des mathématiques. Perhaps they wanted to emphasize the 
necessity of Bourbaki’s reunification effort, because in their long history since 
Euclid, mathematics has become a set of scattered disciplines. 
I noticed that Andre Revuz, when he approached his 90th birthday in 2002, was 
the protagonist of the creation of the project ActionSciences, which brings 
together a dozen of scientific associations for the defence of the teaching of all 
sciences. So, I could understand that the mechanisms of learning mathematics 
are involved with their environment. And that they are living mechanisms of the 
same kind, as the mechanisms of the evolution of mathematics themselves. And 
of the same kind as the mechanisms of the evolution of our reasoning. The 
crucial difference is that in a didactical situation all these mechanisms are 
interacting and are transformed, in order to create new qualities of intelligence, 
for and by both the student and the teachers, within the school, the family and 
the society. Thus, in order to study and to improve these situations, I argue that 
we need tools and concepts from the complexity and the system theory. 
Mathematics (m) and reality (r) seem to be at the extremes of a ‘tug-of-war’, at 
multiple levels and at several historical periods. We can look for the beginning 
of this antagonistic game in the divergent positions of Plato and Aristotle and in 
the hermeneutical oppositions followed. The important thing for us is the impact 
of this bipolar situation to the third pole, that of mathematical education (e). In 
which way this phenomenally clear (m)-(r) duel influences the mathematics 
learning theory or/and teaching models (e)?  
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If we assume that the objects of mathematics exist per se in a world of ideas, out 
of any sensible frame, but their comprehension can use analogies in sensible 
frame? Or, if we assume that the objects of mathematics do not have an 
existence per se, that they are part of the sensible reality, but the mathematician 
studies them out of any sensible frame? We can see that the clearness can 
become obscure for the third pole. In the systemic approach, we try to 
understand the three poles together, as an interacting system. The complexity 
aspect allows as to understand that each pole is interacting with this tri-polarity. 

 
Figure 3: An interacting system of three poles 

We could follow the evolution of the conceptualization of these essential Plato’s 
and Aristotle’s ideas, to approach the divergences in the philosophy of 
mathematics, the aspects of the logicism, the formalism, the intuitionism or the 
constructivism. And so, to study their impact in the mathematics education. 
Another way to the tripolarity could be to follow the learning theories, opposing 
for example behaviorism to radical constructivism. Or, even more concretely, 
we could enter into the problematic of the history of mathematics education; 
from the modern mathematics reforms, the realistic mathematical initiatives, to 
the international standards in problem solving and the STEM (science, 
technologies, engineering, mathematics) trends.  
However, I think the most important perspective is that we can conceive the 
three poles as a coexistence model per se, in a unified perception in interaction 
with the human act of the mathematician, of the learner or of the teacher. This 
could be described as the Borromeo interconnected Rings, in which if one ring is 
cut, the two others are automatically disconnected. In mathematical knot theory, 
the Borromean rings are a simple example of a Brunnian link: although each 
pair of rings is unlinked, the whole link cannot be unlinked. (Karl Hermann 
Brunn (1862 -1939)) 

 
Figure 4: Borromean rings  

So, by englobing the phenomenology of the internal opposition of the two poles 
and by connecting them with the actors in a scientific or learning project (the 

m

mm
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third pole), we could oversee the polarity in a more systemic framework. 
Through this systemic approach, a field of questions related to the essential 
opposition can be studied from the point of view of the space of the 
phenomenology of the ordered pairs (m, r) and (r, m) in interaction with the 
educational pole (e). This approach could allow and motivate the phenomenal 
opposition to interact with the anthropological aspect of the socio-cognitive 
activity of learning and teaching system and, thus, could allow our rethinking its 
poles within the framework of Didactics of mathematics. The Borromean 
interconnection mode means that, if one ring is absent, the meaning is 
simultaneously lost for all rings. In isolation, mathematics is dehydrated, the real 
world seems superficial, learning and teaching becomes denervated. If we want 
to study not each pole isolated but their function in a didactical situation or in an 
educational project, it is impossible to perceive each ring as being independent. 
Thus, the opposition as a couple/pair, incorporating the conjunction and the 
disjunction of its elements, at the metacognitive level, offers us and reveals to us 
the human unique capacity to construct his perception of reality. So, to separate 
and to unite, to disjoin and to conjoin, to divide and to rejoin the elements of the 
real world. Or, in terms of complexity and systemic formulation, the human 
ability to conceive together what seems to be disjointed, and at the same time to 
distinguish what seems to be conjoined. In mathematics, this means thinking and 
acting in the space between presentation and comprehension, intuition and 
reason, between the part and the whole, the discrete and the continuous. In 
mathematics education, this means thinking and acting in the emerging space 
actively constructed by the interactions between the couples of a mathematical 
activity, on the one hand and the other, their scientific construction in history, 
their reflexive construction in learning processes and their transformations in 
teaching situations (Kalavasis & Moutsios-Rentzos, 2015). 
In this multi-space, we may recognize the semantic and symbolic traces of the 
interdisciplinary approach in mathematical learning and teaching processes. The 
interdisciplinarity enriches the access to reality, because of the high level of 
variety in coherence. The interdisciplinarity allows the deep intellectual visit 
into mathematics, because of the high level of logical coherence in the variety of 
their fields. My point is that the interdisciplinary approach may enrich the 
mathematical learning, by re-considering more clearly its own intellectual fields: 
by relating separated cognitive frameworks, using same symbolic/language with 
a variety of meaning and interactions by relating separated actors, in their 
variety of interactions and meanings. Especially in our times, in which we can 
easily claim that the mathematization of the system of disciplines (the use of 
concepts and mathematical symbols) is confused with a kind of 
mathematification of disciplines (the transformation of their concepts into 
mathematical concepts and mathematical symbols) in a digital environment of 
the real world. This tendency is evident when considering the transformations in 
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the representations and descriptions of the natural or even the social and 
financial phenomena (Kalavasis, 2017). 
It is argued that it is crucial to understand in this interdisciplinary and digital 
complexity from the point of view of the dipole “mathematics and real world”
interconnected in the third pole of mathematics education, as the essence of the 
intellectual activity (Moutsios-Rentzos, Kalavasis & Sofos, 2017). And, 
subsequently, to identify the important role of mathematics education for 
mathematics and for society and to review its content and methods.
At this point, I think it is useful to recall four areas that Piaget refers to in 
explaining his genetic approach to scientific knowledge, as they are important to 
our interdisciplinary didactic approach (Packer, 2017, p. 414): 

 The transition from logico-mathematical operations of the manipulation of 
sets of objects to the formal operations of mathematics, as rigorously 
deductive reasoning, independent of the real but reflecting: Beyond reality, 
but preparing a deeper knowledge of this reality, providing better conceptual 
tools.

 The passage from infralogical operations to axiomatic geometry and abstract 
models of physics. 

 The problems of explanation in science.

 The trends in the evolution of science and the role of scientific communities.

Piaget distinguished the infralogical operations which are used to deal with 
continuous objects (e.g. liquids) and are based on judgements of proximity and 
separation in space and time. In contrast classification and counting are logico-
mathematical operations, applied to distinct objects. He used the term 
infralogical, “because they related to another level of reality and not because 
they develop earlier”. The last area is part of what we experience by contributing 
in the present volume and in other international or local initiatives and 
commissions. 
FIRST EXAMPLE 
Let us look at an example, which seems to dissociate the mental world and the 
material world, starting in a nominalist manner, but with a beautiful historical 
journey. We will enter this opposition by the name of the different sets of 
numbers. We recall the categories, often presented by an inclusion set relation, 
N, Z, Q, R, I, C, leaving aside the technical details of the zero and other 
elements necessary for these constructions. 
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Figure 5: Number sets 

Why do we call as natural the simplest, most integer and perfectly disjointed 
numbers, while we call real, their being more of a mental invention, their 
transformation into continuous, including their irrational and transcendent 
nature? The mathematics education specialists seem to converge that it is easier 
to begin the teaching of numbers starting from the natural numbers. It is easier. 
Enumeration, cardinality, order.  
But which category of numbers is the best approximation of reality? It is easy to 
answer that it is the real numbers, if not the complex numbers closer to the 
reality and to the phenomena of nature. Moreover, specialists and pedagogues 
seem to agree that it is easier to conceive of the real world than mathematical 
theories. Therefore, we should give priority to teaching real numbers and 
operations with continuous quantities (infralogic operations). Nevertheless, if we 
admit that the basis of the construction of mathematical structures and of logic 
of propositional calculus, in which is based the construction of set theory and the 
construction of the continuous of the real numbers, is related to the construction 
of the set natural numbers, then what is simpler and easier to approach in 
education: mathematics or the real world? 
Natural, …, imaginary, complex. All sets are contained to the last. But the 
construction of the last requires the first. So, its conception is contained in the 
theory of the first construction, of the infinite set with the minor cardinality.  
SECOND EXAMPLE 
Pythagoreans conceived the natural numbers from a mental view (theory) in the 
ordering and counting of discreet, but similar, almost equal, material objects. 
Broad beans or pebbles, from which came the Latin word calculus, a pebble or 
stone used for counting. At the same time, they re-presented the numbers with 
geometrical shapes and gave them corresponding names. The figurate numbers. 
Starting from the distinction between the even (if they can be ordered in two 
equal collections, covering same space) and the odd (if a piece remained a little 
separate making the difference, bringing the inequality, bringing the difference 
of the one between the two), they evolved their representational constructions 
using the practical and noetic instrument of the gnomon. Triangular numbers, 
rectangular numbers, square numbers, polygon numbers, etc. 
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Figure 6: Triangular, square, pentagonal and hexagonal numbers  

The Pythagoreans also conceived the natural numbers and the analogies, the 
ratio of natural numbers, but the ratio was not necessary to have an arithmetic 
value. They could see in their constructions the repetitive pattern and they used 
the cardinal and the ordinal version of the concept of number to describe and 
calculate the next or the successive number of the same category. 

The first 6 squares of natural 
numbers as the sum of consecutive 

odd numbers

In this story we may also notice the reflective process, the aller retour, the 
round-trip among: the concrete form of a disposition of points in the space, the 
area of the spatial form, and the conceptualization of the number in this
disposition, the conjunction of its geometrical construction and its algebraic 
proprieties. 
THIRD EXAMPLE 
Euclid uses the concept of ratio between continuous quantities. He could even 
write about the ratio between the side and the diagonal of the square, to show 
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that no couple of natural numbers exists that could be describe this ratio. So, 
within his line of thinking, he could incorporate a seemingly paradoxical way 
without confusing what should be distinguished, the discrete magnitude as 
multitude of elements and the continuous magnitude as length. The ability (or 
the need) to conjoin and disjoin was still important in the conceptualization of 
what exists in the real world even though not (yet) visible to our experience. 
We may recall at this point Plato’s dialogue Menon, where Socrates tried to 
persuade Menon that the learning process is a kind of remembering. He did an 
experiment with a slave who had never been educated. By employing the 
famous Socratic maieutic or questioning method, he wanted to show Menon that 
it was possible to lead the slave to find the solution of the duplication of the 
square, to find the side of a square the area of which is double the area of the 
initial square. After two trials (the first one being to double the side, thus 
constructing a four times bigger area square, and the second being to take a side 
and a half, thus constructing a triple area square), the slave was left very sceptic. 
Then Socrates said to Menon: “You see now, he is hesitating to make a new 
trial, he is in a state of mystification” (in the original text the term used was 
aporia; απορία). This is the more important stage of the learning process. At this 
moment the slave’s thought is in the intermediate space between one and two 
dimensions, between intuition and logic, between analogic thinking using 
obvious elements and inventing or discovering emerging alternative 
relationships among the elements and the whole. He was then led by Socrates’s
questioning to mentally disjoin the diagonal in the figure and construct based on 
it the new square, the one with having double area. This example is considered 
as the first training lesson in didactics of mathematics.  
FOURTH EXAMPLE 
At this crucial point, we must travel across time directly about two thousand 
years later, to the Cantor’s perception and construction of the infinities. Cantor, 
in order to compare two infinite countable sets, used the 1-1 correspondence 
(bijection), to prove the unaccountability of infinite sets by employing his 
diagonal argument.  
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Figure 7: Cantor and infinite countable sets 

By using the notion of 1-1 correspondence, Cantor proved that, in the case of 
countable infinite sets, the part can be equal to the whole. As by definition, all 
the elements of a countable set must correspond one by one to the elements of 
the set of natural numbers, we have to find the gnomon of their successive 
construction, following the order of natural numbers. Of course, there were other 
mathematicians in previous eras who had noticed that the cardinality of the odd 
numbers is equal to the cardinality of the even numbers (the two qualities that 
define two complementary halves of the naturals) and that this common 
cardinality seems to be equal to the whole, to the cardinality of the set of natural 
numbers.  
So, in an ordinary, near the real world syllogism, the half is equal to the whole. 
But, even if this seams easily verified in some cases of infinity, it remains 
unthoughtable in real world. But, does this mean that the real world is a finite 
world? The perception of infinity, is it not a basic concept of human mental and 
moral condition? 
A geometrical example in the same direction is the following. Let us consider 
the triangle ABC. If we take a point D on the segment AB and a point E on AC. 
Then DE have the same number of points as BC. In fact, each line starting in A 
and traversing the segment BC, cuts ED in a singular point, and the inverse. Of 
course, that holds true only if we accept that the continuum on the segments has 
no holes. By calculating the cardinality of the above set numbers, Cantor proved 
that N, Z, Q have the same cardinality aleph zero 0א, as well as R and R2, so R 
and C, the same cardinality aleph one 1א. So, the above shape of the successive 
inclusions gives a wrong image of reality! This is because we can correspond 1 
to 1 all the elements of N with all the elements of Q. 
Historians say that when Cantor showed that the cardinality of R is equal to the 
cardinality of R2 (as if the side of a rectangle had the same number of points 
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with its surface), he said: “I can see it, because I proved it, but I cannot believe 
it”.
We can see the three rings connected. 
So, Cantor arrived to think in between the part and the whole, in between the 
common sense of the reality and the mathematical invention of the construction 
of the real infinity. The important was to perceive the tug-of-war in a united 
way, escape from the frontiers of the interior oppositions so to be able to return 
on these oppositions from the point of view of their coexistence in a sustainable 
couple. Conjoin the disjoined, then disjoin the conjoined. 
Then with his famous fundamental theorem that for every set A, the power set 
P(A) of A (the set of all subsets of A) always has higher cardinality than the set 
A itself, and the evolution of his theory, lead David Hilbert to say in 1925, seven 
years after the death of Cantor that “From the paradise, that Cantor created for 
us, no-one can expel us.”
FIFTH EXAMPLE 
I would like to remind you of fact that the root of the tool of comparison 
between countable sets dates back to Homer’s Odyssey. There was a monocular 
giant, Cyclops Polyphemus. You most probably know the story; the giant 
abandoning the usual custom of hospitality, he began to kill the comrades of 
Ulysses. Then Ulysses surprised him by offering him to drink wine. 
Polyphemus, satisfied, asked Ulysses his name, so Ulysses answered the famous 
“Nobody”, after which, while the giant slept, Ulysses blinded his single eye. 
Everyone made fun of Polyphemus, thinking that he was drunk and blinded by 
himself, when he was crying “Nobody blinded me” because it would be 
impossible for Nobody to exist as a person in the real world. But Ulysses had 
still to escape from the cellar of the giant killer and that was not easy.  
Ulysses observed that Polyphemus had invented a method to verify that all his 
sheep returned to the cellar at night. To count the number of sheep, it 
corresponded to a pebble for each animal at the exit by putting the pebbles in 
a dish and he checked the pebbles of sheep by the same correspondence on the 
return. So, the ingenious king of Ithaca decided to tie all his comrades 
underneath the animals and so they managed to get away, each of them under 
a sheep, and they managed to escape without Polyphemus noticing. This is the 
first description of a difficult mathematical method in a real world hard 
environment.  
After Cantor’s countability, Jean Piaget would be the one to appreciate the 
important presence of the 1-1 correspondence in the evolving stages of the 
intelligence and in particular for the conservation of number of elements of 
a collection independently of the form of their spatial disposition. 
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SIXTH EXAMPLE 
Let us consider another example in the story of Eratosthenes who counted the 
perimeter of earth. Eratosthenes of Cyrene (Ἐρατοσθένης ὁ Κυρηναῖος) (from 
Cyrene a city situated in modern Libya) was a Greek mathematician, 
geographer, poet, astronomer, and music theorist, director of the famous Library 
of Alexandria after 230 BC. Eratosthenes approached the problem to calculate 
the circumference of earth through analogical reasoning. His experiment and 
proof are now modelized and used for didactical activities in real circumstances 
with students of secondary school around the world.  
Eratosthenes had heard from travelers about a well in Syene (now Aswan, 
Egypt) with an interesting property: at noon on the summer solstice, which 
occurs about June 21 every year, the sun illuminated the entire bottom of this 
well, without casting any shadows, indicating that the sun was directly overhead. 
He thought that if earth is spherical, these rays would be oriented to the center of 
earth. So, he realized that if he could calculate in the same time that noon, the 
angle that forms a vertical column with the ray of the sun in Alexandria, and if 
he could measure the distance from Alexandria in the North to Syene in the 
South, he could easily calculate the circumference of Earth.  

 
Figure 8: Eratosthenes’s measurement of the Earth’s circuference 

However, in those days it was extremely difficult to determine distance with any 
accuracy. Some distances between cities were measured by the time it took 
a camel caravan to travel from one city to the other. But camels have a tendency 
to wander and to walk at varying speeds. So, Eratosthenes hired bematists 
(βηματισταί, step counters), professional surveyors trained to walk with equal 
length steps. The bematists accompanied Alexander the Great as specialists in 
measuring distances by counting their steps. They found that Syene is about 
5000 stadia of Alexandria (stadium is an ancient Greek unit of length). What 
Eratosthenes had in his mind was sketched, using his geometrical knowledge 
and transposing the vertical of Alexandria as if it was the transversal of the two 
parallel lines corresponding to the rays of the sun. So, he used the equality of the 
two elements into the couple of the alternate interior angles. Thus, Eratosthenes 
arrived to calculate the Earth’s circumference around 240 BC by using: 

 geometrical and trigonometrical approaches: Thales theorem on equality 
of interior and alternate angles, measurement of angles; 



22 FRAGKISKOS KALAVASIS

 astronomical observation and geographical determination: summer 
solstice, oriented distance between Aswan and Alexandria; 

 estimations of length: stadia, the Olympic stadium of 176.4 m, gnomon to 
measure the height of the column 

 counting methods and tools: bematists;

 assumptions: the Earth is a perfect sphere, light rays emanating from the 
Sun are parallel 

 hypothetical-deductive reasoning: If … so … 
We may use modern expressions to re-story what Eratosthenes did: Eratosthenes 
made the assumption (or used the consensus of his time) that the sun was so far 
away that its rays were essentially parallel, and that Alexandria is in the north of 
Syene. So, he could calculate the circumference of earth passing from the two 
poles. But as he assumed that earth is perfectly spherical, he implied that the 
circumference is always the same in length, independently of his direction from 
pole to pole or in the equator. 
Now I invite you to reflect together, where in all this, is reality disjoined from 
mathematics? In the bematists’ experience? In the assumption about the perfect 
spherical shape of the Earth? In the certainty of the truth of the theorem of 
corresponding angles? In the axiomatic existence of parallel lines? In the 
assumption of the sun rays being parallel? In the concept of analogy (ratio) that 
lead us to take the measure of angle as equipotent and transformable to the 
measure of a length? Or maybe in the concept of estimation-approximation 
(implicit convention) that the length of the cord of a circle is equal to the length 
of the arc? All this activity, mathematical and real, is integrated into the 
hypothetical-deductive reasoning, upon which the sense and the connections in 
the variety of the activities emerge. 
My point in this article is that all this activity cannot be distinguished in 
different parts, neither analyzed in sub problems clearly taxonomised in more or 
less mathematical or real world experience. What happens does not occur in the 
opposition among pure mathematics and the real world, but in the relation of the 
hypothetical-deductive reasoning with mathematical activity and real world 
activity. The coherence of the variety gives meaning in each of the discrete 
activities and vice-versa it assumes sense from the disjunction of these activities 
and their connection in the hypothetical-deductive project. In a more general 
way, the mathematical objects and the real world conditions are conjointly 
disjoints in a genetic cognitive project; that can be a scientific project or 
a learning project.  
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SEVENTH EXAMPLE 
We could find more examples in the projects of Galileo, Newton, Descartes or 
Pascal and more recently at Von Neumann to appreciate this anthropological 
complexity between mathematics and reality. It is important for the educators to 
understand how the paths of mathematics and of the mathematicians’ experience 
are fundamentally connected with the conceptualization of the natural 
phenomena in a way compatible with the philosophical ideas and beliefs.   
Mathematics, with its conical curves (the form then regarded as the most 
advanced and abstract) was the only science capable of expressing 
fundamentally the law of the fall of the bodies of Galileo Galilei at the end of 
XVI century. According to Dhombres (2017) this was the objective factor of 
disinherence of the Aristotelian type physics. It allowed another natural 
philosophy to take hold, which became deeply structured by mathematics, to the 
point of giving this science (mathematics) the power to conceptualize reality. 
The parable (parabola) of Apollonius – an author of the third century BC who 
named the conic sections or curves obtained as the intersection of the surface of 
a cone with a plane by the metaphorical denomination of hyperbole 
(exaggeration) or ellipse (lack of) – now with Galileo also refers to the
uniformly accelerated motion; a mechanics idea before becoming 
a mathematical concept through subsequent calculation and acceleration as 
a second derivative. We can see at this point the fragile transition in 
mathematisation and/or mathematification according to Lichnerowicz (1967). 

Figure 9: The conic sections 

This parable makes the movement to be recognized as independent of the weight 
and the form of what falls and reduces the falling thing to a numerical value. 
This curve allows us to recognize the fundamental independence of the 
movement towards the initial impetus. The movement remains uniformly 
accelerated irrespective of the momentum, which goes beyond its previously 
purely numerical role and acquires both the direction of a principle of 
conservation (principle of inertia) and of a spatial form (directed quantity). 
Newton’s Philosophiae naturalis Principia mathematica in 1687 launches a new 
period in which mathematics dominates the most. Interactively, the science of 
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Euclid itself has been metamorphosed by the invention of a calculus, bearing the 
name of differential and integral calculus. It provides efficient means to 
approach the mechanics and the optics but also by the infinitesimal seems to be 
able to express the intimate structure of the physical objects, such as the curves 
of trajectory. 
CONCLUSION: COMPLEXITIES 
The problem of the relationships between mathematics and real world, as we 
noticed in the introduction, can be approached from the point of view of 
philosophy (what is mathematics, what is the real world), or from the learning 
theories (how the human constructs and develops mathematical concepts), or 
from epistemological views (the mathematical activity), or from the 
Mathematics Education history.  
My view is based on the systemic approach from the didactical point of view of 
mathematics, trying to study and improve what is happening in the mathematics 
class between mathematics and the real world interacting with the wider 
framework of the interdisciplinarity in our digital age (Kalavasis & Kazadi, 
2015). In this approach of the learning project, the interdependencies between 
mathematical activity, the real world and the teaching of mathematics give 
a dynamic meaning to the phenomenal oppositions. Learning difficulties and 
obstacles are managed in order to enhance the variety and consistency of 
mathematical knowledge in didactic school situations.
Didactics of mathematics has transposed the questions of the type “What is 
mathematics” to the type “What do mathematicians do? What is their way of 
working?” because these questions could lead to two genetic approaches: that of 
mathematics’ historical evolution and that of Piagetian epistemology of the 
construction of mathematical knowledge. This transition from the science as 
object to the project which involves the human being, transfers the question to 
a more participative framework, in a mixed and multi-variant environment, so 
closer to the real world and, speaking academically, from sciences to the field of 
humanities.   
Piaget used the term ‘Constructivism’ to create a fundamental connection 
between knowledge and reality. His work went against the established idea of 
a knowledge being a static entity and something out there to be discovered, 
considering rather that human systems generate their own knowledge. In The 
construction of reality in children (La construction du reel chez l’enfant), 
published in 1937, Jean Piaget studies the stages by which, during the first two 
years, the child is able to represent a permanent objective world independent of 
this representation itself. This construction is carried out by two complementary 
movements: the accommodation of thought to things and the assimilation of new 
data by the previous acquisitions. Piaget highlights the complementarity of two 
categories of acquisitions: the organization of intelligence and the organization 
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of reality that take place both jointly and one by the other. This complementarity 
results from that which unites the accommodation of thought with things and the 
assimilation of new data by the acquired of the previous. 
Piaget, with The Genesis of Numbers in Children (La genèse du nombre chez l’ 
enfant) in 1941, highlights the link between the construction of the real world 
and the mathematical construction. He followed the construction of the whole 
number by the child. He emphasizes that this construction is operative, that it is 
carried out from groupings of classes and relations. He shows that the verbal 
acquisition of spoken numeration is not enough. The concept of number appears 
as a synthesis of classification structures and order structures, but it exceeds 
them both by its superior flexibility and the degree of generality obtained by 
successive abstractions. Then, in his Introduction to Genetic Epistemology,
Piaget emphasizes that the multiple interactions between the subject and the 
object, both in the history of adult thought and in the genesis of cognitive 
functions in children, lead to the formation of knowledge which is eventually 
included in the scientific disciplines, characterized by their specific problems, 
their particular methods, their own results. Here we can see the traces of the 
systemic point of view that resemble the subject of learning and the object of 
knowledge with its interactions in the concept of the project. 
It is easy to notice in this point the importance of transforming of the 
antagonistic relationship between mathematics and the real into a reflective 
relationship between the construction of mathematics and the construction of the 
real and, even more profoundly, the impact of this relationship process of 
building scientific knowledge. 

Figure 10: From left to right: Piaget (1967) and Watzlawick (1984) 

Piaget in Logique et Connaissance Scientifique puts himself in opposition to the 
positivist hierarchy of science. He argues that, although autonomous in many 
respects, the various scientific fields are linked by a series of connections, which 
makes it possible to postulate a “circle of sciences” ranging from formal 
sciences (logic, mathematics) to physics, then to biology, human sciences 
(psychology and sociology) to return to the formal sciences. Von Glasersfeld 
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took this further by showing how meaning is built up from experience and how 
we understand and construct our knowledge of the world around us through 
continual negotiation with the external world. His two books Construction of 
Knowledge (1987) and Radical Constructivism: A way of Knowing & Learning 
(1995) traced the history of constructivism from Vico to Piaget and put forward 
the model of Radical Constructivism.  
An important moment in the thoughts about the phenomenology of learning and 
teaching mathematics into school situations was the influence of the cybernetic 
theories and the systemic approach. Through the ‘meeting’ of constructivists and 
cyberneticists, we may more appropriately situate the phenomenon of learning 
mathematics as inter-influenced within the environment and I think that we can 
situate the reflexive construction of mathematical knowledge within the 
circumstances of the school unit as a learning organism. So, to conceive the 
learning and teaching mathematics as a system of internal interactions and 
external relations, described in the form of a pentagon-within-a pentagon. 

 
Figure 11: A self-similar approach to the Sch(ool) Un(it) – Prot(agonists) complexity 

(Moutsios-Rentzos & Kalavasis, 2016) 

The interdisciplinary approach in the Didactics of Mathematics could be 
described as the stage of complexity. It assumes the emergence and the 
didactical management of the symbolic connections, the conceptual interactions, 
but also of the divergences and diversities in the methods and the objectives 
between mathematics and sciences in the school situation of learning and 
teaching, under and beyond the didactical transposition effect.  
In this overwhelming complexity, where is mathematics and where is the real 
world or more precisely, the phenomenology of their connections with the 
human learning activity? How can we make distinctions between the whole and 
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its parts in a dynamic connection, between the world and the words or forms that 
describe the various versions of our interactive experience in it? Trying to 
understand the school reality, the real environment in which we teach 
mathematics, I soon realized that the learning of mathematics happens not only 
in school, but also in family situation. And more particularly in between the 
school and the family. In this in-between space emerges the role of the shadow 
education, all these structures and practices growing in parallel and at the same 
time in close ties with the school and of the digital and network environment.  In 
which way may we conceive this multi-dimensional reality? 
Paul Watzlawick in The Invented Reality. How Do We Know What We Believe 
We Know? (1981 in German, 1984 in English, 1988 in French) notes that:  

… any so-called reality is - in the most immediate and concrete sense - the
construction of those who believe they have discovered and investigated it. [...] In 
other words, what is supposedly found is an invention whose inventor is unaware of 
his act of invention, who considers it as something that exists independently of him; 
the invention then becomes the basis of his world view and actions. (p. 10) 

Moreover, one of the contributors in this edition, Ernst von Glasersfeld stresses:  
The only aspect of that ‘real’ world that actually enters into the reality of the 
experience is its constraints. (…) Radical constructivism, thus, is radical because it 
breaks with convention and develops a theory of knowledge in which knowledge 
does not reflect an “objective” ontological reality, but exclusively an ordering and 
organization of a world constituted by our experience. The radical constructivist has 
relinquished “metaphysical realism” once and for all and finds himself in full 
agreement with Piaget, who says, “Intelligence organizes the world by organizing 
itself”. (p. 24)

Mathematics are in the real world and the real world is in mathematics, like in 
Escher’s 1948 lithography Mains dessinant (Painted hands painting).  

Figure 12: Mains dessinant (Escher, 1948)  

This self-reference is an interference between a message and the support of this 
message, like a book that tells the story of the writer who writes this book. 
Mathematics is in the real world and the real world in mathematics, because the 
perception of world supposes the capacity to organize all the information that we 
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receive, so we do it in our mind by connecting information in a common way 
which is the logic-mathematic and by this procedure we construct the real world.
References  
Bourbaki N. (1939). Éléments de mathématique [Elements of mathematic]. Paris:

Hermann. 
Bourbaki N. (1974). Éléments d'histoire des mathématiques [Elements of the history 

of mathematics]. Paris: Hermann.
Dhombres, J. (2017). Continuites et Discontinuites [Continuities and Discontinuities].

Paris: ENSSIB-École nationale supérieure des sciences de l’information et des 
bibliothèques. 

Ernest, P., Sriraman, B., & Ernest, N. (Eds.). (2016). Critical Mathematics Education: 
Theory, Praxis and Reality. Charlotte, NC: Information Age Publishing.  

Ciosek, M. (Ed.). (1991). The Teacher of Mathematics in the Changing World. 
Proceedings of the 42nd CIEAEM Meeting. Cracow, Poland: Institute of 
Mathematics. 

Kalavasis, F., & Moutsios-Rentzos, A. (2015). Anamesa sto meros kai sto olo: 
anastochastiki oikodomisi mathimatikon ennoion [Between the part and the whole: 
a reflective construction of mathematical concepts]. Athens, Greece: Gutenberg. 

Kalavasis F. (2017). Mathematical language in the political discourse: epistemological 
and educational reflections. In A. Chronaki (Ed.), Proceedings of the 9th 
International Conference of Mathematics and Society “Mathematics Education and 
Life at Times of Crisis” (Vol. 1, pp. 100-105). Volos, Greece: MES9. 

Kalavasis, F., & Kazadi, C. (2015). The learning and teaching of mathematics as an 
emergent property through interacting systems and interchanching roles: 
a commentary. In U. Gellert, J. Gimenez Rodriguez, C. Hahn & S. Kafoussi (Eds.), 
Educational Paths to Mathematics. A C.I.E.A.E.M. Sourcebook (pp. 425-429). 
Dordrecht, the Netherlands: Springer.

Lichnerowicz, A. (1967). Remarques sur les mathématiques et la réalité. In J. Piaget 
(Ed.), Logique et connaissance scientifique (pp. 474-485). Paris: Gallimard.  

Moutsios-Rentzos, A., & Kalavasis, F. (2016). Systemic approaches to the complexity 
in mathematics education research. International Journal for Mathematics in 
Education, 7, 97-119.

Moutsios-Rentzos, A., Kalavasis, F., & Sofos, E. (2017). Learning paths and teaching 
bridges: the emergent mathematics classroom within the open system of a 
globalised virtual social network. In G. Aldon, F. Hitt, L. Bazzini & U. Gellert 
(Eds.), Mathematics and Technology. Advances in Mathematics Education (pp. 
371-393). Dordrecht, the Netherlands: Springer. 

National Council of Teachers of Mathematics (NCTM). (1980). An agenda for action.
Reston, VA: NCTM. 

National Council of Teachers of Mathematics (NCTM). (1989). Curriculum and 
evaluation standards for school mathematics. Reston, VA: NCTM. 



Mathematics and the real world in a systemic perspective of the school 29 

Newton, I. Sr. (1867). Philosophiæ Naturalis Principia Mathematica [Mathematical 
Principles of Natural Philosophy]. (Ed. E. Halley). London: Joseph Streater for the 
Royal Society. 

Packer, M. J. (2017). Child development, understanding a cultural perspective.
London: Sage. 

Piaget, J. (1937). La construction du réel chez l'enfant [The construction of reality in 
children]. Neuchâtel, Switzerland: Delachaug et Niestlé.

Piaget, J., & Szeminska, A. (1941). La genèse du nombre chez l'enfant [The Genesis of 
Numbers in Children]. Neuchâtel, Switzerland: Delachaux and Niestlé.

Piaget, J. (1950). Introduction a l’epistemologie genetique [Introduction to Genetic 
Epistemology]. Paris: PUF.

Piaget, J. (Ed.). (1967). Logique et connaissance scientifique [Logic and Scientific 
Knowledge]. Paris: Gallimard.

Revuz, A. (1965). Mathématique moderne, mathématique vivante [Modern
mathematics, living Mathematics]. Paris: OCDL.

von Glasersfeld, E. (1987). The Construction of Knowledge. Salinas, CA: Intersystems 
Publications. 

Von Glasersfeld, E. (1995). Radical constructivism: A way of knowing and learning.
London: Falmer Press.

Watzlawick, P. (1988). L’Invention de la Reálité. Contribution au Constructivisme
[The Invented Reality. How Do We Know What We Believe We Know?]. Paris: 
Seuil.  



 

UNDERSTANDING OPTIMISATION AS A PRINCIPLE
Christine Knipping 

University of Bremen, Germany 

Optimisation problems are classic problems in mathematics and the real world. 
Since the 1980s the landscape of solving optimisation problems has 
fundamentally changed in the era of high dimensional computing capacities as 
can be used today. Numerical approaches cap analytical ones since then. This 
shift recasts currently processes in industry as well as modelling of nature, 
climate change and so forth. In order to allow students to understand how 
mathematics and specifically optimisation is used and needed today to solve 
complex application problems, such as landing a spaceship on the moon, 
controlling robots to place objects precisely or to run a smart farm, 
mathematicians and mathematics educators need to work together. Inviting 
mathematics classes from schools to the university to learn about this, is one 
way of making this knowledge and these new approaches accessible to students 
and teachers. Principles of this approach and how these can be made accessible 
to students are presented in this paper. 
MATHEMATICS AS TECHNOLOGY
Mathematics is today recognised in its specific role and basis for most scientific 
disciplines, many fields in industry and our societies. Mathematical models and 
applications are used in nearly all disciplines, particularly in science and 
engeneering, as well as in economics and medicine. The intensive use of high 
performing computers and fast technological changes in the last decades have 
accelerated the mathematisation of many areas. Mining data in enormous
quantities is possible today, which allows to simulate complex situations and to 
use mathematisations for an optimal feedback control of running systems (see 
Büskens & Wassel, 2013). Experiments become possible by modeling and 
simulations which would otherwise be too cost intensive or a waste of 
ressources. Efficient ways of solving real world problems affords experts to 
work together and to acknowledge what mathematics can contribute. Powerful 
algorithms and their smart implementation in form of software offers solutions 
in robotics, autonomous driving and aeronautics (e.g. Geffken, Knauer & 
Büskens, 2017). Introducing students and teachers to this field of mathematical 
applications and mathematical software is possible which the math fair activities 
by Prof. Büskens and Dr. Knauer (Knauer & Büskens, 2018) at the University of 
Bremen in recent years have demonstrated.  
THE MATH FAIR EXPERIMENT ON OPTIMISATION 
Providing hands-on activities with a LEGO Mindstorms vehicle, an industrial 
robot or a flight simulator helps school students to understand fundamental 
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principles of optimisation and optimal control at the math fair. These activities, 
complemented by the use of professional software and theoretical tasks provides 
them an insight into current mathematical research areas and industrial 
applications. At the same time it portrays possible professional paths for 
mathematicians, which gives students an orientation what studying mathematics 
can lead to. 
Mathematisation of real world problems is complex; modelling and simulation 
are only two parts of the whole process. Allowing students to focus on these 
parts and other key elements in this process four components have been chosen 
for some of the recently organised  math fairs at the University of Bremen: 
1. Parameter identification, 2. Nonlinear optimisation, 3. Optimal control, 
4. Optimal feedback control. 
1. Parameter identification 
Parameter identification is the focus of the first station. The relevance and 
meaning of parameters is introduced in the context of the long-term human 
interest in astronomy. It is then applied to a LEGO Mindstorms vehicle, whose 
hardware and software parameters are set by the students so that it follows 
a given path. Students investigate and experience how parameters like the 
distance apart of the wheels, the speed of the car etc. determine if the vehicle 
can follow the path or not. This allows students to practically understand the 
relevance of parameters and their significance in optimisation problems. 
2. Nonlinear optimisation 
In the context of a skiing problem – how to find the lowest point in a valley 
while avoiding trees using only local information – the theme of nonlinear 
optimisation is introduced. Mathematically the given problem is an optimisation 
problem with constraints. The mathematical conceptualisation of the skiing 
problem is essential at this point and introduces students to fundamental ideas of 
numerical solutions. The software WORHP Lab, developed by the working 
group Optimisation and Optimal Control at the University of Bremen, then 
allows the students to model, visualize and solve the given constraint problem. 
3. Optimal control 
Optimal control is experienced and thought through at the third station, where 
a parking manoeuvre of an autonomous car is discussed. The students then use 
WORHP Lab to calculate the optimal trajectory for an industrial robot, and 
experience how balancing a table tennis ball is impossible manually while 
perfectly easy using WORHP Lab. Sending the results to the real robot the 
students understand how mathematisation results in time-dependent 
optimisation. Last but not least, students are introduced to problems of feedback 
control at station 
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4. Optimal feedback control 
Given a dog’s problem of traversing a river with a current in the most direct 
way, students are introduced to central ideas of feedback control. This allows 
students to successfully manoeuvre and land on the moon in a flight simulator. 
Besides playing, conceptualising and mathematising the situation supports 
students to understand how and why feedback control is a key element of 
optimisation. 
MATHEMATICAL MODELING AND BEYOND 
Mathematical Modeling (e.g., Blum, Galbraith, Henn, & Niss, 2007, Stillman, 
Blum, & Salett Biembengut, 2015) has been discussed in mathematics education 
as an important component of mathematisation for a long time, yet optimal 
control and optimal feedback control has not yet played a prominent role in this 
discussion to our knowledge. Realistic Mathematics Education (e.g., de Lange, 
1996, Treffers, 1987) has conceptualised and examined mathematisation as 
a didactic principle for nearly half a century  now, based on fundamental 
thoughts of Freudenthal (Freudenthal, 1973). Introducing students to 
‘mathematizing unmathematical matters’ (ibid., p. 133) was and is a key concern 
of this approach. Meanwhile the ‘mathematisation-of-the-world’, e.g. in modern 
Information Technology and other high end technologies, has extended 
modeling and included simulation in engineering and industry. High 
performance computing made this possible, but the widespread trial and error 
approaches that followed had high costs as an implication. Limiting financial 
resources in the industrial and economic world led to yet another turn and in 
recent years has given mathematicians back a stronger voice and more 
prominent roles in industry. Optimisation – as a mathematizing principle –
became an indispensable component, being more rapid, fruitful and efficient in 
solving problems than mere simulation. 
While Mathematical Modeling has been introduced into school mathematical 
activities since about the 1980s, the above described activities go beyond 
modeling as discussed in mathematics education. Simulation and real time 
optimisation are core elements in these activities and lead to an integrated 
threefold approach of Modeling-Simulation-Optimisation (MSO). The MSO-
cycle is discussed for mathematics applications in Engineering, Information 
Technology as well as Natural, Economic and Social Sciences since a while (see 
Wets, 1976) and is also fundamental for the math fair activities at the University 
of Bremen. 
Finding sophisticated solutions to a wide range of discrete, continuous or 
stochastic problems is the motivation for the math fair activities which are 
presented to the school students. Even though progressive developments in 
mathematics require more complex cycles than even the MSO approach offers, 
making essential elements of such a cycle accessible to students is a good start. 
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So far this is only marginally discussed in mathematics education, this paper is
an attempt to open the discussion. To overcome a narrow view of mathematics 
as an abstract discipline, which seems still to be prominent in schooling, we as 
mathematics educators need to support the efforts of our colleagues in 
mathematics and particularly optimisation to portray a rich and more vivid 
picture of mathematics. New groundbreaking mathematical methods and ideas 
have not been popularized enough so far. This seems odd as challenging 
problems such as how to use our limited natural resources on Earth sensibly or 
building smart farms seem to be important global issues. Why not also approach 
these challenges together with students in mathematical ways? 
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THE CROWN OF THE HIMALAYAS
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This article presents a partial result of research that aimed to verify suggestions 
on an application of interdisciplinary relations of mathematics, biology, 
national history, and geographical studies at the primary level of education. 
One of the teaching situations, which is inspired by information published in 
media, is being analysed. The situation indicates how fifth graders may discover 
mutual relations among different subjects and simultaneously apply their 
mathematical knowledge in suitable real-life problems and situations. 
INTRODUCTION 
Learning tasks are often considered as part of the core of a teaching situation 
(Janík, 2013). Tasks based on media texts are placed in various social, 
geographical, historical, artistic or technical contexts and invite pupils to solve 
a particular complex problem. Therefore, the intention of such tasks is to 
motivate pupils to discover, with the ultimate aim of developing their 
competencies. A certain level of reading literacy is a prerequisite for 
understanding the content of every text. Such tasks also require sufficient 
concentration and attention. Pupils should always be able to precisely 
understand the tasks and to draw conclusions from the information included in 
them. 
THEORETICAL FRAMEWORK 
We choose the theory of Realistic Mathematics Education (Freudenthal, 1973; 
1991) as our theoretical starting point. This theory works with the idea of 
realistic word problem, i.e. a word problem which translates real-life situations 
and context into the language of mathematics. Also, Toom (1999) mentions 
“real-world problems” and stresses their importance in teaching mathematics. 
Usually, the importance of wording problems is mentioned (Siwek, 2005). The 
research of Brown, Collins & Duguid (1989) confirms that thinking and learning 
are not processes “locked in thought” but rather processes which are interactive 
in nature and as such are placed in a number of authentic and rich contexts. Palm 
(2008) studied the influence of context on the process of solution of tasks. He 
used “authentic” tasks, where authenticity was defined as having at least some 
of the following features: the tasks are related to events which can happen in real 
life, they contain questions which could be asked in real life, students must see 
their aim as obvious (just as in real life), data included in the tasks must be 
available or easily obtainable, the tasks are worded in plain words, the tasks 
must be realistic in the sense that they are related to a specific event. When such 
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tasks are solved, pupils tend to make use of their knowledge and real-life 
experience. 
The set of tasks in our research was chosen so that it could show the mutual 
relations of mathematical, reading and media literacy as a condition and 
assumption of a successful solution by pupils. It is almost impossible to separate 
school and media. Media is a factor that must be taken into account – it is 
significant and we cannot ignore or neglect it. On contrary, it should be 
incorporated into the educational process (Jůva, 1999; Frau-Meigs, 2014). In our 
case we used media as information pool – both for wording the tasks and 
looking up correct answers. Tasks, based on up-to-date topics followed by 
pupils, can be well used in this respect, because pupils find them interesting and 
like their “stories”. Pupils should be invited to analyze the texts and draw 
conclusions from them in order to successfully solve the tasks (Fuchs & 
Zelendová, 2015).
METHODOLOGY 
The aim of this article is to present the issue of potential use of media texts in 
primary mathematics and to verify the possible use of popular-scientific style in 
mathematical education of the fifth grade of primary school as a tool for 
discovering knowledge from different subjects and apply mathematical 
knowledge at the same time. 
The methodology approach is inspired by the method of critical didactic 
incidents (CDI), which is part of a qualitative methodology. CDI is based on the 
idea that practice is the basis for theory. This is applied in the immediate 
observation of pupils working which is supplemented by reflection after the 
action (Slavík et al., 2014). The author of this article took part in the observation 
of lessons in the fifth grade of the primary school and also in a collegial 
reflection with the teacher, which had the form of a discussion after sitting in the 
class. A basic condition of the approach was a complex and explicit description 
of the observed situation. Thus, we used a pedagogical–psychological and 
subject didactical approach in which the teacher was an observer and 
a coordinator of the activities for the pupils (Slavík, Janík & Najvar, 2016).
The activities of individual participants - pupils, groups, and the teacher were 
reordered by two different means - photography and video recording. The 
microanalysis of educational situations is based on the constructivism approach 
to learning and knowledge formation and also on the ultimate goal, which is 
achieving the highest possible rate of pupils’ understanding and cognitive 
activation (Rowland, Turner & Thwaites, 2014). However, we also learn which 
particular problems and epistemological obstacles are manifested in the teaching 
and learning of a distinctive learning content (Lech, Ametler & Scott, 2010). In 
this case, it was the relation between mathematical concepts and geographic 
knowledge. One of such stories is analysed in the article. 
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The introductory text adopted from media as a basis for the analysis of 
a didactic situation 

On returning to the base camp, the whole team, 
especially Jaroš, for whom it was a double 
victory, had a reason to celebrate. Not only did 
he finally succeed in scaling K2, but he also 
finished his mission that he started 15 years ago: 
scale all 14 summits above 8,000 meters. All 
eight-thousanders can be found in Himalaya and 
the person who climbs them all earns the 

imaginary Crown of the Himalayas. The club of the crowned has 33 members of 
which only 15 managed to climb without any oxygen mask support. This fifteenth 
member is Radek Jaroš, the first Czech who climbed all of the 14 tallest mountains.

Figure 1: The introductory text for a subsequent processing of the tasks. (Adapted 
from: http://www.honzatravnicek.cz/layout/images/file/abc20-S20-21_K2.pdf).

Pupils encounter the Himalayan mountain range and learn the names of 
particular summits in the text. When solving the tasks, pupils utilize the 
information in the coherent (linear) text as well as information found in the chart 
(nonlinear source of information). 
The nature of the text and the related activities create a convenient environment 
for group work. Groups were created spontaneously based on relationships in 
the class. Each group got a worksheet with instructions of the tasks for each 
pupil. The six tasks were either solved as group work or individually, based on 
how the pupils divided the work. However, in the end, the whole group had to 
present their solution together and check each other’s work to prove that each 
member was able to describe the research process and their conclusions. 
Instructions for pupils

1. Read the text carefully and answer the following questions: 
a) When did Radek Jaroš decide to climb all of the 14 eight-

thousander summits (the text was published in 2014)? 
b) How many mountaineers can claim the Crown of the Himalayas? 
c) How many of them used oxygen mask support? 
d) In what way did Czech mountaineer get to the summit? 
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2. Carefully write the names and altitudes of all of the eight-thousanders on 
cards of a suitable format. Check the correctness of data.  
Sort the cards by to their altitude, first, in ascending order, then, in 
descending order. Glue one of the orders on a piece of paper and write 
down in what order the cards are sorted.  

3. Choose some pairs of the summits and compare their altitudes. 
Then choose three summits. Which is the highest and which is the lowest 
one? 

4. It may be interesting to “play” with the altitudes by using various metric 
units. Try this. Convert the altitude of at least one of the eight-thousanders 
to km, dm, cm and mm and observe the changes of the number.  

5. Calculate the difference of height between the highest and the lowest 
mountain. Choose at least two other pairs of summits and find the 
differences in their altitudes. Write down your calculations.  

Task 1 
When answering the first question, pupils easily worked out that Jaroš decided 
to climb all of the 14 eight-thousander summits in 1999. While searching for the 
correct answer in the texts, some of the students came up with a different year 
which fell into a wider context of the task. From the chart, they learnt that he set 
his goal only after scaling Mount Everest. One pupil pointed out that: “First, he 
scaled one mountain and then he started to like it, so he decided to scale them 
all.” The group accepted his opinion.
The answers to questions b) and d) can be easily found in the text. Thirty-three 
mountaineers earned the Crown of the Himalayas (by 2014, when the text was 
published) and Jaroš managed to scale the summit without any oxygen mask 
support. Pupils commented on their different solutions, which may be because 
of the various interpretations of the phrase “in what way”. Examples of how the 
phrase was interpreted were: “He believed that he could manage”, “With lots of 
effort”, “With a group of other mountaineers.”. Not only did pupils consider the 
technical aspect of climbing the eight-thousanders (without any oxygen), but 
also other aspects of such an extremely demanding situation (i.e. support of the 
team, motivation). These aspects might promote discussions over the correct 
answer among the pupils as well as with the teacher. 
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Figure 2: Example of pupil’s work, task 1

Pupils used the subtraction 33 – 15 to work out the answer to the question c). 18 
mountaineers needed an oxygen mask support.  
Task 2 
The cards containing the names of the mountains might be put in a descending 
order: Mount Everest (8,848 m), K2 (8,611 m), Kangchenjunga (8,586 m), 
Lhotse (8,516 m), Makalu (8,463 m), Cho Oyu (8,201 m), Dhaulagiri (8,167 m), 
Manaslu (8,162 m), Nanga Parbat (8,125 m), Annapurna (8,091 m), Gasherbrum 
I (8,068 m), Broad Peak (8,047 m), Shishapanagma (8,046 m), Gasherbrum II 
(8,035 m). 
The instructions asked pupils to glue the cards to a piece of paper in one of the 
orders. In Figure 3 (“swan”) we can see an example of the result. The teacher 
assessed this work with the pupils and together they discussed its suitability, 
practicality, usability, functionality and design. It emerged that the task was 
easier for the pupils who put their cards into a line from left to right or right to 
left. Groups which chose to glue the cards into columns arranging the cards from 
the top of the page to the bottom had problems assessing the ascending or 
descending order of the cards. Several times they have done the mistake by 
assessing the data as if they would read and sort them as text (in rows). The 
problem of the ordering the cards is on the gluing, since the pupils cannot try 
and eventually change, but it can be also in the ‘swan’ since it is difficult read 
the altitude in this artefact. 

Figure 1: Ordering cards with the names of the mountains 
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Task 3 
Pupils used their knowledge of comparing two (three) four–digit numbers using 
the decimal system. If the numbers are written by placing the digit in the 
thousands place (8) it is easier to see the significance of the digits in the places 
behind the decimal place. Pupils suitably used the descending order from the 
previous task.  
Task 4 
Let us choose Makalu (8,463 m) as an example. If we convert its height from 
meters to kilometres, we get 8.463 km, which can be rounded to 8.5 km. The 
height of the mountain can be converted to decimetres (84,630 dm), centimetres 
(846,300 cm), and to millimetres (8,463,000 mm). 
The difficulty of this task (converting the altitude to kilometres, decimetres,
centimetres and millimetres) is to decide which number should be rounded. 
Numbers containing the digit 0 proved to be more complicated for pupils. Figure 
3 shows how one pupil did not consider the digit 0 in the hundreds place and 
incorrectly rounded the answer when determining the mountain’s altitude in 
kilometres. Then he was asked by the teacher to read his answer. He said: “8 
thousand kilometres and 35 meters”. The mistake was clarified when the teacher 
drew the pupil’s attention to it and encouraged the pupil to convert his number 
back to meters. 

Figure 4: Incorrect conversion to kilometres 

Various methods of solving the task occurred when converting the altitude to 
kilometres. The answer is a decimal number; however, pupils of the primary 
school have little experience with this concept. They might get the height 8 km 
if they used rounding. Sometimes the metric units were combined (Figure ): 

Figure 5: Converting the altitude of the mountain into different metric units 

The remaining two tasks are focused on calculating the difference of altitude 
between the highest and the lowest mountain and making a graph of journey of 
Jaroš over the Himalayas. 
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Task 5 
The height difference between the highest and lowest mountain, i.e. Mount 
Everest and Gashenbrun II, is calculated as 8,848 – 8,035 = 813. Most of the 
pupils subtracted the numbers in writing. The teacher suggested a very suitable 
simplification of the task as both mountains are eight-thousanders, i.e. it is 
enough to calculate 848 – 35 (or even 48 – 35). In Figure 6 we can see the 
calculation of a student who compared the altitudes of Mount Everest and K2. 

Figure 6: Numerical calculation of height difference 

CONCLUSIONS 
Our research deals with a selection of topics based on media reports (Nováková 
et al., 2015). Analysis of its outcomes made use of participation in lessons and 
after-lesson feedback. In our article we discussed tasks and student solutions of 
one specific topic during one specific lesson. We focused on the issue of 
didactical construction of the educational content of tasks and at the same how 
to use the activity of pupils to form their knowledge (Slavík, Janík & Najvar, 
2016) 
By means of the introductory text, pupils are invited to learn about a specific 
sport-climbing - as they learn new geographic terms. By understanding a text 
from printed media or a magazine, pupils prove that they have sufficient level of 
reading literacy. By solving the tasks, pupils prove their mathematical literacy. 
Moreover, reading and mathematical literacy are interconnected through the 
analysed text. 
The development of mathematical and reading literacy is one of the basic aims 
of primary education. Nevertheless, these literacies are usually developed 
separately, in the lessons of mathematics and Czech language. The approach of 
the research enables teachers to develop mathematical and reading literacy 
simultaneously, “hand in hand”, using activities aimed at specific topics taken 
from media (newspapers, magazines, etc.) which are highly motivating.  
The research showed that, in order for complex tasks involving problem solving 
based on media texts to be successful, it is crucial that pupils are able to: 

a) Decode a text from various fields and contexts (social, geographical, 
technical, historical, etc.), read with understanding and employ existing 
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knowledge and experience, deduce conclusions, and look up information 
needed for solving the task in the text, 

b) Transfer the situations and problems in the wording of the task into 
mathematical language, 

c) Use drafts, graphs and diagrams to represent the task, 
d) Read linear and non-linear sources (charts, graphs), interpret data and use 

the data for solving the problems, 
e) Properly use mathematical terms and symbols to express themselves 

adequately, both in writing and orally. 
My experience showed some problems as well. I consider pupils’ motivation 
problematic. For teachers, the problems may be caused by the demands on their 
mathematical knowledge and skills and their professional teaching 
competencies. The demands of the lesson planning and organization are 
significant as well as material sources and relating limited possibilities of 
realization in the everyday educational reality. Despite the fact that the teacher 
had devised the scenario, it is inevitable that the realization of the activity need 
not meet the expectations resulting in the aims not being fulfilled. For these 
reasons, the creativity and flexibility of the teacher to use this situation in 
a lesson are also significant. 
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Use of word problems in co-operative teaching at primary and secondary school].
Prague: JČMF.

Janík, T. (2017). From content to meaning: Semantics of teaching in the tradition of 
Bildungs-centred didactics. In J. Novotná & H. Moraová (Eds.), International 
Symposium Elementary Maths Teaching: Equity and diversity in elementary 
mathematics education (pp. 31-41). Prague: Charles University, Faculty of 
Education.  



42 EVA NOVÁKOVÁ

Jůva, V. (1999). Úvod do pedagogiky [Introduction to pedagogy]. Brno: Paido. 
Lech, J., Ametler J., & Scott P. (2010).  Establishing and communicating knowledge 

about teaching and learning scientific content: The role of design briefs. In K. 
Kortland & K. Klassen (Eds.), Designing Theory based teaching learning 
sequences for science education (pp. 7-23). Utrecht: CD-Press.  

Nováková, E., Blažková, B., Duňková, J., & Jónová, Z. (2015). Ilustrativní texty 
a aktivity pro žáky 1. stupně ZŠ. In E. Fuchs & E. Zelendová. (Eds.), Matematika 
v médiích. Využiti slovních úloh při kooperativní výuce na základních a středních 
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Music and mathematics – these two significantly different subjects belong to the 
two seemingly separate areas of science and humanities – culture and art. 
Despite this, multiple common elements and analogies between the two are 
known, as well as the use of mathematics in music. The opposite is, however, 
rarely discussed – the use of music in mathematics, including the aspect of 
teaching. This article proposes an exemplary approach, including the results of 
an initial study concerning the use of music in mathematics education. The 
research presented in this article shows the possibility and effectiveness of using 
music to teach geometric transformations of the plane (reflection symmetry and 
point reflection) at 6th-7th elementary school grade levels. The research also 
presents a preliminary diagnosis as to whether teachers of mathematics and 
music theory as well as elementary-level music school students realize the 
possibility of knowledge transfer between mathematics and music. The 
mathematics teacher working in the music school has not made use of the 
possibility of transferring musical knowledge to mathematics before. 
INTRODUCTION – MUSIC AND MATHEMATICS  
Mathematics is the language of many branches of science, it is therefore not 
surprising to find possible applications of mathematics in music. These uses 
concern multiple areas of music and are the subject of multiple scientific studies. 
For instance, the research monograph Matematyczna koncepcja muzyki
[Mathematical concept of music] (Sudak, 1992) presents i.a. the issue of 
considering music to be a mathematics-based science, a number-based approach 
to sounds and intervals, the mathematical aspects of musical systems, and the 
mathematical classification of intervals. Mathematics is also present in musical 
composition – both in the general structure of a piece of music as well as its 
mathematical compositional techniques, such as dodecaphony. An example of 
using mathematics to analyze music, especially by making use of set theory in 
the analysis of musical works is Lindstedt’s (2004) monograph as well as other 
publications, concerning e.g. the analysis of the works of Mozart (Grębski, 
2014). Sudak (1992) also discusses the mathematical and aesthetic aspects of 
this issue and the fall of the old definition of music, including an analysis of the 
new one. Attempts were also made at a comprehensive definition of music 
theory as axiomatic theory, including the use of advanced notions and algebraic 
structures (Wille, 1985).  
Various publications concerning the relations between mathematics and music 
can also be found in English-language works.  
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MUSIC AND GEOMETRIC TRANSFORMATIONS  
In this work, special attention is given to the parallels between point reflection 
and reflection symmetry and music. Brożek’s (2004) monograph is an example 
of a rare analysis. The mathematics didactics equivalent would e.g. be one of the 
CIEAEM 57 conference presentations (Galante, 2006). 
The use of mathematics in geometric transformations teaching is inspired by 
musical pieces which make significant use of polyphony and imitation. 
Polyphony is a type of musical texture consisting of two or more simultaneous 
melodic lines called voices. Imitation is the repetition and transformation of the 
melody of a given voice. The most elaborate polyphonic musical technique 
which makes use of imitation is the fugue, and the undisputed master of 
polyphony was Johann Sebastian Bach, whose masterful precision and 
compositional skills amaze to this day. 
In such pieces, a theme is presented at the beginning by one of the voices. It is 
a short, usually two-bar melody. Further in the piece, the melody recurs in 
different voices and is also transformed in each of them, all in compliance with 
various strict rules of harmony and musical structure as well as melodic 
transformation techniques.  
In music theory, types of melodic transformations are e.g. inversion, retrograde,
and retrograde inversion. These terms are taught to modern music school 
students during such music-related subjects as “rules of music” or, in the later 
years, “musical forms,” where the students also analyse particular fugues.   
The following research is based on the fact that the aforementioned melodic 
transformations have mathematical equivalents – transformations of the plane. 
Retrograde and inversion correspond to reflection symmetry (vertical and 
horizontal, respectively), while retrograde inversion is analogous to point 
reflection - the composition of two axial symmetries, with the perpendicular 
axis. The aforementioned melodic transformations are presented in Figure 1. 

Figure 1: Musical theme and its retrograde, inversion, and retrograde inversion  
(comp. J. Sajka) 
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AIM AND METHODOLOGY OF RESEARCH  
The aim of the following research is the attempt at providing a preliminary 
answer to three wide-ranging research question sets:  

Questions 1. Do music school students, mathematics teachers in music 
schools, and music rules teachers notice the relations between mathematics 
and music? Do they notice the possibility of making use of knowledge 
transfer between mathematics and music? If so, is cross-referencing being 
used in class for both subjects? 
Questions 2. How could geometric transformation teaching (e.g. reflection 
symmetry and point reflection) include music? Is such a didactic proposition 
possible to be implemented? 
Questions 3. Can the demonstration of the melodic transformation model be 
effective in the scope of geometric transformation teaching? Can music 
school students correct their mistakes in the scope of reflection symmetry 
and point reflection after being presented with the parallels between these 
geometric transformations and their melodic transformation equivalents? 

Empirical research was carried out in order to acquire the answers to these 
questions. This article presents a didactic proposition which shows how the 
analysis of musical works and themes to be used in music schools as a new 
model of facilitating the mathematical understanding of reflection symmetry and 
point reflection. This proposition was verified in practice. 
One 7th grade elementary-level music school class was invited to take part in 
the study. The research was carried out in two parts, entitled the preparation 
phase and the main phase, respectively.  
The aim of the preparation phase was mainly to acquire the answers to 
Questions 1, particularly: Do the students, their mathematics teachers, and their 
music rules teachers notice the relations between mathematics and music? Were 
the relations between reflection symmetry, point reflection, and melodic 
transformation presented during mathematics and music lessons? 
The aim of the main phase was to acquire the answers to Questions 2 – showing 
the parallels between these topics and the possibility of using musical 
knowledge to teach mathematical transformations – reflection symmetry and 
point reflection. To this end, a lesson plan was prepared and an experimental 
lesson was conducted.  
The impact and effectiveness of the lesson was checked by assessing the 
students’ mathematical knowledge before and after the lesson – this was the 
method of acquiring the answers to Questions 3. The mathematical knowledge 
regarding reflection symmetry and point reflection of the students was assessed 
by using Research Sheet 1 before the lesson. After the lesson, Research Sheet 2 
was used to assess whether knowledge transfer had occurred and whether the 
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students are able to autonomously make use of melodic transformations to 
correct their own mistakes in symmetry-related mathematics tasks. 
The general schema of the research is presented in Table 1. 

Preparatory 
study

I. Questionnaire for 7th grade students regarding making use of 
the relations between mathematics and music in learning 
mathematics and music rules as well as being aware of the 
parallels between mathematics and music.
II. Questionnaire for mathematics teacher regarding identifying 
the relations in knowledge between mathematics and music as 
well as the hitherto use of music during mathematics lessons.
III. Questionnaire for music rules teacher regarding identifying 
the relations in knowledge between mathematics and music as 
well as the hitherto use of mathematics during music lessons.

Main study

IV. Research Sheet 1

V. Lesson

VI. Research Sheet 2

Table 1: Research schema

RESULTS AND ANALYSIS OF PREPARATORY PHASE  
Student questionnaire 
Fifteen students took part in this part of the study. The questions included in the 
questionnaire were as follows: 

1) Have you ever made use of mathematical knowledge or noticed anything related 
to mathematics during your music history or music rules lessons? YES/NO. 
If YES, elaborate: 
2) Have you ever used musical knowledge when solving mathematics tasks? 
YES/NO. If YES, how? 
3) Do you notice any similarities between mathematics and music? YES/NO. 
If YES, list them: 

4) What do you think, can learning music influence learning mathematics? 
YES/NO. If YES, elaborate:
5) What do you think, can learning mathematics influence learning music? 
YES/NO. If YES, elaborate:

The analysis of the data in Figure 2 shows that 9 students declared their 
deliberate use of mathematical knowledge during music history or music rules 
lessons.  
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Figure 2: Answers for further questions from the Student questionnaire (N=15)

These students noted that they made use of mathematical knowledge when 
learning about fundamentals and overtones, frequencies, intervals, triads, and 
tetrachords.  
However, in the case of question 2, only one student provided an affirmative 
answer, writing: “Only (a basic example) in relation to fractions – I compared 
them to intervals.” 
Eight students provided an affirmative answer to question 3.  
Six students state that learning music could influence learning mathematics, 
although their reasoning is very broad, e.g. “Music helps to develop memory 
and intelligence, which is useful when learning mathematics.”
Eight students agreed that learning mathematics influences learning music, e.g. 
“Mathematics helps significantly with creating chords and notation.”
None of the students noticed the similarities between melodic and geometric 
transformations on their own. 
Questionnaires for mathematics and music rules teachers 
The teachers were asked about their teaching as well as making use of musical 
knowledge during mathematics lessons and mathematics knowledge during 
music rules lessons.  
Unfortunately, the teachers did not come off well when compared to the 
students. The mathematics teacher circled “NO” regarding all questions 
contained in the questionnaire, stating that he has never referenced music during 
mathematics lessons in the case of music school students. In particular, he has 
not been making use of melodic transformation when teaching about reflection 
symmetry and point reflection. He has also not noticed the students 
spontaneously refer to music during mathematics lessons. 
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The music rules teacher also circled “NO” regarding the questions related to 
referring to mathematics when teaching music rules. In particular, he has not 
been presenting the similarities between melodic transformation and reflection 
symmetry and point reflection. He did, however, provide an affirmative answer 
to the questions regarding the students noticing the parallels between 
mathematics and music on their own: when building intervals, teaching about 
fundamentals and overtones, and analysing the frequencies of particular sounds. 
He noted that the students noticed other relations between sound and 
mathematics.  
STRUCTURE, RESULTS, AND ANALYSIS OF MAIN PHASE 
Sheet I and Sheet II were analogous and consisted of 22 and 23 tasks 
respectively, differing only in the numerical data and the shapes of the 
geometric figures. Table 2 presents the objectives of particular tasks. 
Sheet 1 Sheet 2 Objectives of task

Tasks 1, 2, 14, 15, 23 The student is able to recognize geometric shapes which are 
axially or centrally symmetric.

Tasks 3, 4 The student is able to draw shapes which are reflected 
across a given line or through a given point.

Task 5 The student is able to draw the symmetry axis of a shape 
and decide whether it exists.

Tasks 6, 7, 8
The student is able to mark the point which is symmetrical 
across the axes OX and OY or  across the beginning of the 
coordinate system.

Task 9
The student is able to provide the coordinates of the point 
transformed across the axes OX or OY or across the 
beginning of the coordinate system.

Task 10

The student is able to decide whether the drawn line is the 
symmetry axis of a shape consisting of two points.
Additionally, in Sheet 2, the student is able to decide 
whether the drawn line is the symmetry axis of a segment.

Task 11 Task 12 The student is able to draw a symmetry axis so that the two 
given points are symmetrical in relation to one another.

Task 12 Task 11 The student is able to decide which points are images of 
point symmetry.

Task 13 The student is able to decide whether the drawn line is the 
symmetry axis of a shape.

Task 16 The student is able to draw the symmetry axis of a shape 
and decide whether it exists. 

Task 17 The student is able to draw a shape which is symmetrical to 
the given shape through a given point.

Task 18 The student is able to draw a shape which is symmetrical to 
the given shape through a given line.
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Tasks 19, 20, 21, 22

The student is able to draw a symmetry axis and define how 
many axes of symmetry there are in a:
- segment, ray, circle, and rectangle, and is able to draw 
symmetry axes to them. (Sheet 1)
- line, ray, disk, equilateral triangle. (Sheet 2)

Table 2: Objectives of the particular tasks from the Research Sheets I and II

The survey which made use of Sheet 1 was carried out before the experimental 
lesson. The students’ results are presented in the graph in Figure 3. 

Figure 3: Percentage of correct answers to tasks from Sheet I (N=15) 

The analysis of the results in Sheet 1 shows that the students had difficulties 
understanding the concepts of reflection symmetry and point reflection. 
A common mistake was an incorrect transformation of a shape. When drawing 
a point-symmetrical geometrical shape, the students often transformed the shape 
in relation to a vertical line.  
Most of the students were also mistaken in regard to the symmetry axis, 
considering it a line between two points (shapes). The task regarding the 
coordinates of the point symmetrical to the given point in relation to the axes 
OX and OY as well as point (0,0) also turned out to be very difficult. The 
students provided the wrong coordinates. 
An experimental music lesson followed the Sheet 1 survey, intentionally 
conducted in regard to the timetable of the class so as to not coincide with 
a mathematics or music lesson. This lesson consisted almost exclusively of 
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music-related content – playing, singing, notation of melodies. The types of 
melodic transformation (retrograde, inversion, and retrograde inversion) were 
revised during the lesson.  
The students created their own melodic transformations and recognized them by 
ear. The only reference to mathematics consisted of showing the similarities 
between inversion and retrograde and reflection symmetry as well as retrograde 
inversion and point reflection. The terminology used during the lesson was, 
however, strictly music-related. 
Following the lesson, the survey which made use of Sheet 2 was carried out. The 
results for particular tasks are presented in Figure 4. 

Figure 4: Percentage of correct answers to tasks from Sheet 2 (N=15) 

Over 75% of the students’ answers were correct for most tasks contained in 
Sheet 2. Therefore, after the lesson concerning the inversion, retrograde, and 
retrograde inversion melodic transformations was carried out, the amount of 
properly solved tasks undoubtedly increased.  
It is crucial in regard to this study that several students spontaneously related to 
musical terms when solving the mathematics tasks contained in Sheet 2. An 
example of such an answer is presented in Figure 5.  
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Figure 5: The student’s explanation: “Yes, because retrograde inversion is used.”

This proves that the melodic transformation model was useful for the student in 
the context of point reflection. The same student’s drawing and exemplary 
reasoning in regard to the shapes not being symmetrical in relation to point S 
was similar (Figure 6).

Figure 6: The student’s explanation: “No, because only the retrograde transformation 
is used.”

SUMMARY AND CONCLUSIONS 
The students of a 7th grade elementary-level music school class were able to 
notice multiple similarities between mathematics and music. They noticed 
mathematics in music in the scope of building intervals, the frequencies, 
fundamentals, and overtones of sounds, and rhymes. They stated that music 
influences learning mathematics by improving memory and intelligence.  
However, neither the mathematics teacher nor the music teacher have ever made 
use of the relations between these two subjects during their lessons.  
Both the teachers as well as the students did not notice the parallels between 
melodic transformations and geometric transformations of the plane in the form 
of reflection symmetry and point reflection.  
An experimental music lesson which showed these similarities resulted in the 
students spontaneously making use of this model when solving the mathematics 
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tasks contained in Sheet 2. A spontaneous knowledge transfer from music to 
mathematics had taken place. This allowed the students to correct their mistakes 
in tasks concerning reflection symmetry and point reflection, greatly improving 
their results in the mathematics tasks. Some of the students even made use of 
musical terminology in their explanations concerning the mathematics tasks. 
The study shows that, in the case of music school students, it is beneficial to 
make use of the musical model of melodic transformation as an additional, 
different way of presenting the concept of reflection symmetry and point 
reflection. In the case of the students who took part in the study, this proved to 
be both effective in a mathematical context as well as enjoyable. The students 
were very satisfied with the experimental lesson which showed them 
a previously unknown type of relationship between mathematics and music, 
considering the lesson very interesting.  
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DOES THE CURRENCY NAME MATTER?
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One of the research questions answered in this article came up as we analysed 
some TIMSS and PISA tasks, where a name of fictive currency (ZED) was used.
Does the use of the fictive currency name influence pupils’ performance? Is the 
effect significant? We selected 4 different tasks in two variants and tested pupils 
in grades 3 (task 3B, N=173), 4 and 5 (task 4A, N=700) and 7 (task 7A and 7C,
N=255). The tasks were assigned in pairs – one in the local currency (crowns or 
CZK) and the other in currency ZED. The results were mixed: while we found a 
significant difference for one task in grade 7, the differences for other tasks and 
grades were not significant. We also investigate the pupils’ coordination of units 
and analyse their main solving strategies and mistakes in these tasks.
THE AIM OF THE RESEARCH
When looking at the results of PISA and TIMSS, we can see that most of the 
tasks, where a currency is used, uses a fictive currency called ZED. This is done 
so as not to give any country the advantage of everyday familiarity with the 
currency while for other countries it would be almost unknown. But what is the 
effect of using such a fictive currency on the pupils´ performance? We know 
from the test administrators that pupils often asked what ZED means, but is the 
effect significant? We are not interested at this moment in the situation when 
some currency exchange rate is needed. We want to investigate only those 
mathematical tasks that deal with the same currency and where the pupils need 
to coordinate units such as value per coin or price per item with the number of 
coins and the number of items.  
Therefore, we decided to investigate the issue and look for answers to the 
following questions: Does the use of a fictive currency in a word problem 
influence performance of pupils? What strategies and problems pupils display 
when coordinating the units? Is there any difference in the strategies and errors 
based on the currency used in the task? 
THEORETICAL FRAMEWORK AND LITERATURE REVIEW 
When children start developing their number sense, the first notion they get 
familiar with is the process and notion of count (3 cars etc.). Later, the concept 
develops further to encompass value or measure. This value must be always 
accompanied by a unit (Hejný, 2014). For example – two coins (two represents 
a count) can have a value of 4 crowns, because each of them has a value of two 
crowns. Local currency is usually the first environment where children 
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encounter the difference between count and value and where the concept of unit 
of units becomes necessary.  
The concept of number thus develops from count through units composed of 
other units to coordination and iteration of abstract units. This is very important 
for many areas of mathematics: multi-digit numbers, arithmetical operations, 
fractions, geometrical measurement, etc. (Langrall, Mooney, Nisbet & Jones, 
2008).  
Our research question is aimed at finding whether the name of the unit used in 
the word problem makes any difference. While there is plentiful research on the 
development and coordination of units (Curry, Mitchelmore & Outhred, 2006;
Wheatley & Reynolds, 1996), units relations and transformations, units 
estimation when using standard or non-standard units (Jones, Gardner, Taylor &
Andre, 2012), or on how the everyday experience with various units influences 
the mathematical skills acquired (Resnick, 1987), we have found no research 
that would explicitly deal with the influence of the unit name (or the familiarity 
thereof) in word problems.  
It is generally acknowledged that numbers and quantities are not the same thing 
(Nunes et al., 2016). For example, Olive and Caglayan (2008) state that 
a quantity is some quality of an object that can be measured (in some units). The 
actual magnitude (or value) of the given quantity is the number of specified 
units. Pupils often associate the algebraic symbol they use with the name of the 
quantity rather than its magnitude – see also (Thompson, 1995). The authors 
further distinguish between an extensive quantity, which can be counted or 
measured directly, and an intensive quantity, which is derived from the 
multiplicative combination of two like or unlike quantities (like meters per 
second). The task they used for their research is similar to the tasks we selected 
for our investigation:  

Mrs. Speedy keeps coins for paying the toll […]. She presently has three more 
dimes than nickels and two fewer quarters than nickels. The total value of the coins 
is $5.40. Find the number of each type of coin that she has.

In this task the monetary values of specific coins are intensive quantities (they 
are the values per coin) and the numbers of each type of coin and total value are 
extensive quantities. The coordination between those quantities – number of 
coins, value per coin, value of all coins of given type and value of all coins –
represents a problem for pupils, the same holds for associating appropriate units
with the different quantities. The unit coordination in this case takes place on 
three levels: a single coin is the first level, the value of the single coin and the 
number of those single coins are related at a second level (a composite unit of 
units), whereas establishing the value of all the coins (of different types, using 
only the number of nickels as unknown – i.e., considering the relationships 
between the number of various coins) requires a third level of unit coordination 
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(a composed unit of units of units) (Olive & Caglayan, 2008). This unit 
coordination on three levels seems to be necessary for correctly solving this type 
of problem. 
Looking at the problem of unit names from the language perspective, we can see 
the new unit name as unknown word (or unknown abbreviation). Pupils have to 
derive its meaning based on the context of the task – if the task says: “Peter paid 
17 ZEDs for the ice cone”, it suggests that the abbreviation ZED must be 
a currency name. When analysing task difficulty, White (2010) mentions low 
frequency words as one of the factors that increase the task difficulty (p. 86). 
The same holds for abbreviations – the task difficulty increases with the use of 
abbreviations. However, the meaning of abbreviations or the low frequency 
words can be clarified by the surrounding text and thus the impact may be 
reduced (p. 92). 
Vincent (2009) investigated the influence of non-standard words presence and 
the task length on the performance of 94 secondary pupils. She found that these 
language factors influenced the performance significantly. Sepeng and 
Madzorera (2014) researched the same age group and found that the knowledge 
of mathematical vocabulary was quite strongly correlated with success in word 
problem solving.  
METHODOLOGY 
Tasks and their a priori analysis 
Each of the three tasks below was used in two versions, they both had exactly 
the same wording only the word “crowns” was replaced by word “zeds” in the 
second version. The first number in the task code represents the grade, for which 
it was created, the last number is version – 1 for crowns and 2 denotes zeds. For 
each task, only version 1 is shown. In version 2 tasks, there is unfamiliar / 
unknown word “zeds”, in task 3B1 and 7A1 there are additional unknown name 
of coins: “two-zed coins” and “five-zed coins”1. Pupils in grade 7 solved two 
tasks of this type – i.e. each pupil solved one task in version 1 (crowns) and the 
other in version 2 (zeds), while in other grades each pupil solved only either 
version 1 or version 2. The position of the variants within the versions of the test 
varied to account for any undue influence of the order of tasks.  

3B1: Dad had 6 coins in his pocket. These were coins with the value of 2 crowns 
and 5 crowns. He promised us an ice cone if we guess correctly how many of each 
kind of coins he has. He said that altogether he had 18 crowns. How many two-
crown coins and how many five-crown coins did he have?

The pupils have to work with units of units (two-crown coins or two-zed coins). 
Two different quantities are present – the number of coins and their value. The 
task is similar in a way to task 7C1, it may require the coordination of units on 
                                                
1 In Czech language, the name of coins is one word. 
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three levels (i.e., formulating equation like 5 x + 2 (6 – x) = 18), but as Grade 3 
pupils are not familiar with linear equations, we expect them to solve the task by 
trial and error method. 

4A1: Benjamin and Nicolas are saving money for a trip. Benjamin will put aside 3 
crowns every day and Nikolas 5 crowns. After how many days will Nicolas have 
exactly 10 crowns more than Benjamin?  

In this task, the unit of units are the number of crowns saved per day for each 
boy (or the difference thereof). They must be multiplied by the number of days 
to get the total value saved. No real objects (coins) are referred to, so the impact 
of the unknown currency name might not be that significant. 

7A1: Benjamin is collecting only five-crown coins and Nicolas only two-crown 
coins. Nicolas has 10 coins more but 40 crowns less. How many crowns does 
Benjamin have? 

It is again important to distinguish between the number of coins, value per coin 
and the value of all the coins. Value per coin can be deduced either from 
everyday knowledge – in case of crowns – or from the coin names and analogy 
with local coin names. The linear equation hidden in this task is: 2(x + 10) = 
5x – 40 where x represents the number of Benjmin’s coins. 

7C1: Joseph knows that a pen costs 1 crown more than a pencil. His friend paid 17 
crowns and bought 2 pens and 3 pencils. How many crowns will Joseph need to buy 
1 pen and 2 pencils? (A TIMSS task, we only did not explicitly ask pupils to write 
down their calculations.) 

This task leads to two equations that can be reduced to one equation with 
a single unknown. The quantities are the cost of the objects (intensive quantity 
expressed as crowns per pen, crowns per pencil) and extensive quantities – the 
total amount paid and the number of objects (i.e., pens or pencils). Some 
relations are known between the price of the pen and the price of the pencil 
which might require the coordination of units on three levels (Olive & Caglayan, 
2008) and lead to the equation: 2 (x + 1) + 3 x = 17. Again, we expect pupils to 
use mainly heuristic methods. Also, the task consists of two steps: finding the 
price of a pen and a pencil and the price of 1 pen + 2 pencils. We expect that 
some pupils may forget this second step. 
Participants and procedure 
The present study is part of wider research within the Grant Agency of the 
Czech Republic (GA ČR) project aimed at investigating variables influencing 
the difficulty of word problems. The participants were 173 3rd graders, 
362 4th graders, 339 5th graders and 255 7th graders from four Prague primary 
schools purposefully sampled within the above project. These are medium size 
schools, with no specialisation, attended by children from their immediate 
surroundings. No selection of pupils was made, the whole classes participated.  
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To make sure that the groups of pupils that solved different versions of the test 
are equally able, initial testing was done within the project, each class was 
divided into equally abled groups based on the results if this initial testing. The 
tasks we focus on in this report were part of the third round of testing that took 
place in November 2017. The tests were assigned by trained helpers. The pupils’ 
mathematics teachers were present in the lesson and observed the pupils as well. 
The pupils were asked to write all their calculations down on the test sheet. They 
were not allowed to use calculators. The test took 20 to 40 minutes.
Data analysis 
Our study is of a mixed methodology design, consisting of quantitative and 
qualitative parts. For the quantitative analysis, the pupils’ written solutions were
analysed by trained helpers and the authors. The scoring was as follows: 0 points 
(no solution, incorrect solution or partially correct solution), 1 point (correct 
problem model (Kintsch & Greeno, 1985) with a numerical mistake or correct 
solution). To analyse the parameters of problems, we used independent samples 
t-test in SPSS software. All the samples are large enough so that the assumption 
on normality of average success rate is justified.  
Further, a qualitative analysis of the data was made. We carefully analysed the 
pupils’ written solutions for their mistakes and solving strategies, using both our 
assumptions of mistakes and strategies which might be expected for the 
problems from our analysis a priori and techniques of grounded theory to find 
any phenomena unforeseen by us. In this case, we created a spreadsheet in 
which for each pupil’s solution, a line was filled with the phenomena seen in it. 
RESULTS 
Quantitative analysis 

3B 4A (gr 4) 4A (gr 5) 7A 7C
Version CZK ZED CZK ZED CZK ZED CZK ZED CZK ZED
Solved (%) 69.7 60.7 50.3 44.2 61.5 59.4 20.8 17.5 68.5 49.6

N 89 84 181 181 169 170 125 130 130 125
Diff 8.9% 6.1% 2.1% 3.3% 18.9%

p-value 0.220 0.208 0.690 0.437 0.002

Table 1: Success rates of pupils in selected tasks

Table 1 shows average success rates for both versions of the tasks. The p-values 
for the hypothesis that the average success rates are the same for both versions 
are shown in the last row. We can see that the difference is only significant for 
task 7C. Task 7A was complementary to this task (pupils who solved 7C in zeds, 
solved 7A in crowns and vice versa). But the difference for 7A turned out to be 
insignificant. Task 7A also proved to be much more difficult compared to all 
other tasks. Although the results are not significantly different in four of the 
tasks, the simple average success rate is higher for the version 1 (in crowns) in 
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all of them. The sample in case of task 3B was relatively small and the 
difference may turn out as significant if a larger sample was used. Moreover, the 
pupils in approximately half of classes asked what the name “zed” means. It was 
not obvious for many of them that it is a currency name. Some influence seems 
to be apparent.  
When looking for an explanation of the difference in 7C, we also double 
checked the ability of pupils in both groups. For this we used Item Response 
Theory (or IRT) in IRTpro 3 software. A two-parameter logistic model was used 
(Lord 1980). The pupils’ ability (Θ) was calculated for each pupil based on 
initial testing and the first two rounds of testing which they had undergone. 
Average Θ were very close to 0 for all groups (data are not shown here due to 
the space constraints) and the differences between groups were not significant. 
Further, we split the pupils into three groups based on their ability (Θ) – lower 
third (L), middle third (M) and upper third (U). The difference in performance 
appears in all three groups but the largest difference in performance was in the 
upper third (Table 2). More thorough analysis of strategies and mistakes follows 
in the qualitative section. 

CZK ZED
N Correct in % No s. N Correct in % No s 

Low 47 22 47% 5 37 12 32% 5
Med 39 26 67% 4 44 21 48% 6
High 44 41 93% 0 44 29 66% 3
Total 130 89 68% 9 125 62 50% 14

Table 2:  Differences in success in task 7C per ability groups (No s. = No solution)

Qualitative analysis – strategies and mistakes 
Due to the space constraints, we will describe the most frequent solving 
strategies only for tasks 7A, 7C and 3B. In task 3B, we saw mainly numerical 
solving strategies consisting in trying various combinations of numbers 2 and 5 
until the required sum was reached. This strategy was used by 59 pupils out of 
173; only 9 of these were not successful. Other 69 pupils just wrote down their 
result without mentioning any calculation, 14 were not successful. Those 
strategies were expected since pupils in this grade do not possess other tools to 
solve this task. The majority of pupils with the numerical strategy used repeated 
addition in their calculations, only 20 expressed the computation as two 
multiplications – the number of those pupils was the same in both groups. 31 
pupils also used pictorial representations of the coins which probably helped 
them in coordinating the units. 
Only 11 pupils did not try to solve the task – more in the zed group (8), but the 
numbers are too low to consider the significance of the difference. There were 
only a few coordination mistakes (9) in total – pupils, for example, added the 
total value of coins to the number of coins. The frequency of this type of error 
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was approximately the same in both groups. More than 18% of pupils (32) used 
mathematical operations which did not correspond to the situation. Nineteen of 
them belong to the zed group, however, the difference is not significant. 
Ignoring at least one condition (either the total number of coins or the total value 
of coins) was observed in 17 cases, while 12 of them are in the crown group 
(13% of those who tried to solve the task compared to 7% in zed group). 
Task 7A proved to be much more difficult for the pupils – only 52 pupils (20%) 
solved it correctly. The most effective solving strategy was the trial and error 
method (36 pupils). Most often the pupils calculated the total value of coins for 
each boy for the corresponding number of coins (i.e., n and n + 10) and were 
looking for the difference of 40 between the values. Some of the pupils listed 
multiples of 2 and 5 and were looking for a difference between these pairs of 
values (22 pupils). Often, they focused their attention on multiples of 10 
(probably because the difference in values is also a multiple of ten). This 
strategy did not always lead to a correct solution since the rows of multiples 
were not properly coordinated. There was no other successful strategy that we 
could recognise from the written solutions (some of the pupils wrote only the 
results). 
More than 25% of pupils did not try to solve the task. Here we can see 
a significant difference between variants – 43 pupils did not try to solve the task 
with zeds, compared to 23 for the task with crowns. One source of difficulty 
might be that values given in the text are in the role of operators (expressing 
how much more or less one of the boys has) and there is no fixed value to be 
used as a starting point. We can illustrate that by the fact that the “operator 
error” (i.e. working with “N. has 10 coins” instead of “N. has 10 coins more”) 
was quite frequent in this task: it is evident in the solution of 20 pupils. 
Interestingly, the error appeared more often in the crown group (12% of those 
who try to solve the task) than in the zed group (8%). Another source of the 
difficulty lies in the coordination between the value of coin, the number of coins 
and the total value of coins. It became a problem for 34 pupils – most often they 
mixed the number of coins with their total value. This error did not occur in case 
of task 7C when the coordination required was between price per item, the 
number of items, the price for all items. The frequency of this error was the 
same in both groups.  
For task 7C, a lot of pupils (118 out of 155) used some kind of “numeric” 
strategy. Some of them split the number 17 (total amount paid) into two parts 
like: 9+8 or 7+10 or 6+11 and tried to fit 2, resp. 3, numbers within each of the 
parts. Some of the pupils did not write down anything as they did all the 
corresponding calculations in their heads at this stage – only the correct price 
per pen and pencil is noted. This numerical method often overlapped with the 
trial and error method, when pupils took a number as a price of a pen/pencil, 
calculated the price for the other item (+ or – 1) and then calculated the price for 
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2 pencils and 3 pens to see whether it comes to 17. Quite often (N=35), division 
in some form was used – e.g., 17 : 5 = 3 (rem. 2) and the prices of a pen and 
a pencil were derived from it. We do not know what was behind this strategy – 5
was used in the division probably because the price (17) was paid for 5 items. 
This strategy might not work if the item prices differed more. Anyway, in this 
case it was a very good estimate. Some of the pupils even used calculation in the 
form (17 – 2) : 5 = 3, which means that they probably realised that what you 
paid for 2 pens was 2 crowns more than for 2 pencils. One of the pupils wrote 
the correct linear equation with single unknown and solve it. The solutions in the 
last two categories (i.e., division and equation) show the pupils’ ability to 
coordinate units on all three levels. Only 35 pupils out of 255 tested (14 %) 
worked on this level, on the other hand, the task did not require this approach. 
The numerical solution and the trial and error methods work well here and are 
simpler from the coordination point of view – the pupils only coordinate two 
values at a time (like price per pen and price per pencil) and try if total result 
comes out as required. 
As for the most frequent mistakes: 23 pupils did not even try to solve the task. 
Out of these 14 were in the zed group. Forty-one pupils used some operation 
that did not reflect the relationships in the task situation. A very frequent 
mistake in this category consisted in dividing 17 by 2 and then by 3 and 
considering the results as price for pen and pencil respectively. Sometimes the 
pupils repeated the division twice: 17 : 2 = 8.5 and 8.5 : 2 = 4.25 which they 
interpreted as the price of a pen. The mathematization of the relationships is 
incorrect and the pupils interpret the results incorrectly if at all. This type of 
mistake occurred in both groups approximately in 16% of cases. Six pupils 
made “operator error” – i.e., considered number 1 in the role of operator (“it 
costs 1 more”), or as the actual price – i.e. as “it costs 1”, this error occurred 
only in the zed group. 
DISCUSSION AND CONCLUSION
The evidence about the effect of using an unknown currency name is not 
straightforward. In all the tasks, the average success rate was lower for zeds but 
the difference was significant only in one case – task 7C. An important 
difference between the variants of the tasks consists in the number of pupils who 
did not write anything in the solution, which, presumably means that they gave 
up on the task. There are more pupils providing no solution in all the zed 
variants of the tasks, but the difference was significant only for the most difficult 
task 7A.2 The unknown word might have contributed to the perceived difficulty 
of the task and the pupils were more likely to skip it. In other grades, the context 
of the task helped the pupils to get meaning of “zed” as a currency name. 

2 Neither task 7A1 or 7A2 was at the end of the test in no version of the test and thus, time constraints were not 
to be blamed for this.  
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One of the motivations of our study were “zed” tasks used in international 
testing. Task 7C in the zed variant was used in TIMSS testing of 8th graders in 
2007. The success rate of Czech pupils in TIMSS was much lower (25%) than in 
our study (50%) where the pupils were even younger. While in TIMSS, 29% of 
pupils did not attempt the task, in our study it was 9%. At least two factors 
contributed to this difference. First, in TIMSS, the correct answer without 
a calculation was considered as incorrect (nearly 4% of pupils). In contrast, we 
awarded full points even if there was only the correct answer without any 
explanation (which occurred for 20% of pupils) or if there was a numerical 
mistake in an otherwise correct strategy.3 The second factor is the choice of the 
sample. Our sample comes from Prague and results for pupils in the capital city 
tend to be higher in mathematics testing (e.g., Palečková, Tomášek & Blažek,
2014). The significantly better result of the variant with crowns in our research 
might indicate that the low results of Czech pupils in TIMSS might have also 
been influenced by the use of the unknown currency. 
In terms of prevailing solution strategies that pupils used, we can classify them 
as heuristic methods (trial and error, experimentation with input variables’ 
values). Only about 14% of pupils in grade 7 used some more advanced method 
(some form of linear equations) to solve 7C. We could not identify any 
significant differences in strategy use between crowns and zed groups for any of 
the tasks. 
When we looked at the source of difficulties for the most difficult task (7A), the 
role of numbers in the word problem came out as a possible explanation. Hejný 
(2014) talks about three types of quantities: value, operator and frequency. 
While value denotes the number of pieces or the number of other units, the 
operator describes relation between two values. Operators in the task 7A are 
additive – i.e., expressed as “more than” or “less than”. The role of numbers in 
the task strongly influences the task difficulty. If all the numbers given are 
values, the task is easier. An operator is always connecting two values – these 
might not be necessary for the solution of the task but the pupils might feel that 
they cannot understand the operator (like “6 more”) if they do not have at least 
one of the values that are being connected.  In their meta-analysis of research, 
Nunes et al. (2016) found out that problems involving “comparisons have been 
the most difficult of all; they have been shown to be particularly difficult if the 
unknown in the problem has been the reference set” (p. 17). Our findings 
corroborate this conclusion.  
To conclude: We found out that if the use of an unknown currency has any 
effect on the task difficulty, it is probably not very strong nor consistent across 
various type of tasks and grades. There might be an influence of the presence of 

                                                
3 We wanted to see if the pupils were able to make a correct problem model, their ability to calculate was 

secondary. 
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the unknown currency on the pupil’s willingness to start solving the task, 
however, bigger samples of pupils are needed to show this. There were no 
significant differences among groups as far as the strategy use or unit 
coordination.   
Our study has its limitations. Interviews would be needed if we wanted to 
account for written solutions whose strategies and mistakes remained 
unexplained. A large sample of pupils might render our conclusions more 
robust.  
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Bilingual education is becoming more and more popular in Poland. In the 
paper, I present a report from a small-scale study conducted at the mathematics 
class during which Grade 2 high school students (17-18 years old), solved a task 
in French while working in small groups. I study the communication processes
in terms of the occurrence of metacognitive and discursive activities related to 
control and reflection concerning Mathematics and the foreign language.  
INTRODUCTION 
Content-language integrated learning (CLIL), often referred to as bilingual 
education, is the simultaneous teaching of a subject and a foreign language, in 
other words, teaching subject content in a foreign language. The students of 
bilingual schools in Poland take their Polish ‘matura’ mathematics examination 
as well as a mathematics exam in French. One of the aims of mathematics 
teaching is to help students develop skills of the proper mathematical language 
usage. This is directly linked to developing skills of student’s proper 
understanding (Krygowska, 1979). There are various opinions on mathematical
language. Sierpińska (2005) gives three theoretical approaches to language: 
“language as a code (e.g., Laborde, 1982), language as representation (e.g., 
Duval, 1995; Janvier, 1986), and language as discourse (e.g., Kieran, Forman & 
Sfard, 2001), (p. 250)”. Considering language as discourse, we can refer to the
‘mathematics register’, defined by Halliday (1978) “in the sense of the meanings 
that belong to the language of mathematics (the mathematical use of natural 
language, that is: not mathematics itself), and that a language must express if it 
is being used for mathematical purposes (p. 195).”
In case of Polish and French mathematical register there are certain differences 
in the symbols, mathematical terminology, the applied algorithms (Adamczak, 
2014) and in stressing different mathematical meanings. As highlighted by 
Schleppegrell (2007): “As with all language development, students need 
opportunities to use the mathematic register in interactive activities in which 
they construct meaningful discourse about mathematics (p. 147)”, so that they 
can, among others, express their ideas discuss and justify them. In bilingual 
education, cooperative task solving, e.g., in small groups can be a chance for
developing the students’ ability to use the mathematical register. It is closely 
connected to the skill of communication – not only in mother tongue (L1) but 
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also in a foreign language (L2). As it is emphasized by Cohors-Fresenborg and 
Kaune (2003) (as cited in Kaune & Nowińska, 2012, p. 75) “discourse is the 
central element of lesson culture, which is to support the development of 
student’s metacognitive activities”. Fresenborg and Kaune, 2003 (as cited in 
Kaune & Nowińska, 2012) classify precise reading, precise listening, following 
the line of argument, the evaluation of the correctness of used argument that is 
linked to the skill of explanation and reasoning as discursive skills. Whereas 
metacognitive activities in the process of task solving include:

 planning the next steps of its solving along with a choice of proper tools; 

 monitoring which involves checking if the choice and usage of the tools is 
correct, if it leads to the intended aim and if the aim that has been 
achieved is consistent with the intended one; 

 reflection – a mental activity that is directed to the results that have 
already been achieved. The formulated problems and understanding of the 
terms might be the subject-matter. 

These activities can be observed through the interpretation of certain students’ 
behaviours, including the elements of communication that occur during the 
lesson. A vital part of the process of communication in bilingual teaching is 
played by code switching “when an individual (more or less deliberately) 
alternates between two or more languages” (Baker, 1993 as cited in Setati, 1998,
p. 35), e.g. for reformulation (to clarify instructions and to show the appropriate 
mathematical language use), for content or activity (to explain, inform and 
regulate) and to translate (e.g., Merritt, 1992, as cited in Setati, 1998). Code 
switching is a popular and valuable practice in bilingual teaching of various 
subjects including mathematics (e.g., Duverger, 2007, Gumperz et al., 1999).
METHODOLOGY 
The study was carried out in a Grade 2 high school mathematics class (17-18
years old) during the mathematics class in French. It was a practical lesson on 
geometric and arithmetic sequences. The students had 5 hours of math classes in 
Polish per week and 2 hours of them in French with another teacher. Most of the 
students demonstrated a good level of both French and mathematics. The most 
often used technique during the lessons was a group discussion. During this 
discussion the teacher or the students asked questions, evaluated their own and 
their fellow students’ utterances, which were properly argued and justified. The 
code switching usually took place during the class interaction, e.g., when the 
teacher or the students encountered the language barrier, in order to provide 
more complete information and maintain teacher-student or student-student 
communication. The students had hardly any problems with using the 
mathematical register in L1. However, there were some difficulties connected 
with, e.g., understanding and proper usage of terminology and fluency in L2. 
The group work planned by the teacher seldom appeared during math lessons 
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conducted in French, except for spontaneous communication in pairs during task 
solving and which took place mostly in L1. 
Eleven students took part in the study. The students divided themselves into 
groups of three and one group of two, in order to solve two tasks. Discussions in 
the group during the solving of tasks were recorded and after finishing work 
each group turned in a written solution to the task. The teachers asked the 
students to try to communicate in French. The teacher intervened only in the 
case of explicit request of the students. The task solution time was not limited. 
In the article I analyse the work on the first task, which was a typical application 
of the theory (Krygowska, 1979) containing a realistic context. The realistic 
context could cause difficulties in understanding the problem statement, because 
few such tasks are solved in mathematics classes in Polish in the chapter on 
sequences (most of the times tasks in placing appear in this section of Polish 
exercise books). The solution to the task required basic knowledge of the 
geometric sequence. The formulation of the task in French and some 
terminological differences could cause an additional difficulty. In French, the set 
of natural numbers is often considered a domain of a sequence, while in Polish 
language a set of positive natural numbers is a domain of sequence. This is 
a reason for the need to modify the formulas, among others for the general term 
and the sum of the first n terms. The task has been taken from matura exam set 
for 2011 which was prepared for Secondary School of Hotel Administration 
(“Matura exam” 2011).

In summer, at a temperature of almost 35◦C and at 2 o’clock a piece of meat 
containing 100 bacteria was placed on a counter. Under such conditions, the number 
of bacteria doubles every 15 minutes. Let’s mark the number of bacteria at 2 
o’clock as u0, the number of bacteria at 2:15 as u1, the number of bacteria at 2:30 as 
u2 and un the number of bacteria of n quarters after 2 o’clock where n is a natural 
number. 
1. Rewrite and complete the following table (we assume that the conditions do not 
change during the entire experiment): 

Hour 14:00 14:15 14:30 14:45 15:00

Index: n 0 1 2 3 4

Number of bacteria un 100

2. If un is the number of bacteria at the set time, then un+1 corresponds to the number 
of bacteria 15 minutes later. What is the relation between un and un+1? 
3. Specify the type of the sequence previously defined and its ‘raison1’ [common 
difference or common ratio].

1 In French there is one term used to describe common difference or common ratio. 
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4. Present un as a function dependent on n. 
5. Calculate the number of bacteria at 17:00.  
6. It is believed that if there are more than 150 000 bacteria present in food, then it 
is not suitable for human consumption. Until what time rounded up to a quarter, can 
a man eat safely a piece of meat?

For all teachers who teach in a bilingual way, it is important to best understand 
the cognitive processes of students who study in a foreign language and to adjust 
their teaching practice to what students have problems with. During a lesson, we 
observe the communication process also in understanding mutual reactions and 
interactions. Metacognitive and discourse activities play an important part in this 
process. Their analysis may reveal to what extent the language difficulties imply 
problems with understanding the language and to what extent with 
understanding mathematics. In this regard the following question was posed: 
To what extent does communication that takes place between students who are 
taught in a bilingual way during solving of a task in French in small groups 
contain the elements of control and reflection about foreign language and to 
what extent about mathematical questions? 
To answer this question, I will try to analyse the students’ metacognitive 
(monitoring and reflection) and discursive activities with regard to whether they 
more concern the French language or rather mathematical problems.  In order to 
do it, I will classify communication in terms of above-mentioned activities by 
interpreting text of utterance or students’ behaviour. The interpretation will be 
based on the category system (an interpretative, transcript-based analysis of 
metacognitive and discursive activities in class discussions) adapted for this 
purpose from Cohors-Fresenborg and Kaune (2007) and which example can be 
found in Kaune and Nowińska (2012). Moreover, due to the fact that students 
who are under examination are bilingual I expect that they will use code 
switching in conducting control and expressing reflection. All the more, this 
practice has often been used by the teacher.  
In this article, I analyse the work of three groups of students based on the 
collected documents: two audio recordings (group 2 and 3), one video recording 
(group 1) and a solution in a written form as a result of group work. 
DESCRIPTION OF THE INTERACTIONS  
In the following transcripts, I distinguish between the fragments of the text, 
which represent students’ metacognitive activities (monitoring, reflection) and 
discursive ones; in some cases, at the end I make a comment concerning the 
marked activities. 
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Group 1:  Judyta and Bartek  
Bartek is a student with high grades in mathematics, but Judyta sometimes has 
difficulties in understanding some mathematical problems. Here is a fragment of 
the initial dialogue: 

Bartek: We’ll solve the task in French. Let’s start. [Bartek read the instruction] 
(L2)

Judyta: And what do you propose? (L2) (incentive to discussion) 
Bartek: It’s easy. [Bartek completes the table (figure 1)] We have 200, 400, 800, 

1600. [He writes down in the table and asks Judyta] Hm? [expecting 
confirmation] (L2) (relating the given utterance to the others to make 
sure that what has been said is understood). 

Judyta: Are you multiplying by 2? (L2)
Bartek: By 2, q is equal 2. [Judyta writes down the solution on her piece of paper 

while glancing at Bartek] (L2)
Judyta: 200, 400, 800, 1600. (L2)  
Bartek: Yes. The next instruction, I’ll be writing… (L2)
Judyta: If un is the number of bacteria... [Judyta reads it] (L2) 
Bartek: I think that un multiplies by 2 is equal to un+1. (L2)
Judyta: What’s it? [Judyta looks and points to the indistinct record] Is it equal to?

But multiplied by 2? (L2)
Bartek: Yes, because un is 100 times q to the power of n, un+1 is 100 times qn+1, q is 

2. [He writes it on the right side of the piece of paper] (L2) 
Judyta: Oh yes. So it’s like in this table. (L2) 
Bartek: We see then that 100 times 2n+1 is equal to 100 times 2n times 2. This is the 

same. Hm? [Bartek looks at Judyta and waits for confirmation] (L2) 
Judyta: [She wonders for a moment] So the answer? Write it down. (L2) 
Bartek: Here it is. [He shows on the piece of paper] (L2) 
Judyta: I can write it.  [She writes down the word: the answer] (L2) 
Bartek: Specify the type of the sequence previously defined  and its 'raison'. 

[Bartek read the third instruction, Judyta thinks about the previous 
one, crossing off what Bartek wrote so indistinctly and she writes 
down again: 2un=un+1] Yes. (L2) [Bartek confirms and as if he 
wanted to ask Judyta but immediately he turns around to the group 
behind him]. And ‘la nature’ is it a formula like this? (L1) 

Magda: So, whether arithmetic or geometric.  (L1)
Bartek: Uh, okay. (L1) 
[Judyta reads the instruction loudly] (L2) 
Bartek: It is a geometric sequence. (L2) 
Judyta: Geometric, yes, yes. (L2)
(...)
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Bartek and Judyta did well in communicating in French. They also used the 
correct terminology. The only time when Bartek used code-switching was when 
he asked a person from another group to explain the term he did not know (see 
transcript). 
Group 2: Antek, Filip and Michał 
Antek, Filip and Michał are students who do not have problems in mathematics 
and it sometimes happens that they come up with interesting ideas when solving 
problems (especially Michał). When starting the work on the task concerning the 
sequence, Michał and Antek read aloud the first instruction; after a moment of 
silence Michał reads it again. There is no trace on the recording when they 
solved the first subpoint. Filip immediately speaks Polish and he is followed by 
Antek and Michał speaking in French.

Filip: E guys, I have it too. (L1)
Antek, Michał: 2 un is equal to un + 1. (L2)
Antek: Specify the type of the sequence previously defined and its ‘raison’? This 

is a geometric sequence. [5 seconds of silence] (L2) 
Michał: What is ‘précédemment’? (L2)
Antek: I do not know. (L1)
Michał: What is ‘précédemment’? [Question to the teacher] (L1)
Teacher: Is this important? (L2) (incentive to reflection, according to the teacher, 

not knowing the abovementioned term should not be obstacle to the 
task solving)

Antek: A little bit. (L2)
Teacher: The previous year is 2014. (L2)
Filip: Previous. (L1) (making sure to what has been said by the teacher) 
Michał: I see, it’s geometric and it’s about q = 2. (L2)
(...)
Michał: un = a ..., [what is immediately crossed off by him (figure 3)] and speaks 

loudly: 100 multiplied by 2 to n. (L2) (self-control)
Antek: To n, yes, yes. (L2) 
Michał: To n-1, not to n. (L2)
Antek: No, no, no. (L2) 
Michał: It’s u0. (L2)
(...)

They were the first ones to solve the problem. However, they made a calculation 
error in point 6, therefore they gave an incorrect answer as to the time when man 
can safely consume meat (Figure 1). Only after the teacher’s intervention with 
a request to re-check the solution (the teacher’s control and students’ 
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encouragement to reflection and control), did they find the error. Filip quickly 
noticed that Michał crossed off an extra zero (Figure 2). 

Figure 1 

Figure 2 

Group 3: Magda, Maria and Zosia  
Magda and Zosia are hardworking students who often achieve high marks in 
mathematics, however Maria tends to have difficulties with some tasks. There 
was a long silence at the beginning of the recording as if each of the girls was 
thinking on their own and was trying to solve the task on the separate pages. 
Only Zosia and Maria participated in the discussion when solving the first and 
second subpoints. When a question about the term 'nature' from another group 
was asked, Magda decided to take a part in the conversation (see transcript of 
group 1). The girls decided together that the sequence was geometric, and Maria 
gave her justification in Polish: “With power, it's probably geometric”.
Together, they considered the meaning of the term ‘raison’. Zosia replied: “La 
raison is the common ratio of the geometric sequence”. Magda and Zosia
together determined that the common ratio was 2. Maria committed herself to 
writing down the solution on the piece of paper which was going to be given to 
the teacher. On a sheet of paper, in points 1 and 6 ‘un’ is marked as ‘an’, perhaps 
due to the habit of marking such a sequence in Polish. Most often, Zosia and 
Magda were the ones to show the activity of control. After returning the piece of 
paper to the teacher, a person from another group asks a question about the 
fourth sub-point. Zosia explains that the answer is un = 100 ∙ 2n, not the power 
of n-1, because it is a zero-th term (reflection and control). Maria also asks for 
an explanation, despite the fact that it would seem that they have already 
completed the first task and that Maria also participated in the process. Before 
that, the conversation took place partly in French and partly in Polish. From now 
on, the dialogue takes place only in Polish.

Maria: Explain it to me, because I do not understand this.  
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Zosia: What is… what is that u0? Because if it was not u0 then it should be “n” at 
theend. Can I write it down? There would be something like un = u1
multiplied by q to n1, and because of u0, it must be something like q 
to n without this one. [Sub – point 4] 

Maria: I see, without this number 1. 
Magda: It is because u0 is the first position and the second position is u1.
Zosia: Because it does nothing. They take u0 instead of u1 ... and there is no such 

thing here.
Maria: And this one would be reduced, because it's like going forward by one ... 
Zosia: Yes, exactly like that.
(...)
Zosia: The result will not be precise...  Will it be accurate according to 16:30. [Sub 

– point 6] 
Maria: How did you calculate it? 
Zosia: We just watched when it would not exceed it. 
Maria: You just raise to the power and there is no other way? 
Zosia: There is not. 

Referring to Zosia’s statement from the dialogue with Maria that there is no 
other way to find the answer to sub point 6 except raising to the power. It is 
worth adding that one of the groups noticed that you can arrive at a solution 
using the logarithmic function: log21500 = n. 
RESULTS  
On the basis of observation of the course of communication, many displays of 
reflection could be noticed. These reflections were both connected to the 
language and mathematics terminology. The reflection that concentrated on the 
understanding of a given problem was usually linked to the unfamiliarity of the 
undermentioned terms and their explanation – most often in Polish: 

 nature (a polysemic term, a mathematical term explained by a person 
from another group in L1), 

 precédemment (a word from everyday language, explained by the 
teacher in L2), 

 raison (a polysemic term, a mathematical term explained by a person 
within the group in L1), 

 arrondie (a mathematical term explained by a person within the group 
in L1). 

As recorded in solutions you could also notice the habit of using Polish 
notations: q- common ratio of sequence (all groups), an for marking a sequence 
(group 3). Unfortunately, there was a lack of reflection about the problem with 
mixing up the notations (group 3). In addition, in the second and third group, 
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there were doubts (reflection) about writing the formula for a general word of 
the sequence (point 4), as indexing of terms started from zero. However, they 
came up with the correct answer after negotiating their standpoints (reflection 
and monitoring). An interesting fact is that the reflection in the third group 
occurred after the work seemed to be over and the question asked by a person 
from another group regarding the fourth point could be an inspiration. So, the 
reflection of one student caused the other student’s reflection in the form of 
a question. At that moment Maria was asked to explain the other remaining 
points as well, initiating Zosia’s reflection and partly Magda’s reflection about 
the solved task. It was also an example of mutual learning, Zosia took on the 
role of a teacher, clarifying any points that were still unclear, having control and 
showing a good understanding of the basic issues related to the sequences. The 
above-mentioned control and reflection took place only in Polish due to the fact 
that at given moment the task understanding was the most important. The 
foreign language could be an obstacle because of not sufficient language skills 
(L2) of discussion participants.  
In all groups, the control and self-control were accompanied by displays of 
reflection. It can be shown in the analysis of transcripts of dialogues and written 
assignments (some attempts of task solving were crossed out and the 
calculations were redone). Still the reflection and control concerned more the 
mathematical questions than the language, sometimes both – as it was in the 
case of choosing the formula for a general word of the sequence. 
While analysing the presence of discursive activities it can be noticed that 
students from group 2 were the best at listening to each other and following the 
line of argument despite the fact that not many moments of explanation and 
reasoning were observed. It might be so due to the fact that there was no such 
need. Explanation and reasoning often happened in the group 3, e.g. during the 
reflection after having been presented with the solution. It seems that out of all 
groups the group 1 had the fewest moments of deeper reflection despite the fact 
that the outer form of communication in foreign language was very good.  The 
work of both students was not synchronized: Judyta was often one step behind 
Bartek and perhaps Bartek did not feel the need for discussion or any help from 
Judyta, because he was able to find a solution on his own. The displays of 
negative discourse (see Kaune & Nowińska, 2012) connected with, among 
others, language problems e.g. concerned the reading of large numbers are worth 
noticing. In this case, what the students did was to read either the subsequent 
digits one-by-one or groups of numbers. Especially, the boys had problems with 
pronunciation and expressing their thoughts in French. It could be noticed that it 
was more important for boys to solve the task than to communicate properly in 
French. 
As it could be expected, all groups used code switching to a greater or lesser 
degree. In group 1, the code switching was used only once so that the fast 
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explanation of the meaning of the French term could be done. In the remaining 
groups this practice was used to explain, inform, regulate and translate. 
CONCLUSIONS 
The presented small-scale study makes one think about the possibility to 
improve the effectiveness of mathematics bilingual education. Special attention 
should be paid to the communication aspect of this process. The teacher should 
organize the activity of students which is directed in greater degree to the usage 
of mathematical register in foreign language. Additionally, the teacher should 
also make students aware that not knowing a term is not always an obstacle in 
understanding the essence of the task and its solving. While observing the 
groups, it could be noticed that students preferred switching to Polish because 
the communication did not always run smoothly and some pronunciation and 
grammar errors appeared. Despite the fact that using code switching seems to be 
a good practice in bilingual education, I think that a large part of ‘awareness’ 
discourse should take place in a foreign language because it happens along with 
the development of language skills (L2) that are also connected with 
mathematical register. The teacher should keep a close eye on students whether 
the foreign language is not an obstacle in understanding terminology as it was in 
Maria’s case. In such a situation, the teacher can give, for example some 
language help before solving the problem. It should also be noticed that the 
correct outer form of utterance does not guarantee by itself the mastering of 
metacognitive and discursive skills when there is no precise listening, following 
the line of argument and deeper reflection (Judyta’s example). It would be also 
desired to expand the research question to the problem of communication in 
class, which takes place in various forms during lessons. Moreover, not only 
interaction between students but also the ones between students and teacher 
should be further examined. The teacher should serve as a model for didactically 
desired behaviours of students and create situations which are in favour of them, 
e.g., to involve metacognitive and discursive activities, also when 
communicating in foreign language. Therefore, the observation of teacher and 
students’ behaviour should be accompanied by reflections about the conditions 
that are in favour of constructing the knowledge in the process of 
communication. This process is far more complex in bilingual education, thus 
the need of further examination in this field is required.
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Mathematics education research from the last four decades has helped us to 
understand more and more about the nature and processes of mathematical 
learning. This has further helped us to uncover and understand characteristic 
obstacles that most learners of mathematics - and not only those with general 
learning difficulties - encounter during their attempts to learn mathematics, 
some even to a detrimental degree. Mathematics specific learning difficulties 
seem to be of a rather universal nature across cultures, countries and students. 
In my lecture I shall highlight some of these difficulties with a focus on recent 
work and findings. I shall further present a research based in-service education 
programme for upper secondary school teachers enabling them to detect and 
diagnose upper secondary students with mathematics specific learning 
difficulties and eventually to remedy or reduce these difficulties. 
INTRODUCTION AND BACKGROUND: FROM ELITE TO MASS 
EDUCATION 
In Denmark, like in many other countries, education in general, and mathematics 
education in particular, have become a mass enterprise during the last four 
decades, not only at the primary and lower secondary levels, but at upper 
secondary and tertiary levels as well. This has given rise to major changes at the 
higher levels, where the transition from the selective and elitist study 
programmes of the past to programmes addressing, today, large segments of 
society has not at all been smooth. As the development of educational 
demographics has been gradual and somewhat slow, the changes of the study 
programmes, too, have been gradual and slow. One implication of this is that 
instead of making more radical changes in curricula, in teaching and learning 
materials, and in assessment, corresponding to the changes in the audiences, 
authorities have attempted to preserve the goals and the ethos of mathematics 
education of the past, at least in spirit, while making series of piecewise 
adjustments so as to avoid too drastic discontinuities in the transition from the
past to the present. Bluntly put, instead of curricula, materials and modes of 
assessment designed from scratch, to accommodate the new boundary 
conditions, we have witnessed a sequence of gradual dilutions of these 
components of mathematics education, which has given rise to increasing 
incoherence and inconsistencies within the programmes. Another implication of 
the development just outlined is that the upper secondary school levels – which 
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will be my focus in this paper – have received lots of new categories of students, 
quite a few of whom experience severe difficulties in coming to grips with 
mathematics, especially because the transition from lower secondary to upper 
secondary mathematics education still represents quite a gap despite the 
development described. This means that in every upper secondary mathematics 
classroom one finds a marked and increasing number of students who simply 
“do not get it”, and that includes students who work hard, but unsuccessfully, to 
come to grips with mathematics. Generally speaking, such students still form 
a minority in their classrooms, albeit a growing minority, a minority which, in 
some classrooms and schools, will eventually become a majority.  
In this paper, the students in focus of interest are upper secondary students like 
the ones just described, but with the additional characteristic that they do not 
display learning difficulties in other subjects, except in the ones that rely heavily 
on mathematics, such as physics and chemistry. In other words, these students
appear to have mathematics specific learning difficulties, neither general 
learning difficulties nor insufficient working morale. On the contrary, they are 
motivated to learn mathematics, not necessarily because of an intrinsic interest 
in the subject, but if not for other reasons then because it is a compulsory part of 
all upper secondary programmes and hence contributes to the end-of-school high 
stakes marks and exams that determine students’ further path though the 
education system. It is exactly because of this motivation that the students at 
issue work hard to come to grips with mathematics, even though they remain 
unsuccessful in their endeavours. In the past, such students would not have been 
able to enter upper secondary programmes in which mathematics was part of the 
curriculum, but they can today, because, as mentioned, all programmes include 
mathematics, and admission to upper secondary school is possible also for 
students with weak backgrounds and low marks in mathematics. 
It goes without saying that the learning difficulties of these students do not come 
out of the blue. They were founded in primary and lower secondary school and 
hence are often deeply rooted, and hence cannot be expected to be remedied by 
quick fixes. The upper secondary programmes (grades 10-12), even those with 
the lowest demand level in mathematics, are not designed to include remedial 
activities, nor do they leave room for such activities. Moreover, mathematics 
teachers for the upper secondary level were never trained to deal with students 
with mathematics specific learning difficulties, especially difficulties grounded 
in much earlier stages of schooling. Upper secondary school teachers are 
educated in universities and must have a master’s degree in mathematics and 
one other subject (or an equivalent background), whereas primary and lower 
secondary school teachers are educated as generalists in separate non-university 
teacher training institutions, in recent years with a very limited background in 
mathematics. 
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GROWING RESEARCH INSIGHTS INTO THE NATURE OF AND
OBSTACLES TO MATHEMATICAL LEARNING 
During roughly the last half a century mathematics education research has made 
immense progress in understanding the conditions, phenomena and processes 
involved in mathematical learning as well as obstacles to its unfolding. This 
progress is undoubtedly due to certain commonalities in human cognition and 
human affect across individuals, societies, countries, and cultures, even though 
there are also, of course, lots of differences in these respects. Unfortunately, as 
Celia Hoyles has pointed out in a private conversation, this growth of insight 
into learning has not been accompanied by a similar growth of insight into what 
kinds of teaching will ensure successful learning under general conditions. This 
is undoubtedly due to the fact that the cultural, economic, political, structural, 
educational and organisational conditions for teaching vary dramatically across 
continents, regions, countries, states, provinces, counties, municipalities, schools
and classrooms. This is one of the important reasons why insight about the 
learning of mathematics have not had too much of a general impact on teaching.  
It was against the dual background just outlined that I and a colleague, Morten 
Blomhøj, at Roskilde University, Denmark, a few years into the 21st century 
discussed the possibilities of activating research insights concerning the learning 
of mathematics education to seriously attempt to counteract mathematics 
specific learning difficulties with students who work hard, but to no significant 
avail, to master, at least to an acceptable level, the mathematics they are taught. 
However, as no funds were available to devise and implement a programme 
based on our ideas, we had, at first, to give up and shelve our ideas. But the 
problems we had observed in the beginning of the century continued to grow. 
Most fortunately, a few years later a funding possibility emerged. Two other 
colleagues at Roskilde University, Jesper Larsen and the late Bent C. Jørgensen, 
succeeded in obtaining funding from the European Social Foundation for 
a larger and somewhat more general project, “STAR”, within which it turned out 
to be possible to build a programme designed to counteract mathematics specific 
learning difficulties with upper secondary students. The design of this 
programme was made by myself and another colleague, Uffe T. Jankvist (now at 
Aarhus University, DPU), for whom a temporary postdoctoral position was 
secured by STAR-project funds. So, we were able to establish a special 
research-based professional-development educational programme for in-service 
upper secondary mathematics teachers, aiming at enabling participants to help 
their own and colleagues’ target students in their schools to remove or at least 
markedly reduce their learning difficulties. It was a crucial part of the idea that 
teachers educated from the programme not only should become better teachers 
themselves but also should be qualified to undertake functions at their respective 
schools as specialised so-called mathematics counsellors, assisting both teacher 
colleagues and students in their respective schools. This programme started in 
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2012 and continues to this day. The content, structure and logistics of the 
programme will be presented in the next section (see also Jankvist & Niss, 2015, 
2016, 2017, 2018). 
THE MATHEMATICS COUNSELLOR PROGRAMME AT ROSKILDE 
UNIVERSITY, DENMARK 
Based on experiential knowledge of the curricula and the general state of affairs 
in Danish upper secondary schools, including teachers’ working conditions, we 
decided to focus the programme on three themes that we found particularly 
significant, even though several other themes would certainly have been 
pertinent as well.  
These themes are concepts and concept formation in mathematics, mathematical 
reasoning, proof and proving, and mathematical models and modelling. The first 
theme was chosen because it lies at the heart of all mathematical work and 
activity, but also because experience told us that several upper secondary 
students have a very frail grasp of mathematical concepts, even the most basic 
ones such as ‘number’. It may come as a surprise to some that we included the 
second and the third theme in the programme. Is it not the case that reasoning, 
proof and proving are higher order activities primarily relevant for students with 
or beyond a minimum level of mathematical competence, understanding, and 
knowledge, i.e. students who might not be supposed to belong to the target 
group of students in focus of this programme? And, furthermore, is it not the 
case that models and modelling, too, are for students who have already learnt 
mathematics to such a degree that they can put it to use in extra-mathematical 
contexts and situations, i.e., once again, students outside the target group? In 
other words, do the latter two themes not point to luxury problems in relation to 
the overall point of focusing on students with mathematics specific learning 
difficulties at a much more elementary level? The answer to both of these 
questions is ‘no’. As to reasoning, proof and proving, these are certainly key 
mathematical activities because they deal with one of the most fundamental 
components of mathematical work: the justification of mathematical claims and 
statements. This is not restricted to justifying mathematical theorems and 
formulae by way of formal proof but pertains to all sorts of mathematical claims 
and statements, such as the results of numerical and symbolic calculations, 
solutions to problems, and inferences concerning the use of mathematics in 
extra-mathematical contexts and situations, to mention just a few. Moreover, 
experience and research show that many students’ mathematics specific learning 
difficulties are to do with their perception of mathematics as a huge set of 
disconnected and incoherent facts, procedures and rules that have to be learned 
by rote, and of mathematical processes and methods as being meaningless and 
illogical inventions by strange people with weird minds. In other words, 
problems with reasoning, proof and proving are part of the foundation of 
students’ learning difficulties, and these learning difficulties are exacerbated if 
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reasoning, proof and proving are left out in favour of a one-sided emphasis on 
rote learning, memorisation and drill of facts and procedures. When it comes to 
mathematical models and modelling, similar considerations apply. Many 
students with mathematics specific learning difficulties have severe problems 
with the relationship(s) between mathematics and the extra-mathematical world, 
especially as regards making sense and meaning of mathematics as having 
something to do with the world in which they live. They perceive mathematics 
as an abstract and inconsequential set of games that few (other) people can learn 
– and love – to play, but how, so the argument goes, can school allow itself to 
give such a high priority to abstract games instead of to something that really 
matters in people’s lives? Of course, quite a few of such students are victims of 
the so-called relevance paradox (Niss, 1994, p 371). These students know that 
mathematics is important in society and in many attractive careers and jobs, but 
they do not understand why. Unfortunately, however, mathematics is not 
relevant to them with respect to their own perspectives on their current and
future lives. Since mathematical models and mathematical modelling constitute 
the bridge by which mathematics and the extra-mathematical world are 
connected, an insufficient representation and grasp of these aspects of 
mathematics in mathematics education are co-responsible for students’ learning 
difficulties. In addition to all this, models and modelling are in fact explicitly 
emphasised in Danish upper secondary curricula and hence generate obstacles to 
students who cannot come to grips with the relationship between mathematics 
and the extra-mathematical world. 
So, the three themes mentioned were the ones we selected for inclusion in the 
programme. Other themes of significance to upper secondary school 
mathematics and students’ learning difficulties in it were under consideration as 
well, namely ‘mathematical problem solving’, ‘the role of technology in 
mathematics’, and ‘language and mathematics’, and we would easily have been 
able to expand the programme to deal with these themes as well. However, for 
pragmatic and financial reasons it was considered too ambitious to double the 
size of the programme and we didn’t want to dilute the treatment of the themes 
by having the time devoted to them be cut down to half. 
For each of the three themes, Uffe Jankvist and I selected quite a number of 
research articles and book chapters that deal with issues and topics pertaining to 
theme and its “entourage”, 18 publications for the first theme, 23 for the second 
theme, and 21 for the third theme. These publications were certainly not meant 
to represent anything like an exhaustive coverage of the respective themes but to 
provide a sufficiently broad, yet specific, avenue into the literature on the 
themes, and the more general environment in which they are imbedded, on the 
basis of which further literature could be sought by participants with guidance 
by the programme directors.  
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It is now time to consider the structure and organisation of the professional 
development programme. Each year a cohort of up to 12-16 practising high
school teachers are admitted to the programme. Typically they register in close 
agreement with their respective schools, who then also contribute towards the 
costs of the programme, since schools are often eager to have expert maths 
counsellors in their staff, as schools are more than well aware of the problems 
caused by students’ learning difficulties with mathematics. However, there are 
also quite a few cases of teachers who have taken part in the programme entirely 
on their own initiative and at their own expense. 
The programme is designed as a three-semester part time in-service programme, 
during which participants work as usual in their schools, though normally but 
not always with some reduction in their teaching load. The magnitude of the full 
programme is normed to 30 ECTS points, but we have to admit that this hardly 
matches participants’ work load during the three semesters. Each cohort 
“travels” together for the three semesters, which allows for our conscious 
utilisation of synergy effects, in that the participants within a cohort collaborate 
in various ways throughout the course.  
Each cohort begins its studies in early September year n and completes them 
with a final exam at the end of January year n+2. Twice in each semester, in the 
beginning and at the end, the members of the cohort gather at residential 
seminars at a special conference facility owned by Roskilde University. At the 
very first residential seminar in the course the cohort is divided into 2-3 person 
project groups who stay together throughout the three semesters. Between the 
residential seminars of the semester each project group works, under supervision 
by the programme directors, on their own projects (see below) concerning the 
semester’s theme. At the end of the semester each group submits a written report 
on its work. The report presents the empirical investigation undertaken by the 
group, with particular regard to the questions the group sought to answer, and 
also contains an account of what research literature was used and of how it was 
used. This report is presented orally to the entire cohort and the supervisors at 
the semester’s second residential seminar, where one of the other groups has the 
responsibility of offering constructive commentary and criticism. So, all groups 
both have to present their own work and to assess another group’s work. This is 
meant to further strengthen participants’ educational outcome of the course. 
Project groups also receive feedback on their work from the programme 
directors.  
After successful completion of the third semester each project group edits and 
integrates its three semester reports into one final comprehensive report, which 
forms the basis of a final oral exam at which participants receive individual 
marks. A passing mark results in a diploma for successful completion of the 
programme.  
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Now, what are participants’ projects like and how do they come about? Well, 
first of all for each semester’s theme, Uffe Jankvist and I have developed a so-
called detection test (Jankvist & Niss, 2017) with the purpose of assisting 
participants in detecting students with potential mathematics specific learning 
difficulties with respect to the theme. A detection test consists of questions that 
are supposed to be as elementary as possible in technical terms without referring 
to any particular section of students’ current or past curricula. Most of the test 
questions are unusual in relation to the test questions students typically 
encounter as part of their everyday mathematics teaching. This means that the 
test is neither meant to uncover students’ general mathematical competencies, 
knowledge and skills corresponding to the school level they are at, nor to screen 
the population of students at large. Nor is it designed to uncover the nature of 
students’ learning difficulties, let alone their causes. For this, other instruments 
are required. Metaphorically, a detection test can be likened with a metal 
detector, which is able to locate metal objects in the earth but is unable to tell 
you anything specific about the nature of the objects, whether they are old rusty 
cans or gold treasures from ancient times. The construction of the detection tests 
was informed by the research literature but was also a result of our own ideas 
and analytical considerations.  
At the beginning of the semester, the prospective mathematics counsellors 
administer the detection test to one or more of their own mathematics classes 
and sometimes also to some of their colleagues’ classes. The detection tests are 
not supposed to stand alone in detecting students with mathematical learning 
difficulties. They have to go hand in hand with teachers’ professional and 
personal knowledge of the students in their classes. It is interesting to observe 
that the outcomes of the tests almost always give rise to some surprises to the 
teachers, typically by detecting students who hadn’t previously been identified 
by them as having potential learning difficulties, but in a few cases also by not
detecting students that teachers had considered weak in mathematics. Here, it 
should be kept in mind that the detection tests are geared towards the special 
theme of the semester and not towards mathematics teaching and learning at 
large. 
Once the outcomes of the detection test have been analysed by prospective 
mathematics counsellors and put together with their prior knowledge of 
students, a small number, 2-5, of students are identified for an invitation to 
participate in the project. In addition to being candidates for possessing 
mathematics specific learning difficulties (which implies that their learning 
difficulties are not seen to be of a general nature, pertaining to all the other 
school subjects as well), those invited also are supposed to be willing and able to 
spend extra time and effort on activities that can counteract their learning 
difficulties. Usually the students detected already know themselves that they 
have difficulties in mathematics, and most of them are eager to get help so as to 
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have their problems reduced. The students who have been identified and 
subsequently accept the invitation to participate in the project are called the 
focus students of the project. 
The next step of the project is to diagnose the nature of the focus students’ 
mathematical learning difficulties with particular regard to the theme of the 
semester. In this process, which is assisted by the research literature made 
available to participants, the prospective mathematics counsellors combine an 
a priori analysis of the pattern of each student’s answers to the detection test 
questions with an a posteriori analysis of the outcome of special tasks and 
diagnostic interview sessions with the focus students, alone or in small groups of 
focus students. In these sessions the mathematics counsellors interact directly 
with the student(s), seeking to uncover the character of the learning difficulties 
at play, and if possible, some of their possible causes as well. Here, the research 
literature and its findings serve as lenses through which the nature of the 
learning difficulties might be understood and articulated. It is not unusual, 
though, that teachers are able to also discover novel learning difficulties that 
haven’t been satisfactorily dealt with in the research literature. 
It is also not unusual that focus students are found to have several different 
mathematical learning difficulties at the same time. Unless these are closely 
linked, mathematics counsellors decide to zoom in on one or two of them for the 
next stage of the project, the intervention stage. Whilst the diagnosis stage is 
largely informed and guided by the research literature, this is less true of the 
intervention stage. The reason for this is parallel to what was mentioned above 
about the non-universal character of successful teaching. A wide variety of 
structural, organisational, institutional and personal conditions and 
circumstances frame what interventional measures are possible. Moreover, the 
mathematical, cognitive and emotive specifics of the individual focus student, 
too, have to be taken into account in mathematics counsellors’ design of an 
intervention scheme for the student. Even though it is certainly possible to get 
specific or general inspiration from the research literature, counsellors have to 
display a non-negligible amount of independent inventiveness and creativity in 
their intervention designs, which, by the way, is also one of the programmes’ 
professional attractions for teachers. 
Basically, three sorts of intervention schemes are at the counsellors’ disposal. 
The first scheme is targeted on activities for the individual focus student. The 
second scheme involves a small group of focus students who are asked to 
collaborate on the tasks and activities designed by the counsellors. The final 
scheme involves the whole class to which the focus students belong, where all 
students engage in the tasks and activities, typically in small groups, but where 
the focus students, whether they work in a group composed of focus students 
only, or each of them in a group otherwise composed of non-focus students. Of 
course it is also possible to make combinations of the three basic intervention 
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schemes. In the past, all sorts of options have been explored and exploited by the 
prospective mathematics counsellors as part of their studies within the 
programme. It goes without saying that a key issue for the intervention, for the 
project work and for the report written at the end of the semester is the degree to 
which the intervention worked, i.e. the degree to which it was possible for the 
prospective mathematics counsellors to significantly reduce – perhaps even 
remove – the learning difficulties uncovered at the beginning of the semester for 
the focus students. Here, given the depth of these students’ difficulties, it is 
encouraging to note that for the far majority of the focus students it was indeed 
possible to considerably reduce their learning difficulties during what amounts 
to a relatively short intervention period. Although we have limited knowledge 
about the long term-effects of the interventions, the mid-term effects seem 
positive in the sense that most of the focus students subsequently took their final 
high school exam in mathematics with very respectable marks, sometimes even 
with flying colours. We need further research to delve more deeply into long-
term effects of the interventions undertaken by the prospective mathematics 
counsellors. At this stage the most interesting observation is that even deeply 
rooted and resilient learning difficulties in mathematics are not immune to 
remedial endeavours. Extensive, systematic and lengthy efforts to uncover, 
diagnose and intervene against mathematics specific learning difficulties with 
students who are willing to invest time and efforts into their learning of 
mathematics are likely to yield even better results. 
There are several reasons why this programme seems to be pretty effective, but 
two linked reasons are of particular importance. The first reason is that the 
programme is research based, the second that it is linked up with and dependent 
on the prospective mathematics counsellors’ everyday teaching practice, and 
especially that participants learn by working with authentic students – usually 
their own students – with real learning difficulties, and that the effect of their 
undertaking is immediately visible before their eyes. As specifically regards the 
research component of the programme, it is of outmost significance that it is not 
shaped as isolated theoretical “dry swimming” but is put to direct use in the 
projects participants make. 
Let me finish this section by mentioning that the first two cohorts of the 
mathematics counsellors have written the chapters of two books edited by Uffe 
Jankvist and myself (Niss & Jankvist 2016; Niss & Jankvist 2017). These 
chapters present selected aspect of the projects done by the teachers. A third 
book in this series is in the pipeline. 
FINDINGS CONCERNING MATHEMATICS SPECIFIC LEARNING 
DIFFICULTIES 
In this part of the paper we shall consider a number of selected findings 
concerning students’ mathematics specific learning difficulties. Some of these 
findings are known from the research literature but were confirmed in our and 
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the mathematics counsellors’ work on and within the programme. Other findings 
are new and corroborated by research conducted by Uffe Jankvist and myself on 
the basis of the data collected from students’ work during the six years the 
programme has been in existence so far.  
However, before going into details let me first point to two overarching factors 
that turned out to be intimately linked to most students’ learning difficulties
across all the themes of the programme. These factors are captured by 
corresponding theoretical constructs, well-known from the research literature: 
mathematics-related beliefs and the didactical contract. 
Beliefs about “something” are a person’s relatively stable, permanently held 
convictions about what is true concerning the “something” at issue (Philipp, 
2007). It is not important for the existence of a belief whether these convictions 
are actually true or not. When it comes to mathematics, a person’s mathematics-
related beliefs can address at least four different aspects of mathematics as well 
as the interplay between these aspects. Beliefs about the nature and 
characteristics of mathematics as a discipline; beliefs about the place and role of 
mathematics in the world, i.e. in nature, society, culture, technology and science; 
beliefs about mathematics education, i.e. the teaching and learning of 
mathematics, and the place of mathematics in the curriculum at large; beliefs 
about the self’s relationships with mathematics in the three manifestations just 
mentioned. The belief targets are sometimes depicted as a tetrahedron (see also 
Jankvist, 2015), in which the triangle with the vertices ‘maths as a discipline’,
‘maths education’, and ‘maths in the world’ are placed in the “ground floor”, 
whereas the vertex ‘self’ is a point in 3-space, placed above the ground floor. 
The six edges of the tetrahedron represent the connections between the four 
aspects taken into consideration. 
The “person” at issue can be a student but also a teacher. Oftentimes people’s 
mathematics-related beliefs do not manifest themselves directly and explicitly. 
They have to be uncovered. A multitude of studies show that students’ and 
teachers’ work and behaviour in, and attitudes, to mathematics and mathematical 
activity are markedly influenced by their beliefs about mathematics. 
Indeed, the focus students involved in the mathematics counsellor programme 
were all greatly influenced by their mathematics related beliefs. They often saw 
mathematics as a swarm of disconnected concepts, facts and rules, not governed 
by any natural logic, a field which only rarely makes sense in the real world and 
which by ordinary people can only be learnt by rote memorisation. As one focus 
student explained, in the first year of upper secondary school it was still possible 
to learn everything by heart, but in the second and third year concepts, rules, 
procedures and theorems piled up to such an extent that it became out of reach 
to learn it all by heart, so the only option was to give up while at the same time 
wondering why some students evidently were able to catch up with the 
demands. “They must have extraordinary memories!”. Most students 
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experienced great difficulty in reconciling theoretical and empirical 
considerations. Basically, they were inclined to perceive mathematics as an 
empirical discipline, but they knew that this was not the way the teachers and 
their textbooks looked at things. So, many students were utterly confused as to 
when empirical work was acceptable and when not. The far majority of the 
focus students held what Harel and Sowder (2007) call external or empirical 
proof schemes, i.e. for them to be convinced of the truth of a mathematical claim 
either some external authority, such as a teacher, a textbook or a high 
performing peer, was needed to testify to the truth of the claim, or the students 
needed sufficiently many (or rather insufficiently few!) empirical examples, and 
nothing else, to become convinced of the truth of the claim. Whilst these 
students were normally aware of the “system’s” requirements of some formal 
proofs and proving they, themselves, couldn’t see the need for it. As particularly 
regards mathematical modelling, it is crucial whether a student (or a teacher) 
holds views of mathematics as a discipline - or of mathematics as an education 
subject - that excludes or includes the relationships between mathematics and 
the extra-mathematical world, including mathematical modelling. Several 
students felt that extra-mathematical considerations and activities have nothing 
to do with mathematics, so they were reluctant to engage in such considerations 
and activities. Ironically, the very same category of students oftentimes 
complained about the lack of sense and meaning of mathematics for the world 
outside the classroom. 
The notion of didactical contract is a key construct in Guy Brousseau’s theory 
of didactical situations (Brousseau, 1997) which he has developed over several 
decades. The didactical contract amongst a teacher and his or her students in the 
classroom specifies the division of labour between the teacher and the students. 
What can the students expect that the teacher will do, and will not do, in- and 
outside class? What kinds of tasks will the teacher give to the students to work 
on, and within what time frame? What sort of help will the teacher provide to 
students, prompted or unprompted? Dually, what can the teacher expect the 
students to do, and not to do, inside and outside class. What kinds of tasks can 
the teacher expect the students to (accept to) undertake, individually, in small 
groups or in whole class settings? How does the teacher expect the students to 
behave, individually, and vis-à-vis peers, in relation to their mathematical work 
inside and outside class? And so on and so forth. 
Typically, the contract is tacit, shaped by years of habit and experience on the 
part of both the teacher and the students, and not only the actual ones but also 
previous teachers and previous students. It is of course asymmetrical due to the 
general inequality in the power balance between teacher and students, even 
though we know that students may sometimes rebel against a teacher with 
dramatic consequences. According to Brousseau, learning can only really take 
place when the usual didactical contract is broken, because only then will 
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students make learning their own project, which is a necessary condition for 
learning to occur. Breaking the didactical contract implies that it goes from 
being tacit to being explicit. Such a breach requires re-negotiation of the 
contract, although not necessarily a shared agreement on a new contract. 
Nevertheless, if the teacher wants students to undertake mathematical work –
e.g. mathematical modelling, stating conjectures, proposing and proving 
theorems and so on and so forth – that are new in relation to the existing 
didactical contract, this contract has to be broken, re-negotiated and replaced by 
a new one.  
All students in the mathematics counsellor programme were strongly influenced 
by a rather narrow didactical contract according to which the teacher “on 
a normal day” would present new material to the class – usually with close 
reference to textbook sections – showcase the solution of what would constitute 
a standard exercise with well-defined steps and procedures, and then ask 
students to solve a number of more or less similar exercises in class, either 
individually or in small groups. Typically, similar tasks are given to students to 
work on at home, and every now and then they are required to submit individual 
written solutions for the teacher to correct and mark, work that contributes to 
their highly significant seasonal marks. The role of technology, including CAS-
systems and graphing calculators, in all these activities is manifest. Probably no 
other country attributes a more positive role to technology in education than 
does Denmark. When students work on their tasks in class, they frequently call 
on the teacher, asking for confirmation of what they have done so far or for help 
if they’ve got stuck. The tasks students are asked to work on are typically 
closed, relatively short, and require short answers only (only seldom multiple-
choice responses are an option), and there is normally only one correct answer. 
So, it does not take much novel activity to break the didactical contract, which 
both happened with the detection tests students were given, and with 
intervention schemes concerning the three semester themes, especially 
reasoning, proof and proving, and models and modelling. Most students were 
not used to such tasks, usually with several reasonable solutions, and often got 
confused about how to deal with them. In some cases they even rejected the 
tasks altogether, because they deviated too much from what they were used to. It 
was therefore necessary for the mathematics counsellors to articulate a change 
of the didactical contract (without using that term, though) and explicitly 
negotiate a new one with the students. 
Let us now consider a set of more specific observations and findings. Needless 
to say, it is only possible to deal with a small set of observations and findings in 
this paper. 
Firstly, we shall look at selected findings concerning concepts and concept 
formation. It is well known that many students experience difficulties at really 
capturing the concept of number, ranging from place value representations of 
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natural numbers, over the problems involved in seeing the differences as well as 
the links between fractions and rational numbers, understanding the nature of 
negative numbers and operations with them, through to the definition and 
meaning of irrational numbers and decimal representations of any real number. 
The position of numbers on the number line, including the denseness of the 
rationals (and the reals), give rise to learning challenges to most students. 
However, what was surprising to us was the extent to which focus students 
rejected 0 as a number. Several focus students explicitly stated that “0 is not 
a number”. Surprisingly many students – and not only focus students – claimed 
that a5/a5 = 0, because nothing is left when all the a’s have cancelled out, which 
means, so the students reasoned, that the result is 0. Some of these students also 
claimed that (2 /√3)∙( √3 /2) = 0, but found (2/3)∙(3/2) = 6, because in the latter 
case you can compute the product explicitly, which you can’t in the former case.  
Furthermore, focus students often wrote ‘0 ∙ x = x’, and explained that since 0 
stands for nothing it has no effect on x in multiplication. Other students, in 
contrast, claimed that ‘0 + x = 0’, because “nothing” annihilates what is next it. 
These students’ common perception seems to be that 0 is not a number, but 
“a marker of absence”. How come that several focus students found that the 
solution to the equation 38x + 72 = 38x is 0? Based on interviews with these 
students, the explanation seems to be that when you have done everything you 
can to this equation you obtain 72 = 0, and as we “know” that the solution to an 
equation is what you end up with on the right-hand side of the equal sign when 
your manipulations have been completed, 0 must be the answer. Upon closer 
scrutiny, none of these students thought that the number 72 is actually 0, 
suggesting, once again, that 0 is not a number. This was exacerbated by the fact 
that it was usual to get the answer ‘six’ from focus students, when they were 
asked to tell how many integers there are in the interval [-2, 5), namely -2, -1, 1, 
2, 3, 4, leaving 0 out of the count. 
Another well-known finding from research and practice over several decades is 
that the equal sign gives rise to many obstacles to students. The main reason for 
this is that the equal sign plays a lot of rather different roles in mathematics, 
although these roles are closely related, which is why we use the same symbol 
for all the roles. One such role is in definitions: In a right-angled triangle with 
sides a and b, we define sine of the acute angle  between a and the hypotenuse 
c as sin 𝐴𝐴 𝐴 |𝑏𝑏|/|𝑐𝑐|. Also we define what is called the discriminant of the 
quadratic equation ax2+ bx + c = 0 as the number D = b2 - 4ac. We define the 
derivative f’(x) of the function f at x as limh→0 [f(x+h)–f(x)]/h (provided the limit 
exists). Another role, close to that of definition but used in different contexts, is 
assignment. For example, given the numbers a1, a2, …, an we let sn = a1+ a2
+…+ an. A very important role is that of identity. In contrast to the previous 
uses of the equal sign, identity represents a statement, which may or may not be 
true, within some domain. We always have a = a. In the classical number 
domains we also have ab = ba and (a+b)(a – b) = a2 – b2 for all a and b (but not 



92 MOGENS NISS

if a and b are square matrices). For plane right-angled triangles (but for no other 
plane triangle) with side lengths a and b and hypotenuse length c, it is always 
true that a2 + b2 = c2. Also 1 = 0.999… (infinitely many 9’s). A more general 
version of the notion of identity is that of equivalence within a mathematical 
domain. We write m = n (mod p) for integers m, n, and p if and only if p divides 
m – n. Two different fractions m/n and p/q are equivalent, and we write 
m/n = p/q, exactly if mq = pn (here ‘= ‘stands for identity). One of the crucial 
roles of the equal sign is that of a query. A query is not a definite statement, but 
two combined questions: If U(x) and V(x) are variable expressions depending on 
x varying over a certain domain, does there exist a value of x such that 
U(x) = V(x)? If so, what is/are the x/’s that satisfy this predicate? This role of the 
equal sign is the one we find in all sorts of equations. The final role of the equal 
sign is that of a prompt or a command, like in: sin (/4) = , and 1+2+…+ n = .
Grasping these different roles of the very same omnipresent equal sign is 
complex enough for ordinary students, but even more so for students with 
mathematics specific learning difficulties. The focus students in our programme 
seem to adhere in large part to the prompt interpretation. They perceive the sign 
as a procedure indicator meaning ‘gives’ or ‘yields’ or simply ‘moving on’, 
which is why they can easily use it several times, one after the other, in long 
chains of calculations, even though the resulting statements become 
mathematically meaningless. This interpretation probably also explains the 
highly surprising fact that several focus students answer ‘no’ when asked 
whether one can infer from a = b that b = a. If b is perceived as resulting from 
processes performed on a, there may be no reason to believe that a will result 
from a process performed on b. When faced with an algebraic equation, focus 
students often believe that they have to perform operations on the left-hand side 
so as to obtain the right-hand side. This become meaningless to them when there 
are unknowns on both sides. How is it possible to make manipulations of the 
left-hand side that yield an unknown right-hand side? In other words to many 
students with mathematics specific learning difficulties the equal sign does not 
stand for a relation, let alone a symmetric one. 
Solving algebraic equations is known to be notoriously difficult to many 
students, and the difficulty is often explained by insufficient operational skills –
including lack of knowledge of the manipulative rules and tricks – or lack of 
effective solutions strategies: what are we aiming at, what to do first, and next, 
and so on, till the equation has been solved? This is certainly also part of the 
problem. But there are some deeper problems, which are particularly manifest 
for student with learning difficulties.  
In the same way as the equal sign in general is interpreted by focus students as 
a prompt to carry out certain procedures, an equation is interpreted as a prompt 
to undertake certain more or less well-defined steps. Students do not perceive an 
equation as a mathematical object such as a predicate, or a query. Similarly, to 
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them a solution to an equation is what comes up when the sequence of 
procedural steps has come to a stop.  We already know this from research 
(Bodin, 1993) concerning younger students, where a large proportion of the 
(grade 7) students who were able to successfully come up with the unique 
solution to the equation 7x – 3 = 13x +15 were unable to subsequently tell 
whether x = 10 is a solution to the equation they had just solved. It is also 
reflected in the focus students who propose 0 (usually not x = 0) as the solution 
to the equation mentioned above, 38x + 72 = 38x. Embarking head over heels on 
the procedures prompted by the equation, they never reflect on the nature of the 
object put in from of them. Also focus students faced with the equation 
3x – x = 2x, rush off to perform the procedural steps they know, arriving at 
0 = 0, and then finish with several question marks. When interviewed about their 
response they say that they didn’t really know what to do, because suddenly x
disappeared from the equation, which has never happened before. So, once 
again, as the solution to an equation is what you obtain at the right-hand side, 
when nothing more can be done, several students propose 0 as the (only) 
solution. This was also found when students were asked to solve the equation 
x = 1, where some wrote ‘x – 1 = 0, so x = 0’. It has to be admitted that it was 
never part of the standard didactical contract for these students to ask them to 
solve an equation that already has a trivial solution put in front of their eyes, 
equations with no solutions at all, or equations for which any number is 
a solution.  
With the focus students we also encountered the standard finding that for 
something to be recognised as an equation it has to contain x’s. When students 
were asked to answer the question ‘does it ever happen that a2 = 2a?’ a typical 
answer is ‘no, for a2 = a∙a and 2a = a+a’. If asked whether it ever happens that 
x2 = 2x, the focus students are transferred to “equation mode” and give one of 
the following answers: ‘I don’t know, because I don’t know how to solve such 
an equation’ or ‘yes, if x = 2’. Focus students almost never provide ‘x = 0’ as an 
answer, which is probably yet another reflection of their conviction that 0 is not 
a number. 
The final examples of findings concerning concepts and concept formation are 
special cases of the general finding that mathematical symbolism at large is 
a massive stumbling block for many students, and in particular symbolism 
involving letters. Many focus students were convinced that letter symbols are 
subjected to a game or a calculus of its own, with rules and procedures invented 
by some game constructors, and having no bearing whatsoever on dealings with 
numbers. As one of them stated when faced with the equation 38x + 72 = 38x,
‘I don’t understand, for you cannot add x’s to numbers’. They were resiliently 
unaware of the fact that letter symbols are stand-ins for numbers in different 
roles, be they unspecified constants or parameters, be they variables or be they 
unknowns sought to satisfy equations or inequalities. We also saw several 
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students who believe that letters used in applied contexts are labels of entities or 
objects not numbers, as in variants of the famous Student/Professor-problem, ‘In 
a certain school there are six times as many students as teachers. If S is the 
number of students and T is a number of teachers, write an equation that 
expresses the relationship between S and T’, where lots of students made the so-
called “reversal error” and wrote ‘6S = T’ giving reasons like ‘for every six 
students there is a teacher’, thus mixing the two sorts of entities ‘students’ and 
‘teachers’, respectively, up with their numbers. 
We also saw several focus students who believe that letter symbols have 
a personal identity of their own, like in the Pythagorean Theorem, a2+ b2= c2,
where c is always the (length of the) hypotenuse, and a and b the (lengths of the) 
two other sides, so that it is simply illegal to interchange them. More generally, 
the fact that we are allowed to introduce names of variables as we wish, as long 
as some basic conventions and consistency rules are being observed, is very 
alien to most of the focus students. This also plays out when they are asked to 
engage in modelling tasks. One of the conventions some focus students have 
difficulty in coming to grips with is that an x in an equation is the same number 
in every occurrence. In an equation such as 7x – 2 = 12x + 2, why can’t we say 
that the x on the left-hand side is 4 and the x on the right-hand side is 2, since x
is after all unknown in all occurrences? 
I have spent quite some space on findings concerning concepts and concept 
formation because these permeate all mathematical work. It is now time to 
address the second theme, reasoning, proof and proving, which for space 
reasons will be dealt with in a less detailed manner. Our, and the mathematics 
counsellors’, point of departure is the notion, already mentioned, of proof 
scheme, introduced by Harel and Sowder (2007). Based on empirical studies of 
university students, Harel and Sowder wanted to investigate what for students 
constitutes their conviction of the truth of mathematical statements. They 
identified three basic proof schemes, which might also be called conviction 
schemes: external proof schemes, where conviction is established by external 
features (e.g. the exterior appearance of a proof) or external authorities (such as 
teachers, textbooks, peers); empirical proof schemes, where conviction is 
established by empirical probes into the truth of a claim, primarily by way of 
confirmative examples of special cases of the claim, but also overall plausibility 
and compatibility with existing experiences; and deductive proof schemes, 
where conviction is established by logico-mathematical deduction from a set of 
premises. Focus students almost never possess a deductive proof scheme, 
although they sometimes know that this is what teachers have, especially 
versions, so the students believe, of deductive proof schemes involving formal 
calculations. Many focus students adhere to external proof schemes, which 
conforms to the fact that these students do not see mathematics as something 
that makes much sense, let alone something that can be understood. So, these 
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students are happy to “take an authority’s word for it”. Many other focus 
students have an empirical proof scheme, predominantly based on examples. 
They often tend to discard deductive reasoning as something that constitutes 
truth, because truth for them is an empirical matter. Hence deductive reasoning 
and proof are simply useless and superfluous. 
When focus students were presented with an erroneous proof (based on division 
by 0 in disguise) that every number is 0, and then were asked whether it is true 
that every number is 0 and whether the proof presented was correct, surprisingly 
many answered that the proof seems correct (an instance of an external proof 
scheme), so it must also be true that every number is 0. In interviews some of 
them were then asked whether they really believe that every number is 0, and 
replied ‘in reality, of course not, but it is evidently true in mathematics’. Other 
focus students found no flaw in the proof but disagreed that every number is 0, 
and when asked how these two statements were compatible, they answered ‘that 
is because in mathematics you can prove whatever you like’.
Although several focus students did have problems with fundamental 
mathematical logic, especially implications and their reverse, quantifiers, and 
non-formal negation of implications and quantified statements, only a few of 
them suffered from serious deficiencies in everyday logic, i.e. by and large they 
were able to perform ordinary reasoning to a fair extent. The problems seem to 
arise when logic is combined with mathematics, in which case there is no 
experiential corrective to prevent flawed reasoning from occurring. When asked 
to decide whether the following two statements are the same, the far majority of 
the focus students answered ‘yes’: ‘if the sum of two integers is even, then their 
product is odd’ and ‘if the product of two integers is odd, then their sum is 
even’. When faced with the question ‘A square is a rectangle in which all sides 
have the same length. Is every square a rectangle?’, the majority of the focus 
student answered ‘no’, because they discarded the premise stated in the question 
and activated their everyday “knowledge” that a rectangle is a right-angled 
quadrilateral where the two pairs of sides are of different lengths. This was 
confirmed when the same students said ‘no’ when subsequently asked whether 
a rectangle is ever a square. 
Let us finally turn to observations and findings concerning mathematical models 
and modelling. The first significant observation is that almost a fourth of the 
students actually reject, or give up on, modelling tasks. In interviews the focus 
students typically say that they gave up, because they had no idea what to do and 
how to get started. They also tend not to pay attention to the setting, information 
and questions provided in the task but either rush off to make somewhat 
meaningless mathematical calculations or activate irrelevant (or wrong) 
everyday conceptions or ideas, e.g. when they respond to two models of the long 
term exploitation of an oil field by saying that the models are both wrong, 
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because the oil will be regenerated in the earth, or because mankind will always 
be able to find and exploit new oil fields. 
For quite some time it has been established knowledge from research that 
students at large tend to over-generalise proportionality in word problem and 
modelling contexts (De Bock et al., 2011; Van Dooren et al., 2008). This is 
certainly the case with our focus students as well.  We see this when students are 
asked to solve the following PISA problem: Two pizzas of the same kind and 
thickness cost DKK 30 and 40, respectively. The diameter of the cheaper one is 
30 cm, and that of the more expensive one is 40 cm. Which pizza is the best 
value for money?’ Virtually all focus students respond that it does not matter, 
because in both cases you get 1 cm pizza per DKK. In other words, they have 
adopted a proportionality model based on the diameter (or, equivalently, the 
circumference) of the pizzas. When interviewed about their responses, it 
typically takes quite some time to make students realise that the model should be 
based on the area of the pizzas, which scales with the square of the diameters. 
Some focus students even believe that ‘diameter’ is yet another unit along with 
centimetre or metre. Once the students have realised that the area is the relevant 
magnitude for the model, they typically have no problem in finding the areas 
involved, as they usually know the formula for the area of a circle. Another 
instance of over-generalised proportionality is present in students’ answer to the 
question: ‘A (massive) wooden cube with all edge lengths 2 cm weighs 4.8 g. 
How much does a massive cube made of the same wood, but with edge lengths 
4 cm weigh?’ Practically speaking all focus students answer 9.6 g, and once 
again, this answer turned out to be highly robust towards attempts to make them 
realise that the scaling factor is 8 and not 2. Upon further probing, most of the 
students were convinced that also the volume – and not only the weight - scales 
by a factor of 2, and not 8. By inviting students to make several 2D and 3D 
drawings or to make use of building blocks, the mathematics counsellors were 
able to eventually generate the insight with students that the correct scaling 
factor is indeed 8. A few focus students were able to correctly scale the volume 
but not the weight. It turned out that these students were missing the notion of 
density of a homogeneous material as a fixed ratio between weight and volume.
Over-generalisation is a special case of a general phenomenon: over-
generalisation of the models students are familiar with, above all function 
models. When invited to model more complex situations, students picked one of 
the models on their shelves of experience –multiplicative models, linear models, 
power function models, exponential or logarithmic models - without paying due 
attention to the specifics of the situation. For example, when asked to model the 
above-mentioned student/professor-problem, several focus students proposed 
meaningless linear models such as y = 6S +T, or power function models such as 
T = E6, or no model at all, such as 6S/T. A focus student asked to forecast the 
body temperature of a person whose temperature, due to a fever, rose by 1.10 per 
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hour proposed an exponential model, because ‘this is what we usually have 
when something increases by a fixed amount per time unit, like with bank 
savings or populations growth’. When prompted by her mathematics counsellors 
to make a table and then a graph of the temperature growth, she realised that the 
growth was in fact linear, whilst maintaining that this clashed with her 
perception of what kind of model describes constant growth per time unit,
without realizing that the nature of the growth, additive or multiplicative, is 
a key factor to consider. 
Space does not allow me to go any further in describing the multitude of 
findings obtained by working with upper secondary school students with 
mathematics specific learning difficulties. However, what I have presented 
hopefully suffices to show that students are faced with a very large number of 
such difficulties and that these difficulties are far from lying on the surface of 
students’ learning but are in fact deeply rooted in it. Furthermore, the learning 
difficulties are underpinned – if not co-created – by overarching misconceptions 
resulting from misguided mathematics-related beliefs and too narrow and less 
than constructive didactical contracts. Therefore it takes much more than 
correcting, telling and showing or other quick fixes to counteract these 
difficulties. This takes us to the final section of this paper. 
CONCLUSION 
In view of the severity and deep roots of students’ mathematics specific learning 
difficulties, shaped and consolidated throughout a decade of schooling, it seems 
as a mission impossible to dream of effectively counteracting these difficulties 
without beginning again from scratch. However, our programme, as well as our 
follow-up research, has demonstrated that engaged and competent mathematics 
counsellors trained in a professional development programme that makes 
explicit use of research in dealing with real students encountered in everyday 
teaching practice can in fact make a significant difference. We do not know yet 
how large this difference is. What we do know is that it is large enough for most 
(albeit not all) of the students taking part in the programme to make visible 
progress to a point where they obtain respectable and in some cases fantastic 
success in the remainder of their upper secondary mathematics education, while 
changing their mathematics-related beliefs and attitudes to mathematics and 
mathematical work to much more constructive ones.  
Further research and development is needed to study long-term effects of the 
interventions implemented by the mathematics counsellors. Further research and 
development is also needed to investigate how the everyday role of mathematics 
counsellors in their schools can be optimised so as to not only remedy 
mathematics specific learning difficulties when detected and diagnosed but, 
much more importantly, how these can be prevented from occurring.  
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DOES SCHOOL EDUCATION ENHANCE
THE DEVELOPMENT OF CREATIVITY?

Marta Pytlak 
University of Rzeszow, Poland 

Among the aims of mathematics education in primary school, inter alia, the 
development of creativity, creative and critical thinking are mentioned. It seems 
that the higher the school level, the greater should be the openness and 
creativity of students. The paper presents the results of a research carried out 
among students in the third and seventh grade of primary school. Both research 
groups received the same mathematical task: in a presented sequence of 
numbers they had to select the one that in their opinion did not match the others. 
The justification provided by the students was the focus of our study. The 
obtained results turned out to be quite surprising and provoking the question 
whether school reality fosters the development of creativity.  
INTRODUCTION 
Today, teaching mathematics is understood in a specific way and mathematics is 
perceived as a social activity (Schoenfeld, 1992). The focus of mathematics 
education has also changed (da Ponte, 2008, Krygowska, 1985, 1986). Learning 
and teaching mathematics is primarily understood as learning to think, act and 
communicate mathematically (Arzarello, 2016). It is expected that a student who 
graduates from primary school will not only demonstrate knowledge of relevant 
mathematical facts. In addition to substantive knowledge she or he should also 
demonstrate a whole range of mathematical skills. These include, above all, the 
ability to analyse and make hypotheses, argument and justification ability, and 
creative and critical thinking. Especially critical and creative thinking is 
particularly important (Oldridge, 2015). Changes in the curriculum that have 
recently taken place in Polish education put the main emphasis in the teaching of 
mathematics focused on the development of thinking. The idea is to educate in 
such a way that the student will be a self-thinking person (MEN, 2008). 
Developing students’ mathematical thinking is at the heart of mathematics 
education, also according to the Polish curriculum. However, the concept of 
mathematical thinking is not clearly defined by researchers. As Schoenfeld 
(1992) writes, in order to study mathematical thinking, one should recognize the 
following aspects: the knowledge base, problem-solving strategies, monitoring 
and control, beliefs and affects, and practices. So in other words student’s 
“activities, actions and explanations during problem solving are interpreted as
visible signs or expressions of their mathematical thinking” (Viitala, 2015a, p. 
138).  
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THEORETICAL FRAMEWORK 
Research on creativity and creative thinking has been going on for some time. 
Researchers have given different definitions of creativity. Most often, 
mathematical creativity is defined as the students' ability to create original 
solutions in problem solving. Creativity of students during solving this kind of 
tasks is understood as the ability of finding non-standard ways of solution as 
well as the ability to find more than one method of solving a problem (Bures & 
Novakova, 2015). Mathematical creativity can be seen as the ability of students 
to create useful and original solutions in authentic problem-solving situations 
(Chamberlin & Moon, 2005). We can find references distinguishing the 
following basic features of mathematical creativity (Silver 1997): a) fluency, 
referring to the number of correct responses that the student produces, b) 
flexibility, referring to the number of different mathematical concepts and ideas 
that the student discovers, usually breaking away from stereotypes, c) 
elaboration, indicating the complexity of mathematical thinking, as the student 
integrates different pieces of mathematical knowledge, and d) originality, 
illuminating the extent that the student’s ideas are insightful, new and lead to 
unexpected and unconventional solutions.  
Studies show that on the first stage of education many students show their 
talents towards mathematics. There is a belief that every child is gifted, meaning 
that each child can work creatively (Brandl 2011, Clements & Sarama, 2007,
Gruszczyk-Kolczyńska, 2009, Munz 2013,). Therefore, it is necessary to raise 
the efforts to find and develop mathematical talents within pupils of the lower 
grades of primary school (Tirosh, Tsamir, Levenson & Tabach, 2011). Mindful 
that students at different levels of education feel the satisfaction from creative 
activity, you need to create the conditions for them to present their 
achievements. That possibility leads to classes in which the student has the 
opportunity to meet with unusual tasks that do not impose a single method to 
solve (Ramani & Siegler, 2007).  
As the research shows, of great importance in the field of developing 
mathematical capabilities and mathematical creativity is the selection of tasks. 
The tasks called open-ended are particularly helpful (Klavir & Herskovitz 
2008). The open-ended problems are more cognitively challenging, because they 
allow for multiple interpretations and solutions and offer students the 
opportunity to solve problems using their actual skills.  
Solving these types of tasks allows students to take their first steps towards 
developing mathematical creativity (Mann, 2006). It is believed that solving 
carefully selected problems may help to develop and cultivate students’ 
creativity. 
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METHODOLOGY OF RESEARCH
The research described in this paper has been carried out over 5 years. Two 
research groups participated in it. The first group consisted of students from the 
third grade of primary school (20 children in the age 9-10 years old), and the 
second one consisted of students from the seventh grade (33 people aged 14). 
The research groups were not specifically selected. All of them were regular 
school classes. There were both mathematically talented students and those who 
had difficulty in learning mathematics. The idea was to test students in their 
natural environment. The third graders were examined in 2013. At that time, 
they participated in additional classes aimed at arousing their interest in 
mathematics. It took place once a week and lasted 45 minutes. Two different 
topics were discussed during the classes: one of them was related to geometry 
(mainly concerned with 3D geometry and the relationship between 2D and 3D 
geometry), and second one – to the arithmetic. The results obtained during these 
meetings have already been discussed and presented (Pytlak, 2013, 2015). 
Conclusions from the obtained results indicated a large potential of students in 
terms of creativity and critical thinking. The solving of mathematical puzzles, 
discovering rules and dependencies gave the third grade students great 
satisfaction (Pytlak, 2014, 2016). Then the question arose: is this a typical 
situation, a general case? Do students gain knowledge in this field during school 
education or maybe rather school reality is breaking their natural abilities? An 
attempt to answer these questions was to conduct a research among students of 
the seventh grade of primary school. Students received exactly the same 
research task as their younger colleagues. It was an intentional treatment. In this 
way I wanted to compare the results of both research groups. The use of the 
same research tool gave such possibility. 
I wanted to find the answers to the following questions:

• Will students be able to see relationships and dependences in a given 
sequence of numbers? 

• Will the students be able to properly justify their choice? 
• Will students be creative? 
• What criteria will guide their choices? 
• Will the solutions presented by the seventh grade students be similar to 

those received by the third grade students? 
The research task was as follows:

Among the given numbers, select the one that does not match the others. Justify 
your choice. Is another solution possible? For each choice, justify why this number 
should be deleted according to your opinion (selected number - justification). 
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9 15 24 16 25 16 34 18

21 42 41 14 18 15 25 30

12 16 18 20 33 15 12 6

This is an open-ended task. The numbers have been selected in such a way so 
that there is more than one choice, depending on the used criterion. The idea was 
to check what criterion students would apply. Will they be creative and 
constructive, how many different choices will they discover in individual 
examples? What features will be discovered first, what will  they usually take 
into consideration while solving the task? Thus, this task developed the ability 
to: analyse, perceive similarities and differences between objects (here: 
numbers), put and verify hypotheses; also develop the skill of critical thinking.
The students worked independently for the one school hour. Before solving the 
task, they received the worksheet. Students were also informed that each task 
may have different solutions. They should give this one which is the most 
appropriate in their opinion. They could also make more than one choice, but 
every time they must give reasons for this selection. 
At the beginning all students’ worksheets were coded and after that they were 
analysed. A qualitative and quantitative analysis was carried out. All answers 
given by the students were collected and accordingly grouped. After analysing 
all students’ work, the phenomena occurring and repetitions in their solutions 
were distinguished and highlighted. Then the successive analysis of the works 
was made and each of the answers was classified in the previously listed 
phenomena. Due to differences in the level of knowledge of both research 
groups, there were also differences in the used strategies. In addition, 
a comparative analysis of the results obtained by the third and the seventh grade 
students of primary school was made.
Due to limited space, the results obtained by the seventh grade students will be 
briefly discussed here. A comparative analysis of both research groups will also 
be presented.
RESEARCH AMONG STUDENTS OF THE SEVENTH GRADE  
All students participating in the study solved the task. Expectations regarding 
the results were such that each student will give at least two different solutions 
to each of the presented puzzles. In addition, I expected a large variety in the 
used criteria of selection.
The initial analysis of the work of the seventh grade students led to quite 
unexpected results. It turned out that everyone gave only one solution to each of 
the examples (in the third grade half of the respondents gave two or more 
options to solve a given task). Interestingly, only eight respondents indicated 
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that other solutions are possible, but it was limited only to the recording of this 
statement, without giving specific examples. Two students pointed out in their 
work that there is definitely only one solution in each case. The next two were 
not entirely sure and they were marking with some examples that another 
solution is possible, while at others - that there is only one solution. As many as 
two-thirds of the students solved the task by providing only one example and did 
not respond in any way to the question of possibility of other solutions. These 
results are summarised as follows:

1. Reference to digits (digit, digit of tens, the lack of specific digit in the 
remaining numbers): 8,1 %

2. The number of single-, two-digit: 4,6 %

3. Odd, even number: 2,5 %

4. Small, big number: 4,6 %

5. Sum/difference of digits: 2 %

6. divisibility/ multiplication: 57 %

7. the relationship between the numbers in the sequence: 8,2 %

8. prime number: 0,5 % 
9. others: 11,8 %

As can be seen from the above, the most frequently chosen criterion was related 
to the divisibility of numbers. More than half of all responses were related to 
this criterion. Most often this criterion was used in the case of task No. 1, 2, 4 
and 5. Students were choosing a specific number and as justification wrote: 
"because it is not divisible by ...", "because it does not divide by ..." or "because 
it is not a multiple of...". Such argumentation can be observed in the following 
works:

Besides the verbal justification, there appeared some calculations. They played 
the role of additional justification and they have to authenticate the choice.
The multiple criterion was applied in a quite original way by the students in the 

It is not divisible by 7 
(without the rest)

Each number is divided by 5 except the number 18 
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sixth task (sequence of numbers 33, 15, 12, 6). Here students noticed that only 
33 cannot be represented as multiples of 60, because from each remaining 
number in the sequence, 60 can be obtained by appropriate multiplication, e.g. 
15×4 = 60, 12×5 = 60, 6×10 = 60.

A lot of students justifying their choice focused on the visual aspect of the 
number. Here they referred both to how the number was built (i.e., what specific 
numbers were used to write this number), or paid attention to the specific digit 
standing on the position of tens or unities. This type of argument referred mainly 
to examples 2 and 3 (the sequences of numbers 21, 41, 42, 14 and 12, 16, 18, 
20). This situation we can observe in the following works:

The criteria related to the construction of a number (one or two-digit number) 
and its size were equally chosen often. Usually, this way of solution concerned 
tasks No. 1, 3 or 6. The criterion related to the parity of the number was also 

low. It was applied only to task 4 (sequence of numbers 25, 16, 34, 18). Perhaps 
it was related to the fact that more often in this situation, the students referred to 

the divisibility of the numbers by 2.

Few students studied the relationship between the sum of digits in individual 
numbers. This occurred only in the task 6 (sequence of numbers 33, 15, 12, 6), 
although it also could be used in other examples (e.g. in tasks 2, 3, 4). Only one 
person indicated the prime number as the selection criterion. It has not been said 
explicitly. This student noticed that the number 41 is not a multiple of any 
number. Perhaps this student has forgotten how such numbers are called. It was 
in the task 2:

Because the other numbers are even

41 - is not a multiple

In this number there is not digit 1 
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Particularly noteworthy is the criterion related to the dependence between 
numbers in a given sequence. We can see two different approaches while
applying this criterion. One of them is as follows: the students noticed that three 
of the four numbers form a sequence change by a constant value (i.e., it is 
a certain arithmetic sequence with a constant difference). This is particularly 
evident in the task 3 (number sequence 12, 16, 18, 20), where two different 
arithmetic progression were distinguished: 12, 16, 20 or 16, 18, 20. Perhaps the 
manner of recording the numbers in the task helped the students to discover such 
dependence. An example of using this criterion is the following work:

The second approach was related to connecting three numbers with each other 
using arithmetic relationships. This was particularly used for the task No.1 
(sequence of numbers 9, 15, 24, 16) and No. 4 (sequence of numbers 25, 16, 34, 
18). Here the students noticed that 9 + 15 = 24 and 16 + 18 = 34.

Applying this criterion could testify the analytical approach of students. Such 
dependence was not obvious. It required analysing the sequence and making 
several calculations.
COMPARATIVE ANALYSIS 
Comparing the results obtained by the third and the seventh grade students of 
primary school, we can notice a lot of differences. Many of them resulted 
mainly from the level of knowledge available to students at a given educational 
level. Some of results, however, were quite surprising.
The table below provides a summary of the choices made by students in both 
research groups. In order to unify the results, the criteria used by the students 
were coded as follows:
 A – criterion related to divisibility (multiples, divisibility by a given 

number) 
 B – criterion related to the construction of the number (one- or two-digit 

number, use of specific digits to record the number) 

Because all increase by 2

Because 9+15=24

Because 16+18=34
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 C – criterion of dependence (creating sequences by numbers, arithmetic 
relationships between numbers) 

 D – criterion of sum / difference of digits of a given number 

 E – criterion of the size of the number (large, small number) 
 F – parity criterion (even number, odd number) 

 G – other criterion (all other criteria that cannot be unambiguously 
defined)

The results (in %) are presented in the Table 1: 
No. 
of 

task

Number 
sequence

Selected 
number

III grade VII grade

A B C D E F G A B C D E F G

1.
9, 15,
24, 16

9 65 3 3 12 12

15 3

24 8,5 8,5 64 6 6

16 8,5

2.
21, 41, 
42, 14

21 70 21

41 8 67 3

42 19 3 3

14 3 3

3.
12, 16, 
18, 20

12 12 20 16 3

16 4 4

18 12 45 9 6

20 44 4 9 6 6

4.
25, 16, 
34, 18

25 50 57 6 16 6

16 4 3

34 12 3

18 30 4 9

5.
18, 15, 
25, 30

18 12 16 85 6

15 3 3 3

25 6 6 3 3

30 3 22 10 3 3

6.
33, 15, 
12, 6

33 4 12 12 9 3 22

15 4 12

12 4 12 3 12 3

6 56 8 12 6 6

Table 1. Students’ choices of criteria

As can be seen from the presented list, the younger research group more often 
found justification for selection of each number in the sequence than the older 
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one. The seventh-grade students in four cases did not find justification for 
choosing particular number. In addition, making choices significantly differed 
between these two research groups. It was related to the type of used criterion. 
As we can observe in the task No.1, the third grade students definitely chose the 
number 9 (using the criterion related to the construction of the number), while 
the most of seventh grade ones chose the number 16 using the criterion of 
divisibility.
We can observe similar situation in the task No.2 – the majority of the third 
grade based on a visual criterion associated with a particular digit and chose the 
number 21 or 42, while students from the seventh grade using the criterion of 
divisibility chose the number 41. In the third task the older group most often 
chose 18 based on the criterion of divisibility. As much as one third of the 
choices was guided by the number sequence criterion (12 or 18 were selected). 
In the younger group, students chose 20, referring primarily to the construction 
of the number. As far as the sequence of numbers is concerned, they were only 
applied to the number 12 - perhaps there was a suggestion here of the numbers 
in the table, and the students did not attempt to investigate other dependencies.
In the task No.4 both groups most often chose the number 25, however, they 
followed a different criterion: for the third grade it was connected with number 
parity, and for the seventh one - to divide the number by 2. For the task No.5 the 
most commonly used criterion by the oldest students was the reference to 
divisibility (choice of 18). Unfortunately, it is difficult to distinguish the 
criterion used by the younger students in this sentence. Although the most 
frequently chosen number was 30, different justifications and different criteria 
were used. As we can see the results for the task No. 6, in the first group the 
number 6 was most often chosen, arguing that it is single-digit (criterion related 
to the construction of the number). In the second group, the number 33 were the 
most popular, however giving various justifications (and none of the 
justifications related to the construction of this number).
A criterion seldom used by the older research group was this one with reference 
to the sum or the difference of digits. Equally not very popular was the criterion 
related to the parity of numbers and the size of numbers. Definitely the seventh 
grade students referred most frequently to the divisibility or multiplicity of 
numbers. With regard to the younger research group, we note that the most 
frequently used criterion was the reference to the construction of the number. 
The criterion of dependence was the least frequently used (that is, the 
relationship between numbers was not examined).
SUMMARY 
The task the students received was available at both school levels. In both 
research groups, students had the appropriate knowledge and skills to solve this 
task. Expectations regarding the obtained results were such that students from 
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the higher level will apply much more diverse criteria. As the analysis of the 
collected research material showed, the younger research group presented 
a wider range of possibilities. In addition, it was the younger students who were 
more creative when solving the task. Besides, they tried to give more than one 
answer to each puzzle. They did not limit themselves only to indicating 
a number that does not match the others, but in each case they gave justification 
for their choice.
Meanwhile, the seventh grade students did not even attempt to give more than 
one answer to each task. This may be due to the fact that students are expected 
to give one specific answer at school, during math lessons. The tasks they meet 
in the classroom are unambiguous and require a precise solution. Therefore, they 
do not have enough opportunity to develop their creativity, to be creative. 
Typical tasks require the use of specific mathematical knowledge. Usually this is 
related to the subject currently being processed and students are not encouraged 
to look for alternative solutions that go beyond the currently processed material.
Students have great potential associated with creativity and creative thinking in 
the field of mathematics, as evidenced by the results obtained by the younger 
research group. It is the role of the mathematics teacher to discover and develop 
this potential. It should not be wasted. It is necessary to undertake appropriate 
activities conducive to the development of creative thinking, mathematical 
thinking. Above all, putting open problems in front of the students and 
encouraging them to look for different, non-standard solutions.
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In this study, we introduce a systemic approach to investigate the high-school 
students’ proof beliefs and evaluations, as they emerge through their 
experiencing the perceived ‘official’ proof reality (the teacher and the textbook). 
A mixed methodology was adopted to identify the convergences and divergences 
in a school class amongst the students’ proof belief systems and evaluating 
criteria, the teaching practices and beliefs about proof and proving, the 
appearances of proof and proving in the school textbook and answer book, and 
the audience (self, peers, teacher) of the proof. Complex, otherwise conflated or 
over-simplified, relationships were revealed, supporting the chosen approach.  
PROOFS AND PROVINGS IN SCHOOL: BELIEFS AND PRACTICES
Mathematics education researchers have investigated the students’ experiencing 
the various proof functions (Balacheff, 1988; Hanna, Jahnke & Pulte, 2010; 
Hanna & de Villiers, 2012), including “verification (concerned with the truth of 
a statement) [...] explanation (providing insight into why it is true) [...] 
systematisation (the organization of various results into a deductive system of 
axioms, major concepts and theorems) [...] intellectual challenge (the self-
realization/fulfilment derived from constructing a proof)” (De Villiers, 1999, p. 
5). The students’ difficulties have been linked with their having limited 
opportunities to be engaged with proof and proving in their everyday school 
experience (Thompson, Senk, & Johnson, 2012). In this study, we investigate 
the students’ proof beliefs and evaluations, theorising that their daily experience 
of the official proof reality emerges at the interactions of diverse sources of 
authority, immediately experienced and are recognised as such: the official texts
(the textbook and the answer book) and the teaching and assessment practices. 
A SYSTEMIC PRAGMATIC APPROACH TO INVESTIGATING 
PROOF BELIEFS AND EVALUATIONS IN HIGH SCHOOL
Bieda (2010) notes that the teachers and the textbooks serve as signposts in the 
students’ efforts to give meaning to what a valid proof is; what is rendered 
acceptable to the given educational setting and its perceived constitutional 
principles. Hence, the students construct what Harel and Sowder (1998) term as 
a proof scheme (“what constitutes ascertaining and persuading for that person”, 
p. 244), with ascertaining referring to “the process an individual employs to 
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remove his or her own doubt about the truth of an observation”, whilst 
persuading referring to “the process an individual employs to remove others’ 
doubts about the truth of an observation” (p. 241). Following these and drawing 
upon the pedagogical differentiation “convince yourself, convince a friend, 
convince an enemy” (Mason, Burton & Stacey, 1982, p. 95) and Segal’s (1999)
ideas of private and public aspects of proof, as well as Harel and Sowder’s 
(1998) notion of proof scheme, Moutsios-Rentzos (2009) suggested that there 
are qualitatively differences in the students’ conceptions of ‘prove to yourself’, 
‘prove to a friend’ and ‘prove to an enemy’, being evident in their proving 
strategies (including constructing, presenting or evaluating a proof). 
Furthermore, he differentiates proof constructing from proof evaluating as 
qualitatively distinct processes, since the criteria developed for evaluating 
a proof, which may or may not be in line with their actual proving. 
Various classifications of the arguments that may be employed as proving 
arguments have been suggested, including Harel and Sowder’s (1998) fine-
grained categorisation and Balacheff’s (1988) hierarchy: naive empiricism, the 
crucial experiment, the generic example, and the thought experiment. However, 
the links between non-deductive and deductive arguments are not clear for the 
students, as, for example, the use of specific examples may help in accepting an 
argument as mathematically valid (Bieda & Lepak, 2014), while a deductive 
argument for the general may not be considered to be valid in the specific 
(Duffin & Simpson, 1993). Moreover, authority is crucial to the formation of the 
proof evaluation criteria, including undergraduates and even research-active 
mathematicians who seem to be affected by the authority status of the person 
who utters the argument (Inglis & Mejia-Ramos, 2009). Furthermore, the 
students’ evaluations are affected (even determined) by whether or not the 
presented proof follows the established communicational norms; for example, 
mathematical symbolism (Harel & Sowder, 1998; Pfeiffer 2009). 
The accumulated effect of the students’ experiences with proof and proving is 
evident in their beliefs, that are their “multiply-encoded cognitive/affective 
configurations, usually including (but not limited to) prepositional encoding, to 
which the holder attributes some kind of truth value” (Goldin, 2002, p. 64). 
Conversely, their beliefs are linked with their proving strategies and their 
proving evaluating criteria (Bieda, 2010; Moutsios-Rentzos, 2009). 
In this study, we adopt a systemic perspective to investigate the convergences 
and divergences between the students’ beliefs about proof and proving (the 
notion of proof and their proof evaluation criteria) and the official experienced 
school class reality (including the teaching practices, the textbooks and answer 
books). In specific, in our investigation about proof beliefs, we agree with the 
view that beliefs form relatively isolated, internally structured clusters to 
constitute a construct sometimes referred to as a belief system (Green, 1971). 
Belief systems have been viewed as being complex, bearing properties and 
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characteristics that transcend their constituting beliefs-elements (Beswick, 
2012). These echo Bertalanffy’s (1968) ideas of the system as being a complex 
whole with clear purpose and boundary, consisting of elements and subsystems, 
having a structure, with its constituting parts being interlinked in ways that 
allow for properties to emerge that cannot be immediately attributed to the 
system parts. Consequently, in this study, we focus on belief systems within the 
school class conceptualised as a subsystem of the school unit system (cf. 
Moutsios-Rentzos & Kalavasis, 2015; Moutsios-Rentzos & Leontiou, 2016) to 
identify the students’ proof belief systems and evaluating criteria, as they are 
formed at the interactions of: a) the teaching practices about proof and proving 
and the underlying teacher’s related beliefs, b) the appearances of proof and 
proving in the school textbook and answer book, and c) the perceived as 
acceptable proof and proving evaluating criteria of the audience (the students 
themselves, their peers or their teacher).
METHODS AND PROCEDURES
The study was conducted with 16-year old high-school students (N=63) and 
Amelia (their Algebra teacher), after they finished the first grade in high-school 
in Greece. Amelia is a mathematician with 25 years of teaching experience (15 
years teaching Algebra in this grade).  

Figure 1: ‘Statement 3’ (theorem proved in the textbook) and the five arguments.

The research instruments included: 
a) Textbook analysis. Drawing upon Moutsios-Rentzos and Pitsili-Chatzi 

(2014), the school textbook and answer book were analysed to identify 

I f a,b are signed numberswith different sign then |a+b|<|a|+|b|.
Naive empiricism
For a=2 and b=-5 then a+b=-3, |a|=2, |b|=5 and |a+b|=3 consequently |a+b|<|a|+|b|.
For a=-6 and b=9, a+b=3, |a|=6, |b|=9 and |a+b|=3 consequently |a+b|<|a|+|b|.
For a=15 and b=-1, a+b=14, |a|=15, |b|=1 and |a+b|=14 consequently |a+b|<|a|+|b|.
For a=-10 and b=10, a+b=0,|a|=10, |b|=10 and |a+b|=0 consequently |a+b|<|a|+|b|.
For a=32 and b=-30, a+b=2, |a|=32, |b|=30 and |a+b|=2 consequently |a+b|<|a|+|b|.
It follows that this statement is true for these five pairs of signed numbers with different sign. Consequently the
statement is proved.
Crucial experiment
Let a random pair of signed numbers with different sign a=3, b=-5. Then a+b=-2 and thus |a+b|<|a|+|b|.
Consequently, the statement is true and since the pair was taken at random, the statement is proved.
Generic example
Let a random pair of signed numbers with different sign a=-8, b=7. Then |-8+7|2 = (-8+7)2=(-8)2 + 2(-8)(7) + (7)2 = 1. 
Also (|-8|+|7|)2 = |-8|2+2|-8||7|+|7|2 = 225. Consequently, |-8+7|2 < (|-8|+|7|)2 and since the bases of the squares are
positive it will be |-8+7| < |-8|+|7|. And since the chosen pair was taken at random, the statement is proved.
Thought experiment (direct proof)
Let |a+b|<|a|+|b|. Since both the two members of the inequality are positive numbers: |a+b|2<(|a|+|b|)2, so (a+b)2 <
|a|2+2|a||b|+|b|2, so a2+2ab+b2<a2+2|ab|+b2. Finally ab<|ab| which is true since ab<0 and |ab|>0. Consequently the
statement is proved.
Thought experiment (reductio ad absurdum)
Let the statement is not true, which means that if a,b are signed numbers with different sign then |a+b|≥|a|+|b|. Since
both the two members of the inequality are positive numbers: |a+b|2≥(|a|+|b|)2, consequently (a+b)2≥|a|2+2|a||b|+|b|2,
consequently a2+2ab+b2≥a2+2|ab|+b2. Finally ab≥|ab| which is not true (contradiction) since ab<0 and |ab|>0. Having
started from something that I assumed that it was true and ending up with something that is not true, then my
assumption wasn’t true. So the ‘opposite’ of what I started should be true. Consequently the statement is proved.
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functions of proof (only systemisation, explanation and verification), 
proving practices, employed language (symbolic or mixed) and proving 
methods. 

b) Structured interview, to investigate Amelia’s teaching practices and beliefs 
about proof and proving. 

c) Questionnaire, to investigate the students’ beliefs about proof (29 five-point
Likert type items, drawing upon Almeida, 2000; Hemmi, Lepik & 
Viholainen, 2010; Kögce & Yıldız, 2011) and their evaluation criteria about 
proof and proving: 3 statements (a theorem not proved in the textbook, 
a textbook exercise, a theorem proved in the textbook) with 5 arguments for 
each statement in line with Balacheff’s (1988) classification including two 
thought experiments (direct proof and reductio ad absurdum; see Figure 1). 
The students’ evaluations concerned three audience types (self, peers, 
teacher; Moutsios-Rentzos, 2009): on a 7-point scale for self and peers and 
as a grade (out of 20) for the teacher. The questionnaire was administered to 
a broader sample to identify its structure (see Table 1): Validity (offered by a 
proof, based on verification and systemisation). Proof for some (not for all 
students). Intellectual challenge-Understanding (affective, personal gains 
and understanding). Certainty (assigned to the idea by a proof). Explanation
(gives meaning to the idea).

STUDENTS’ BELIEFS AND EVALUATIONS
The students’ proof beliefs are outlined with respect to their agreement for each 
of the items constituting a factor in Table 1. The students agree or are neutral 
with respect to the items of Validity, Certainty and Explanation, neutral to 
Intellectual challenge-Understanding and negative-neutral to Proof for some.
Thus, the students seem to believe that proof is a tool validating with certainty 
a given statement and that this tool is accessible to all students and not only for 
some. Furthermore, they do not seem to have a positive or negative opinion with 
respect to the less functional aspects of proof, such as the affective or personal 
gains and understanding that may be linked with a proof (Almeida, 2000).

F11, 2 F2 F3 F4 F5 Mdn3,4

Proofs in mathematics both verify and 
explain.

0.265 4.0

If a result in mathematics is proved, I 
can be certain that it is true.

0.458 3.0

Examples illustrating a result do not 
always help me understand why the 
result is true.

-0.259 3.0

Proofs are essential in pure 
mathematics.

0.347 4.0

I can’t see the point of doing proofs: 
all the results in the course have 

0.626 2.0
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already been proved beyond doubt 
by famous mathematicians.

Proofs are necessary in mathematics. [-0.278]0.512 1.0
I like doing proofs in mathematics. [-0.308]0.675 3.0
Working through a proof of a result 

helps me to understand why it is 
true.

[-0.242] 0.534 4.0

Reading through a proof of a result in 
a textbook helps me to understand 
why it is true.

0.608 3.0

Different proofs of a theorem help me 
to understand it better.

0.316 3.0

Proofs in mathematics depend on 
other mathematical results.

0.378 4.0

Proofs show how everything is 
connected in mathematics.

0.422 [0.340] 3.0

Proofs help seeing that “evident 
statements” are not necessarily true 
before they are proved.

0.378 3.0

Proofs show the beauty of 
mathematics.

0.656 3.0

Not all students can cope with proof; 
only those who are good at 
mathematics

0.457 2.0

Proofs are logical structures in 
reasoning where the various steps are 
motivated with known theorems and 
definitions.

0.447 4.0

I can’t believe any math statements 
without proof.

0.319 3.0

Proofs are sequences of logical 
statements that imply each other, a 
logical derivation of results.

0.520 4.0

Proofs strengthen logical reasoning. 0.560 4.0
Proving sometimes reveals the 

inaccuracy of a theorem which 
seems correct.

0.610 4.0

Proving is made for our convincing 
someone for our claims.

0.477 3.0

Proving can lead us to new 
discoveries in mathematics.

0.305 3.0

I think there is no need for proving, 
because it is confusing.

0.654 2.0

Proofs show where mathematical 
relationships come from.

[0.310] 0.654 4.0

Proofs answer the question why 0.573 4.0
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theorems and statements hold 
undoubtedly true.

Proofs explain mathematical 
expressions and relationships 
through already known facts.

0.289 0.302 4.0

Only the students that are inclined to 
be good in mathematics can cope 
with proofs.

0.708 3.0

If a result in mathematics is obviously 
true, then there’s no point in proving 
it.

0.495 3.0

A proof is a line of reasoning showing 
the validity of a statement.

0.540 [0.337] 4.0

1 Principal Axis Factoring (NBroader=185). Varimax rotation with Kaiser Normalization. 44.2% variance 
explained. Cross-loadings >0.240 are reported with [ ].

2 F1: Validity. F2: Proof for some. F3: Intellectual challenge-Understanding. F4: Certainty. F5: Explanation.
3 Only for the students discussed in this paper (N=63).
4 ‘1’-‘5’ scale. ‘1’: Disagree a lot, ‘2’: Disagree, ‘3’: Neither disagree, nor agree, ‘4’: Agree, ‘5’: Agree a lot.

Table 1: The questionnaire of students’ beliefs.

Not proved theorem Exercise Proved theorem
Naive empiricism

Self1 4.0 4.0 4.0
Peers1 4.0 4.0 4.0
Teacher2 14.2 14.4 14.5

Crucial experiment
Self 3.0 4.0 3.0
Peers 4.0 4.0 4.0
Teacher 12.6 13.5 13.7

Generic example
Self 4.0 3.0 4.0
Peers 4.0 3.0 4.0
Teacher 13.0 12.2 13.9

Thought experiment
Direct Proof

Self 4.5 5.0 5.0
Peers 5.0 5.0 5.0
Teacher 15.1 15.5 16.2

Reductio ad absurdum
Self 5.0 5.0 5.0
Peers 4.0 4.0 5.0
Teacher 15.0 15.3 15.8

1 Median. ‘1’-‘7’ scale to the question “How convincing is this proof?”, with ‘1’: Not at all, ‘2’: Almost 
not at all, ‘3’: Little, ‘4’: Average, ‘5’: Much, ‘6’: Very much, ‘7’: Totally.

2 Mean. Out of 20.

Table 2: Students’ evaluating criteria about proof and proving.
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The students’ evaluating criteria are outlined in Table 2. In general, the students 
appeared to be reluctant to provide a high score to any of the provided ‘proofs’, 
regardless the audience. This may be linked with their mathematics grading 
experiences. Nevertheless, there seems to be a correspondence amongst the 
expected grade (teacher), the level of ascertaining (self) and persuading (peers): 
they correspond roughly to the same percentage. Moreover, it is clear that the 
thought experiment (being a direct proof or reductio ad absurdum) are the more 
acceptable arguments, followed by the naïve empiricism, with the crucial 
experiment and the generic example receiving similar evaluations. The direct 
proofs are the only ones on the positive-neutral side of the evaluation scale (over 
‘4’ on the 7-point scale) or grade (usually 15 out of 20 is considered as a grade 
to denote the average attaining student in high school mathematics in Greece). 
Interestingly, almost all the arguments were acceptable: neutral (‘4’ on the 7-
point scale) or below the ‘average’ (15/20), but not a failing grade (<10/20). 
Moreover, the students seem not to differentiate the crucial experiment from the 
generic example, which combined with the higher evaluations of the naive 
empiricism argument may imply that the students focussed on the number of 
cases given, rather on the line of thinking being communicated. 
MAPPING THE OFFICIAL PROOF AND PROVING CLASS REALITY
Proof and proving: the textbook and the answer book 
As outlined in Table 3, the students predominantly encounter in both textbook 
and school book direct proofs communicated in mixed language, whilst half of 
the identified functions of proof are linked with systemisation, about one third 
with explanation and the remaining one sixth with verification. 
Appearances of proof 
and proving

Textbook
Theory Applications Total

Answer
book

Total

Functions
Systemisation 26(47.3%) 10(62.5%) 36(50.7%) 44(48.4%) 80(49.4%)
Explanation 22(40.0%) 3(18.8%) 25(35.2%) 32(35.2%) 57(35.2%)
Verification 7(12.7%) 3(18.8%) 10(14.1%) 15(16.5%) 25(15.4%)

Practices
Application after proof 15(45.5%) 1(7.7%) 16(34.8%) 4(3.7%) 20(13.1%)
Example before proof 2(6.1%) 0(0.0%) 2(4.3%) 24(22.4%) 26(17.0%)
Identification as ‘proof’ 15(45.5%) 10(76.9%) 25(54.3%) 78(72.9%) 103(67.3%)
Figure 1(3.0%) 2(15.4%) 3(6.5%) 1(0.9%) 4(2.6%)

Language
Only symbolic 3(10.0%) 9(90.0%) 12(30.0%) 26(33.3%) 38(32.2%)
Mixed 27(90.0%) 1(10%) 28(70.0%) 52(66.7%) 80(67.8%)

Methods
Direct 22(73.3%) 6(60.0%) 28(70.0%) 58(74.4%) 86(72.9%)
Reductio ad absurdum 1(3.3%) 1(10.0%) 2(5.0%) 2(2.6%) 4(3.4%)
Analysis 4(13.3%) 3(30.0%) 7(17.5%) 17(21.8%) 24(20.3%)
Counterexample 3(10.0%) 0(0.0%) 3(7.5%) 0(0.0%) 3(2.5%)
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Find the fault 0(0.0%) 0(0.0%) 0(0.0%) 1(1.3%) 1(0.8%)

Table 3: Appearances of proof and proving in the textbook and the answer book.

Though the majority of proofs are explicitly identified as such, when comparing 
the two books, only half of them are in this category in the textbook, contrasting 
the almost three quarters of those in the answer book. Furthermore, one third of 
the textbook proofs are accompanied with a subsequent application, an almost 
non-existent practice in the answer book. In contrast, one quarter of the answer 
book proofs are introduced with an example, which is not evident in the 
textbooks. Consequently, the students regardless if they read only the textbook 
or they refer to the answer book as well, they seem to be experiencing 
a relatively coherent representation of what an acceptable proof usually is: 
a direct proof, written in mixed language, referring to other proven or accepted 
statements. Interestingly, the links of example and application with a proof are 
qualitatively different, thus affecting the experienced official reality between the 
students who read only the textbook and the students who read both, with the 
former constructing a deductive mathematical world (with proofs of the general, 
followed by its application the specific), whilst the latter also experience an 
inductive approach (with the specific introducing the general).
Amelia’s proof and proving beliefs and practices
Considering beliefs about proof and proving, Amelia stressed the role of proof in 
mathematics in appropriately grounding the mathematical ideas, in gaining 
deeper understanding about the rationale and line of thinking of the proving 
arguments, as well as in providing the bedrock for other mathematicians to 
conduct further investigations: “First you ground it, second you can see the way 
the one who did it the way he [sic] thought it and third you are given the 
opportunity to search for something else yourself” (lines 27-28). ‘Appropriately 
grounded’, “the right way”, seems to be especially important for her: “I believe 
that proof just offers satisfaction and pleasure to the one who manages it and 
proved and proved it the right way, based on the right line [of thinking]” (lines 
51-53) […] “for me the proof is something that grounds something that 
intuitively or empirically was conceived by someone and then it [the proof] 
grounds it” (lines 129-131). Amelia stresses that such a process strengthens 
reasoning and intuition: “[…] it is more about admiration for the person who set 
the proof and secondly it gives you more ideas. This broadens more thinking, 
intuition” (lines 35-37). The affective aspects of proof are evident in these 
quotes (admiration for the prover and the pleasure in proving), mentioned by 
Amelia several times, suggesting the importance she assigns to these qualities.
Considering proving practices, Amelia employs an inductive, mediating 
approach, as she introduces a context (an example or a specific problematic 
situation) that may give meaning to the theorem and its proof for the students: “I
consider this wrong. To tell them the theorem and now we’ll prove it. I teach 
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them more indirectly and try to let them be involved in its [proof] construction 
and more on seeing the end result of this process” (lines 204-206). Such an
approach is linked with her belief that the examples help the students in gaining 
deeper understanding about mathematics through explicit linking mathematics 
with their applications: “so that the value of proof will be known to the students 
and to link it [mathematics] with something more practical and to interest them 
[the students] a little bit more (lines 489-491). Her broader belief that proof and 
proving strengthens the students’ reasoning is evident in her trying to present 
more than one ways of proving a statement, as she believes that this practice 
helps in broadening the students’ thinking, imagination and creativity: “ehh it is 
beneficial not directly for the specific exercise, it [multiple proofs] gives them 
[…] experience that for the child I think would be multiplied, to be applied to 
something completely different later on, to broaden […] his [sic] thinking and 
imagination” (lines 395-398).
Amelia crucially differentiates proof reading from proof constructing as 
teaching practices with respect to the opportunities for learning for students of 
different mathematics attainment. Proof constructing is valuable for all students 
(regardless their mathematical attainment) as it has multiple advantages, 
including pleasure and links to everyday applications of mathematics: “even for 
the average student to try this thing [proof constructing] it really gives him 
pleasure” (lines 453-456) […] “if they construct it would be better, it is more 
interesting in the times that we live” (lines 509-511). Nevertheless, Amelia 
considers proof reading to be more appropriate for high-attaining students as it 
helps in broadening their thinking. This belief implicitly aligns qualities of the 
high-attaining students with those of the mathematicians, as similar benefits 
were mentioned by Amelia in her view of proof for mathematicians. 
Furthermore, it reveals that the gains of proof constructing are linked with the 
fact that the students are actively involved in doing mathematics, which has the 
broader benefits of being engaged with an activity, which for Amelia is also in 
line with her view of everyday living. Thus, Amelia considers proof reading 
appropriate only for students who are already successful in mathematics and not 
for the low-attaining or even ‘average’ students. Importantly, Amelia does not 
mention whether such proof constructions may help ‘average’ students to 
develop the characteristics that would make proof reading suitable for them. 
APPROACHING THE COMPLEXITY: CONCLUDING REMARKS
Considering the experienced by the students’ official reality, it was revealed that 
with respect to the school books, proof is usually identified as such 
predominantly and is communicated as being a direct proof, written in mixed 
language (Pfeiffer, 2009), explicitly linked with already proven or accepted 
arguments. Importantly, the role of the specific as means of introducing and 
identifying the general is only evident in the answer book, whilst in the textbook 
the specific is only employed as a special case of the general. Regarding 
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Amelia’s teaching practices, it was revealed that they were in line with the 
answer book, relying on the specific to introduce and give meaning to the 
general. Furthermore, Amelia emphasises systemisation, as she is especially 
interested in the appropriate foundation and construction of the proof, with the 
latter being at the heart of her teaching practices. 
Which of these appearances of the official or their interactions may be linked 
with the students’ beliefs and evaluations? The results of the conducted analyses 
revealed that the students of the specific class have formed a proof belief 
system, identifying proof predominantly as functional means for securing with 
certainty the validity of a statement and that is a mean that may be employed by 
all students regardless of their attainment. These may be partially linked with the 
systemisation function of proof strongly communicated by both Amelia and the 
school books. On the other hand, the pro-‘proof for all’ belief may be only 
linked with Amelia’s efforts to engage all the students with proof constructions, 
in the text book proving exercises (to be solved by the students) are included 
only in the set of exercises characterised as difficult (Moutsios-Rentzos & 
Pitsili-Chatzi, 2014). Furthermore, the students seem to be neutral with the 
affective qualities that Amelia identified, which may be linked with her not 
engaging the students with proof reading (that she considers may help a few, 
high-attaining students to experience aspects of proof and proving linked with 
mathematicians), as well as with the lack of communication of such aspects of 
proof in the school books. 
Considering the students’ evaluations, it seems that the students’ experiences 
with both the school books and Amelia’s practices are evident in their 
considering direct proofs as the most acceptable arguments. Nevertheless, the 
fact that they also consider reductio ad absurdum as equally acceptable, 
a method that is scarcely evident in either school books or Amelia’s practices, 
may imply that the students may have over-evaluated the importance of mixed 
language in a proof as communicated by the school books. Or, that a proof is 
different from the specific, since the example or the application are usually 
differentiated from the proof in the school books and Amelia. This may be 
further investigated in future studies by asking the students of a school class 
system to also evaluate a proof by counter example. However, the fact that none 
of the arguments was evaluated as unacceptable by the students, suggests that 
the students conceptualise an acceptable mathematical argument differently 
from what Amelia considers as a proof or what the textbook identifies as proof 
(in an introductory section entitled as such). This might be linked with the fact 
that many proofs included in the textbook (and fewer in the answer book) are 
not explicitly identified as such, as well as with the Amelia’s preferred way of 
teaching that effectively legitimises the use of examples in the proving process 
(though not in the proof itself), maybe without clearly differentiating it from the 
proof, thus maybe assigning a proof degree to the specific, rather than absolutely 
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not being a proof. Hence, it is posited that the students seem to form a hierarchy 
of acceptable proving arguments (one specific case, several specific cases, the 
general; cf. Balacheff, 1988), which may be linked with aspects of the daily 
experienced official reality, rather than on Amelia’s underlying beliefs or the 
introductory section of the textbook. 
Consequently, it is argued that the employed approach helped in meaningfully 
approach the complexity of the real world classroom, regarding the links 
amongst the official reality daily experienced by the students and their proof and 
proving beliefs and evaluating criteria. It was revealed that the role of the 
teacher and the school books are crucially linked with the students’ beliefs and 
evaluation, in less than expected or obvious ways, with the same experiences 
diversely and seemingly incompatibly affecting the students’ constructions, thus 
effectively approaching the complexity of the lived daily in-class reality. 
Finally, a current research project draws upon this approach to include in-class 
observations and longitudinal data, in order to gain deeper understanding of the 
aforementioned complex phenomena. 
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RECOGNITION OF BASIC SHAPES BY 4TH GRADERS
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Relevant research data and research analyses related directly to Slovak children 
of younger school age concerning how children think about planar geometric 
shapes and how they describe them are presently missing. We were interested 
whether the characteristics of van Hiele levels of geometric thinking are 
generally applicable, for example when also taking into account socio-cultural 
and linguistic aspects. The article briefly informs about the results of an 
extensive research conducted in the fourth grade of primary school in a form of 
a non-standardised test of knowledge. The aim was to identify pupils’ 
conceptions and misconceptions of basic planar shapes – disk, triangle, square 
and rectangle.
INTRODUCTION 
It is incredibly difficult to find out how children think because from their answer 
to a question we usually get to know only the result of the child’s thinking. We 
do not know how the process of thinking itself was going on. Gruszczyk-
Kolczyńska (2009) states that it is important to identify the nature of children’s 
intellectual activities because they affect the impact of mathematical education. 
Children desire to understand the world around them and this desire, or inner 
motivation, must be utilized at the right time and supported adequately to the 
child’s age. 
Children’s cognition is spontaneous, predominantly experiential and it is 
strongly affected by emotions. This is also a reason why children’s conceptions 
are extraordinarily firm and resistant to correction attempts. Children’s 
conceptions, so called naive theories of children, are initially imperfect because 
a child has less experience, it looks onto the world from its point of view, it 
cannot take into account more aspects at once, it creates illogical explanations 
and it involves its fantasy. They differ qualitatively from the adults’ 
understanding of the world and often are not in line with scientifically presented 
interpretations (Gavora, 2007). According to Jirotková (2010), the suggestive 
power of such knowledge often even subdues the need to formalise the subjected 
knowledge.
THEORETICAL BASES 
From the above-stated it is apparent that the problematic of research of 
children’s conceptions, or the identification of children’s misconceptions, is
a complex process that is of an interdisciplinary character. We base our research 
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on the work of Jean Piaget (1896-1980), Lev Semjonovič Vygotskij (1896-
1934), Jerome Seymour Bruner (1915 - 2016) and Piere van Hiele (1909 - 
2010). Among the theories of Piaget, Vygotskij and Bruner we may find certain 
parallels but also some differences. Instead of (separate) stages, which are 
exactly sequentially differentiated by age and which may be found in Piaget’s 
work, the representations of Bruner are integrated and intertwined, the division 
into sections is very loose and individual types of representations may exist 
concurrently. Progression through different types of representations increases 
the flexibility of thinking and the ability to solve problems. Individual types of 
representations are not bound by age. Based on these representations new mental 
representations to understand mathematic terms, principles and rules are created. 
Advancement to a higher level of cognition may be initiated by suitable 
educational activities and in suitable environment. Bruner, similarly to 
Vygotskij, accentuated the importance of cultural and social environment. This 
procedure is similar to the conception of Vygotskij’s zone of proximal 
development. Bruner’s theory states that the creation of children’s conceptions 
is conditioned by education and influence of adults, whereas it is necessary to 
use the correct type of representation.  
Milan Hejný (born 1936), contemporary Slovak and Czech mathematician has 
been dealing with didactics of mathematics his whole life. Drawing on the ideas 
of his father Vít Hejný (1904-1977) he prepared and systematically examined 
the mechanism of obtaining mathematic knowledge. The supporting structure of 
this process according to Hejný (1990) is formed by the sequence motivation → 
experience → knowledge. Nowadays, after several amendments, the taxonomy 
of cognitive process according to Hejný (2014) contains 5 stages (levels) - 
motivation, isolated models, generic model, abstract knowledge and 
crystallisation and 2 cognitive shifts - generalisation (1→), and abstraction (2→) 
(Figure 1). He excluded the stage of automatization from the cognitive process; 
this has primarily psychological grounds because it does not concern new 
cognition, but merely a practice of the known. Some pedagogic theories tend to 
think that the knowledge is really learned only when it is automatized to such 
level that one can automatically apply it in the given situation.  

motivation →
isolated
models 1 → generic model

processual -> conceptual 2 → abstract
knowledge

crystallisation

Figure 1: Model of cognitive process according to Hejný (2014)

Hejný’s theory of the generic model not only describes the substance of the 
cognition process, but it also enables the diagnostic of incorrect mathematical 
conceptions of children/pupils, the change of mechanic knowledge into 
knowledge with understanding and it provides impulses for the creation of re-
education procedures.  
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The theoretical base of the research of cognitive process in geometry is (besides 
others) the theory of geometric thinking (1957), of which the authors are Dutch 
teachers of mathematics Dina van Hiele-Geldof and Pierre van Hiele (for more 
information see van Hiele, 1986). There are many supporters of the van Hiele 
model of geometric thought worldwide, but also some disapproving opinions 
occurred. Van Hiele model of geometric thought with detailed characteristics of 
individual levels in cooperation with other models of cognitive process provides 
in general a theoretical framework for the research on geometric ideas of pupils 
of younger school age.
We consider the revision of the mechanism of cognitive process by Hejný to be 
a successful outcome of considerations that is also in line with our pedagogic 
persuasion. Whereas the original division of stages reflected Piaget’s 
developmental stages from the sequential point of view and taking biological 
age into consideration, the revised version corresponds with the considerations 
and conception of Bruner, who accentuated the need of spiral arrangement of 
curriculum and thus implied that the cognition stages may not be strictly 
separated. Hejný (in Hejný, Novotná & Stehlíková, 2004) states that “the 
sequence of individual levels corresponds up to certain extent with the 
timeframe of cognition process”. At the same time, he states that new experience 
or knowledge affects several levels at the same time and therefore he does not 
understand them as disjunctive. As far as time duration of individual stages is 
concerned, Hejný (2014) states that in case of some subject matters of cognition 
the individual levels may last a short time (maybe several seconds/
minutes/weeks), in other cases they last longer (several months, even years). 
Duration of cognition within individual levels varies. There are differences 
among individuals, but these are also related to differences in the quality of each 
individual’s understanding of the subject. These statements and conclusions are 
important for our research, on one hand for the comparison with the theoretical 
bases of the van Hiele model of geometrical thought, but also for the results of 
our research.
RESEARCH 
The aim of our research on geometric conceptions and misconceptions of 
primary school pupils of the fourth grade was to find out what are their 
conceptions about planar geometric shapes and their elementary properties. We 
assumed that the pupils of the fourth grade will think of the geometric shapes on 
the level of analysis according to the van Hiele theory and that they will be able 
to recognise significant elements of shapes and describe basic properties of 
triangles, squares, rectangles and disks. We wanted to find out the differences in 
the difficulties of identification of models and non-models of planar geometric 
shapes. We also examined which significant elements and properties, and to 
what extent, are the pupils of the fourth grade aware of when thinking about 
geometric shapes. 
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Research tool 
In order to examine conceptions of primary school pupils of the 4th grade of 
elementary school planar shapes (triangle, square, rectangle and disk) and their 
properties, we used a non-standardised test of knowledge. The content of the test 
was designed so that it would correspond with the current content and 
performance standards of State educational programme for the 1st stage of 
primary school (2015) in the educational field Mathematics and work with 
information. At the same time, we reflected the theoretical bases, in particular 
the van Hiele model of cognitive process, therefore tasks in the test 
corresponded predominantly with the first two van Hiele levels - visualisation 
and analysis, with some tasks borderlining also with the abstraction level as they 
contain elements checking the ability of abstraction.  
Individual tests were aimed to check the following abilities of primary school 
pupils of the fourth grade: 
 to name a planar geometrical shape by the image template (task 1); 
 to identify the model/non-model of a planar geometric shape by its name on 

the basis of image pattern (tasks 2-5); 
 to know significant elements and properties of a planar geometrical shape 

(tasks 6-9); 
 to create a model of a planar geometric shape in square grid (task 10). 
Research group 
The research group consisted of 345 pupils of the 4th grade from 26 primary 
schools, mainly from regions located in the North of and North-east of Slovakia. 
The research subjects were selected based on their availability; the research 
group consisted of 181 (52.5%) boys and 164 (47.5%) girls. The test was 
administered in the period from April to June 2015 in the traditional pencil-
paper form. Fourth-graders either circled the answers or they filled in short 
answers. 
Course of Research 
The main focus of the test was finding out the conceptions and misconceptions 
of fourth-graders about planar geometric shapes. We distinguished pupils’ 
ability to name a shape, identify it (distinguish it among other geometrical 
shapes), to know its elementary properties and to create its model. Despite the 
fact that the test is not standardised, after the statistical analysis it was confirmed 
that it shows signs of a quality test with diagnostic potential. 
The aim of the analysis of the acquired data, in relation to the research task 
being solved, was to find out whether it is possible to create a graded sequence 
of models and non-models of shapes according to the difficulty of their 
identification by pupils for each of the planar shapes (square, triangle, rectangle 
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and disk). We regard this as important input data for the creation of quality 
teaching materials, or tools of intervention for the removal of misconceptions. 
The next aim of the analysis was to put the models of planar shapes (square, 
rectangle, triangle and disk) in order according to the difficulty of their correct 
identification. This way we will obtain the information on which of the 
mentioned shapes are identifiable more easily for fourth-graders in terms of their 
geometric thinking, or identify shapes that may prove to be a potential obstacle 
in the children’s further geometric abstraction advancement.  
The conception of the test of knowledge was structured into two parts. The first 
part of the test (tasks 1-5) was focused on examination of fourth-graders’ ability 
to correctly identify planar shapes (triangle, square, rectangle and disk) 
according to the graphic template. Graphic templates contained models and non-
models of the shapes in question. The aim of this part of the test was the 
diagnostic of geometric thinking of fourth-graders at the visualisation and 
analysis levels. 

Figure 2: Task 1 – To each shape write its 
name.

Table 1: Clusters of shapes from the 1st 
task.

By means of the task 1, we observed the ability of pupils to name the shape 
according to the picture (Figure 2). From among all the items, pupils achieved 
the highest success rate in case of the item D (97.1%) and the lowest success 
rate in case of the item A (54.8%). Based on the values of the difficulty 
parameter, we divided the items into three clusters by means of cluster analysis. 
The first cluster contains the shapes least difficult for the pupils to name while 
the objects in the third cluster proved to be the most difficult (Table 1). 
In tasks 2 to 5 we observed the ability of pupils to distinguish models and non-
models of the given shape, the tasks were assigned using pictures (e.g. Figure 3) 
with models and non-models of individual shapes depicted. In task 2 we verified 
the fourth-graders’ visual conception of squares, in task 3 of triangles, in task 4 
we examined the ability to distinguish and select shapes that are not rectangles 
and in the last task of this part of the test we verified the fourth-graders’ visual 
conceptions of disks. In two tasks the pupils should select and mark models of 
the shape (tasks 2 and 3), in two tasks the pupils should select and mark non-
models of the shape (tasks 4 and 5). We have evaluated the success rate and 

clusters shape
1 D

2 F, G, B, C, E

3 A
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used cluster analysis for models and non-models of the shape separately for each 
task. To illustrate, we present the values for non-models of a square (Table 2). 
Limited space does not allow us to describe the results of individual tasks in 
details, therefore we will state the final conclusions of the test results in the 
research results part of this paper. 

clusters shape
1 C, D, F
2 G
3 H, J, I, B
4 E
5 L

Figure 3: Task 2 - Is the shape on the 
picture a square?  

Table 2: Clusters of non-models of 
a square from the task 2.

The tasks in the second part of the test aimed to test the selected properties of 
shapes corresponding to the second and third van Hiele level, respectively the 
analysis level and abstraction level. Task 6 focused on the ability to distinguish 
the significant elements of triangles (points belonging or not belonging to 
a triangle, vertices and sides of a triangle). In task 7 we observed significant 
elements of a disk and a circle, the ability to distinguish them (points belonging 
to the disk, point belonging to the circle, radius and diameter of a circle). In task 
8 we verified selected properties of a square among fourth-graders (adjacent and 
opposite side of a square, diagonals of a square, length of sides in a square etc.). 
In task 9 a non-convex hexagon was pictured and we tested whether the fourth-
graders are able to determine the number of its sides and vertices.  
In task 10 we verified the higher cognitive processes and tested whether the 
fourth-graders are able to draw a triangle, square, rectangle and pentagon in 
a square dotted grid, when one of the shape’s sides is already pre-drawn.  
Thus, the aim of the second part of the test was to determine the level of 
geometrical thinking of primary school pupils of the fourth grade from the point 
of view of van Hiele levels and their basic characteristics and conceptions and 
misconceptions of significant elements and properties of planar geometric 
shapes at the level of standards defined in the national curriculum (triangle, disk, 
circle, square, polygon). We tested which significant properties of planar shapes 
stated in the national curriculum cause difficulties for the pupils of the fourth 
grade and whether their perception is affected by misconceptions.
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Research results 
Ability of pupils to name a shape according to a picture. The task of naming 
the shapes was relatively easy for the fourth-graders. Even so there were 
differences in the difficulty of naming of individual shapes. To name a disk was 
the easiest task for the pupils (97%) and to name the shape of a square rotated by 
45° was the most difficult task (55%). Some fourth-graders still named the 
shapes on the basis of their overall look and the position of the shape played an 
important role for them. This was reflected in a lower success rate of 
identification of a rectangle with a great difference in the length ratio of its 
sides. 
Pupils’ conceptions of squares. The square in a standard position was the 
easiest to identify from among all of the shapes depicted in the template (95%). 
The identification of a rotated square was more difficult for the fourth-graders. 
At the same time, we may state that the degree of rotation of models also 
influenced the result. The fourth-graders experienced the greatest difficulties 
with a square, whose diagonals are in horizontal and vertical position (80%). We 
have observed this problem already among younger children. The fourth-graders 
also had tendency to identify the shapes on the basis of holistic perception. They 
marked the shapes, which in fact were not models of squares but had a square 
shape, as squares. They experienced the greatest difficulties with the shapes of 
square shape with rounded sides and vertices. Another problematic shape in 
terms of identification of models and non-models of squares was a rhombus, 
which was marked as a model of a square by as many as 49% of the fourth-
graders. We suppose that the congruence of sides fulfilled an important role as 
a significant property characterising a square during the decision making. We 
found out that more than 80% of the fourth-graders from the researched group 
know the significant elements and some selected properties of squares. They 
managed to identify the side of a square, the diagonal, they distinguished the 
adjacent sides (less successfully the opposite sides) and they could decide on the 
lengths of adjacent and opposite sides. Despite the fact that during the 
identification of squares in the pictures the pupils manifested the characteristics 
of the visualisation level, the results of the task concerning the significant 
elements and properties of squares indicated that they were able to give 
elementary descriptions of the basic characteristics of squares, which is typical 
for the van Hiele analysis level. 
Pupils’ conceptions of triangles. The results of the identification of models and 
non-models of triangles by primary school pupils of the fourth grade in the 
graphic template showed that the conceptions of triangles are of a slightly higher 
quality than the conceptions of squares. The success rate of the identification of 
models of triangles ranged from 88.7% to 98% and the success rate of the 
identification of non-models of triangles ranged from 67% to 89.6%. This result 
may be interpreted in a way that the pupils recognise the models of triangles 
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more easily and better than the non-models of triangles. The lower success rate 
of the identification of non-models of triangles was caused mainly by the shapes 
that holistically resembled a triangle, so the thinking about triangles of at least 
one third of the pupils of the fourth grade from the chosen group showed the 
characteristics of the van Hiele visualisation level. Besides the holistic 
perception of triangles, we expected the fourth graders to be able to verify at 
least elementary significant characteristics of triangles (e.g. 3 sides, 3 vertices). 
These anticipations were not fulfilled. A relatively big part of the fourth-graders 
was not able to perceive the details of triangles. That means that they do not 
have correct conceptions of the facts that the side of a triangle must be a line 
segment and that the vertices of a triangle are points from the geometrical point 
of view. They also are not able to perceive the triangle as part of a plane. Under 
the term triangle they understand only its border. All of these indicators 
unambiguously show the fact that in the field of triangles the research group of 
fourth-graders manifested the characteristics of geometric thinking only on the 
visualisation level. 
Pupils’ conceptions of rectangles. We assumed that primary school pupils of 
the fourth grade should be able to relatively reliably determine the models and 
non-models of rectangles from the image template. The task focused on the 
identification of rectangles was formulated in the form of negation, as opposed 
to the previous tasks. The research results from the field of the identification of 
models and non-models of rectangles by the fourth-graders showed that the 
easiest task for the pupils was to determine those non-models of rectangles, 
whose shape did not resemble a rectangle. For example, they managed to mark 
a triangle, square, trapezoid or square-shaped figure as a shape, which is not 
a rectangle. More complicated models of shapes for the fourth-graders were 
those that holistically resembled a rectangle. Interesting discovery was that 
considering difficulty the rhomboid was the most complicated to identify for the 
fourth-graders. More than one half of the them regarded the rhombus as 
rectangle, similarly to many younger pupils. We may state that the research 
group of the fourth-graders showed the characteristics of the van Hiele 
visualisation level. At least 20% of the pupils did not take significant elements 
and most important properties of rectangles into consideration during the 
classification of the shapes. They did not pay attention to any details, not even to 
the roundness of the shapes, which is out of the question within the 
identification of a rectangle. They distinguished shapes not using deeper 
analytical thinking, but merely by visual holistic appearance. That means that 
the tested pupils do not have enough experience with rectangles or with 
rectangle-shaped figures that are not really rectangles. Once again it turned out
that the position of a rectangle proved to be a significant attribute for the pupils, 
by which they identified the rectangle. 
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Pupils’ conceptions of disks. The identification of planar shapes that are 
models of disks by their graphic representations was not a difficult task for the 
pupils and, in principle they managed to reliably distinguish these shapes from 
the shapes that are not disks. Even though the position of the shape does not play 
any role during the identification of a disk, it was shown that the size of a disk 
was not negligible for the primary school pupils of the 4th grade. They 
experienced more difficulties when identifying a significantly smaller disk. Two 
regular polygons, which visually resembled disks, belonged to the most difficult 
items to correctly identify. The easiest thing was to exclude the shapes, whose 
shapes were “too angular”; the fourth-graders did not consider these shapes to be 
disks. Empirical data gathered during the identification of non-models of a disk 
showed that the division of shapes into groups corresponded with the holistic 
perception of these shapes very accurately. Visual thinking was confirmed also 
by the results of the task concerning significant elements of disks. At least half 
of the fourth-graders in the research group did not manifest the ability to 
determine the points of a disk, the radius and diameter of a disk, thus they were 
not able to provide elementary description of the shape. Despite the fact that 
disks turned out to be the most easily recognizable planar geometric shapes to 
identify by picture, their identification showed only the characteristics of the 
visualisation level. 
Our measurements proved that the identification of models and division of non-
models into groups for each individual shape (disk, square, rectangle, triangle) 
very accurately corresponds to the holistic perception of these shapes, and this in 
turn corresponds to the visualisation level of the van Hiele theory of the 
cognitive process in geometry. Primary school pupils of the 4th grade still 
preferred the similarity of a shape with a visual prototype during its 
identification. In case of triangles this was shown by preferring triangles with 
one side in a horizontal position, in case of rectangles by the incorrect 
identification of rhombus and rhomboid in the horizontal position, and, at the 
same time, the inability to identify a square, whose diagonals are in horizontal 
and vertical position. Our assumption that these pupils will achieve the analysis 
level (of description) with signs of visualisation level were not confirmed. Only 
within the subject of squares we discovered some signs of the level of 
description related to the significant and elementary properties of squares. We 
may rather state that fourth-graders remain at the visualisation level and that 
they manifested signs of the higher van Hiele analysis level only partially and 
only with certain shapes. 
CONCLUSION 
The results of our research confirmed the typical basic attributes of visualisation 
level and analysis level according to the van Hiele theory. At the same time we 
have observed such children’s statements and demonstration, that were 
seemingly on the border between the levels. The original van Hiele theory does 
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not describe these observations. According to our results, we may not think of 
the van Hiele levels as separated and disjunctive stages. Even though the 
differences between the characteristics of the individual levels are apparent, we 
understand the border between them to be very thin. We tend to think that the 
individual levels overlap within the cognitive process. The signs and 
demonstrations that are beyond the extent of one level, but are still not sufficient 
for the higher level could be regarded as such overlaps. 
Our data provided the evidence that children’s conceptions of geometric shapes 
may be at various levels. For example, a child’s geometric conceptions of 
triangles may be at a different van Hiele level than its conceptions of squares. 
The level of geometric thinking is usually determined by qualitative and 
quantitative individual experience of a child, but also by the diversity of shape 
properties (position, size, form).  
The stability of geometric preconception of children is high. For children the 
prototypes mean certain models, which represent geometric shapes and children 
create their own mental representations or figural schemes based on them. These 
representations and schemes are so fixed, meaningful and understandable for 
children that they are not willing to change their conceptions and even adapt 
their argumentation to the already existing mental structures (Žilková, 2013).
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In this paper we analyse some aspects of students’ cognitive factors in problem-
based learning. The problem we chose is closely related to the mathematical 
concept of sequence and offers also multiple solution strategies, multiple 
representations of the subject and possibility for mathematical communication.
We report results of a study in the age group of Grades 5th and 6th, focusing on 
their problem solving strategies and the characteristics of their inductive 
reasoning. 
INTRODUCTION 
“Make the subject problematic!” – it is a conceivable way the teachers approach 
the curriculum. Hiebert et al. argue that “… instruction should be based on 
allowing students to problematize the subject. Rather than mastering skills and 
applying them, students should be engaged in resolving problems” (1996, p. 12).
In the subject's research, professional and ethical issues are constantly emerging 
about problem-based learning. Is it possible to expect independent (or directed) 
discovery from every learner? Is the role of examples and counter-examples 
understandable to everyone? May the problem-based learning lead to 
meaningless learning in some cases? These dilemmas can only be resolved if the 
problems raised are examined with scientific certainty. The more we understand 
the problem-solving thinking of students at different ages, and the more 
thoroughly we analyse the effectiveness of problem-based mathematics teaching 
in classroom environments, the more secure we can apply this method. In this 
paper we analyse some aspects of students’ cognitive factors in problem-based 
learning (including complex thinking and reasoning strategies, e.g. conjecturing 
or justifying), in order to understand students’ problem solving thinking better.
CONCEPTUAL BACKGROUND 
The key concept of our paper is problem-based learning, which has 
a continuously enriching conceptual structure in the literature of mathematics 
education; therefore, we first clarify why we use this concept. In a problem-
based learning environment, a problem drives the learning material (Roh, 2003).
The problem or task should be an activity that focuses students’ attention on 
a particular mathematical concept that matches the goals of the curriculum. 
Students can also make connections between mathematical concepts and 
processes that are familiar to them. Good problems for problem-based learning 
offer also multiple solution strategies, multiple representations of the subject and 
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possibility for mathematical communication that includes proof-based activities 
or justification (Erickson, 1999). Good problem solving skills are prerequisites 
of problem-based learning; additionally problem-based learning in mathematics 
classes would provide students more opportunities to think critically. In our 
opinion, in the mathematics field, problem-based learning means that a learner 
must analyse a mathematical problem situation; he or she must approach 
critically the thinking of their own and their classmates. Furthermore, students 
explain and justify their thinking (Csíkos, 2010). The problem solving process 
we are studying in this paper is characterized by all the three elements of the 
above definition, thus providing a suitable conceptual framework for describing 
our research. 
The purpose of a problem appearing in the classroom is focusing students’ 
attention on a particular mathematical concept, idea or skill. The model by Stein, 
Grover and Henningsen (1996) based on the fact that mathematical tasks pass 
through three phases in the classroom: as written by curriculum developers, as 
set up by the teacher in the classroom, and as implemented by students during 
the lesson. Teachers’ goals, knowledge of subject matter and knowledge of 
students influence the setup of the mathematical task as represented in the 
curricular materials. Factors influencing student’s implementation are classroom 
norms, task conditions, teachers’ instructional dispositions and students’ 
learning dispositions. 
Mason, Burton & Stacy argue that “The process of conjecturing hinges on being 
able to recognize pattern or an analogy, in other words on being able to make 
generalizations” (2010, p. 73). More generally, this cognitive process is involved 
in the inductive reasoning activity. Haverty, Koedinger, Klahr and Alibali 
(2000) argue that fundamental areas of inductive reasoning are data gathering, 
pattern finding and hypothesis generation. Within the process of inductive 
reasoning Polya (1954) distinguishes stages, such as observation of particular 
cases, formulating a conjecture (generalization), testing the conjecture with 
other particular cases. Following these sources, we use a five-levels model for 
describing the inductive reasoning process (Kónya & Kovács, 2017). 

(1) Observation of particular cases including looking for possible patterns 
as well. 

(2) Following the observed pattern, i.e. applying it for other cases. It often 
happens without formulation of a general statement. 

(3) Formulating a conjecture. 
(4) Testing it by other particular cases. 
(5) The result is a general statement at this stage, but the mathematical 

problem solving process requires the deductive closure. The form of 
deductive closure could be either a rigorous proof or justification using 
the underlying mathematical structure. 
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Patterns in school mathematics often are represented either numerically or 
figurally (Rivera, 2013). In this study we use a figurally given pattern. The 
underlying mathematical structure can be represented numerically by 
a sequence. Students are expected to continue the pattern figurally, and they are 
also expected to formulate generalizations concerning this sequence, e.g. to 
determine a “near”, “far” or “arbitrary” element of the sequence. We also look 
for mathematically valid explanations or non-proof arguments, i.e. empirical 
arguments or rationales in the sense of Stylianides (2009). 
For describing the background of our research, we outline the Hungarian 
traditions of problem-based learning. Problem-based learning is an essential 
element of the Hungarian mathematics-teaching traditions, which is closely 
related to heuristics, inductive reasoning or to Polya’s principle of active 
learning (Polya, 1965, pp. 102-106). Problem-based learning is one of the 
fundamental principles of the “Complex Mathematics Teaching Experience” 
conducted by Tamás Varga in the Sixties and Seventies in Hungary (Varga, 
1988). One of the important effects of the Complex Mathematics Teaching 
Experiment is that this principle has always been present in the everyday 
practice of Hungarian mathematics teaching and learning. In this place, we 
emphasize C. Neményi Eszter’s pedagogical work (C. Neményi, 1999), where 
one of the focal points is the pattern recognition in a sequence which is uniquely 
defined by some activity, drawing, or procedure. C. Neményi argues that pattern 
recognition activities support
 recognizing the modelling function of sequences (i.e. a sequence is the 

mathematical model of a problem), 
 identifying functional relationships between quantities, 
 understanding mathematical concepts, and ideas. 

METHODOLOGY 
We conducted a cross-sectional study, where we used a textbook-problem for 
fifth-graders, but we used five different setups of this problem for various ages. 
Table 1 presents the number of students in each grade who took part in the 
investigation. 

Grade 5-6 7-8 9-10 11-12 12+ Total
N 47 21 60 33 71 238

Table 1: Number of students in the sample of investigations (12+ refers on teacher 
trainees.)

The sample 
In this paper we report results of the study in the age group of Grades 5th and 
6th. We implemented the task in the classroom using pair work method. 47 
pupils (24 pairs altogether) involved in the classroom observation, which took 
place in 2016 in an urban school in Hungary. The sixth-graders had results in the 
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lower part of the top tierce of the National Assessment of Students’ 
Mathematical Competences (similar to the international PISA test) in the year of 
our research; and we suppose that this result is exhibitive also for fifth-graders. 
(The National Assessment is conducted only for 6-, 8- and 10-graders.) It means 
that based on their achievement in mathematics, they are average or slightly 
higher than average students. 
The “House of cards” problem
In a Hungarian textbook for fifth graders the following problem appears: “Build 
a house of cards shown in the picture. Discuss how many cards you need to 
make 1, 2, 3, … level house!” (Gedeon, Korom, Számadó, Tóthné Szalontay, & 
Wintsche, 2016)

Figure 1: The picture in the textbook 

We used this problem in the cross-sectional survey, but we have changed the 
text by age. There was a notable change in the fact that in the different age 
groups we asked students about different storeys: about “low” house (e.g. 5-
storey), “high house” (30-storey), or generally about an n-storey building. 
Appendix 1 contains the worksheet prepared for 5th and 6th graders. Tasks 4, and 
5 contain questions about “low” houses, i.e. “near” elements of the sequence. In 
Task 6 there is the option of “far” element of the sequence. In fact most of the 
groups built the problem for “high” houses. (We consider a house high when it 
is difficult to draw it accurately and counting the cards; e.g. a 30-storey house is 
a “high” house.)
We think that this problem has all the features of a “good problem” and gives 
the possibility of a problem-based learning activity. It proved oneself to be a real 
problem situation in all grades. It points to curriculum material connected with 
sequences, but in different depth in different grades. For the 5th and 6th graders 
the focus is on recognition of functional relationship. It gives the possibility for 
different representations, i.e. enactive, iconic and symbolic in the sense of 
Bruner (1971). Accordingly, in the survey we made 5th and 6th graders build the 
house. The problem is also suited for deep mathematical communication and 
reasoning: the pupils should formulate a generalization, and he or she is 
expected to explain it. Also, critical thinking is relevant in this problem, because 
it contains possibilities of typical misconceptions. For example, while the 
number of cards grows as the house becomes higher; many students thought that 
the number of cards is linearly proportional to levels. Another misconception is 
that the function in question is additive. 
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Moreover, several approaches are possible, because the problem can be 
modelled by different sequences: 

A. number of cards in the sequence of houses: 2, 7, 15, 26, 40,…  
B. number of new cards one needs to complete the previous house in the 

sequence: 5, 8, 11, 14,…
C. number of slanted cards in rows in a particular house (from up to down): 

2, 4, 6, 8, …
D. number of horizontal cards in rows in a particular house (from up to 

down): 1, 2, 3, 4, …
E. number of triangles in rows in a particular house (from up to down): 

3, 6, 9, 12,… (excluding the last row, i.e. the “basement”).
The textbook proposes that group work should be implemented for this problem. 
We agreed with the cooperative method, because the problem-based learning
style requires students’ critical and active attitude to the problem and to their 
own and their classmates’ thoughts. Furthermore communication is an essential 
part of this learning approach. Taking all of this into consideration, we 
implemented the task in pair work in our survey. 
RESEARCH QUESTION 

1. What kinds of problem solving strategy are used by the 5th and 6th

Graders? 
2. What are the characteristics of their patterning? 

RESULTS AND DISCUSSION
In order to answer to the questions we investigated the written works. We 
analysed the works of 9 pairs of 5th Graders and 15 pairs of 6th Graders. They 
worked on the “House of cards” problem during the class together and were 
asked to complete the tasks on their worksheet (see Appendix 1). First they built 
the 3-storey house from cards (enactive representation) then completed the 
figural sequence (iconic representation) with the next two elements (3- and 4-
storey house). In the third task they counted the number of cards and wrote it 
under the figures of the houses (symbolic representation). With the exception of 
1 pair everybody solved the Task 1-3 correctly. This means that 23 pairs 
understood the problem itself and were able to identify and use its iconic 
representation form. The correct figure of the 4-storey house shows us that they 
saw the structure of the card-building too. 
Special attention was paid to the solution of the Task 4-6. Concerning the first 
research question, we examine the strategies occurring in the solutions. 
We developed our coding system for problem solving strategies inductively. The 
authors performed a pilot coding and gave a coding system for coders. Every 
written work was coded by two different coders, and in the last step we 
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consolidated the corpus. Task 4, 5, and 6 in the worksheet were the coding units. 
The coding system for problem solving strategies as follows:
 Counting. The students draw the house and count the cards without any 

sign of looking for patterns. (Figure 2) 

Figure 2: Example of the Counting strategy 

 Patterning. The students refer to sequences A-E in problem solving. 
(Figure 3) 

Figure 4: Example of the Patterning strategy (Sequence A and B; 10- and 30-
storey house) 

 Recursion. The students recall the one storey lower house while counting 
the cards of a particular house. (Figure 4)

Figure 4: Example of Recursion (40, because we added 14 cards to the 4-storey 
house.) 

 False scheme. The students refer to linear proportionality (Figure 5) or 
additivity (Figure 6).
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Figure 5: Example of False scheme, proportionality (It has 6 storeys. We can 
build it from 57 cards.  12 storeys: 572=114  24 storeys: 1142=22848) 

Figure 6: Example of False scheme, additivity (13-storey house; we can build it 
from 140 cards. 5-storey+8-storey = 40 +100 = 140) 

 No answer 
Table 2 gives an overview about the distribution of the applied strategies in the 
three tasks. 
Number of works 5-storey house 8-storey-house arbitrary house

5 Counting Counting Counting
1 Counting Counting Proportional scheme
1 Counting Counting Additive scheme
1 Counting Counting Patterning
2 Counting Patterning Patterning
1 Counting Patterning Additive scheme
7 Patterning Patterning Patterning
2 Recursion Recursion Recursion
2 Recursion Recursion Patterning
1 Recursion Additive scheme Recursion
1 No answer No answer No answer

Table 2: Strategies applied in the tasks 

We can conclude that 14 pairs use the same strategy during their work and the 
most popular was the Patterning (7 works) then the Counting (5 works). 9 pairs 
used different strategies in the three tasks. 6 of them started with Counting in the 
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case of 5-storey house, and then half of them recognized a pattern in the 8-storey 
house, while the others continued with Counting again. In the last task, where 
the drawing was difficult, False scheme appeared besides of the Patterning. 
Figure 7 summarizes the applied strategies by tasks. We can see clearly, that the 
number of Counting strategy decreases, while the number of Patterning
increases as the house gets higher. False scheme appears only in the case of high
houses, when the Counting strategy does not work. 

Figure 7: Distribution of the strategies by tasks 

Concerning our second research question we investigate students’ inductive 
reasoning, so we focus on those solutions which applied the Patterning strategy. 
The first phase of the inductive reasoning process i.e. Observation of particular 
cases was obvious in 23 works, because of the completing the Task 1-3. The 
next phase, namely Following the observed pattern, appeared in those works, 
where the Patterning strategy was applied. We detected all of the five 
sequences. Sequences A and B was used in 14 solutions (see Figure 4 as an 
example), sequences C and D, similarly in 14 solutions (Figure 8). Sequence E 
also appeared in 1 solution (Figure 9).

0% 20% 40% 60% 80% 100%

5-storey

8-storey

Higher

Counting
Patterning
Recursion
Falshe scheme
No answer
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Figure 9: Example of the sequence C and D

Figure 10: Using the sequence E (10-storey house, 172 cards. One row is 3 times more 
as the first one. Every row is divisible by 3, except the last one.)

We can conclude that in 14 works from the 24 Patterning strategy i.e. Following 
the observed pattern was detected at least in one task. Furthermore, the third 
phase of inductive reasoning Formulating a conjecture was observed only in 
some cases. We should make a difference between describing the way of 
counting they use and formulating a conjecture. The formulated conjecture 
contains typical phrases, like “always” we found it in 9 works, for example: “As 
much as the previous one has increased, you have to add 3 more to it.”
(Sequence A-B) or “Going from the top there is always 2 more cards in the 
rows; the cards that separate the rows always increase by 1.” (Sequence C-D)
The control, namely testing the conjecture by other particular cases, didn’t 
appear in this form. However, we observed in 9 works that the students drew the 
figure of the house because of the control of the patterning activity. Another way 
of the control appeared in one work only: they checked their result gained by 
using the Sequences C-D with the help of Sequences A-B, which was also 
recognized. 
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We couldn’t find any clue of any kind for the argument for the discovered rule, 
except one work (Figure 10), where it was explained by marking the triangle on 
the top with a circle. 
CONCLUSION 
The simple Counting strategy was the most frequent one, especially in the case 
of 3-, 4-, 5- and 8-storey houses. The Patterning strategy also occurred in many 
cases, thanks to the possibility of using sequences in this problem’s situation. 
The Recursion, i.e. the recursive thinking is closely related to the patterning 
activity. The lack of the generalization ability causes the appearance of the False 
schemes. The linear proportionality and the additive thinking are very common 
in the mathematics classrooms; the students use them automatically without any 
doubt about their compliance. 
Following and observing a pattern is a well-known and often used strategy in the 
investigated age group. However, the further phases of the inductive thinking 
process are not realised at all. After the teacher requested it, the students were 
able to formulate and explain a “rule” or argue for it, using the real context that 
defined the pattern, but they didn’t feel the need for such an explanation.
Our problem is closely related to the mathematical concept sequence. The 
problem solving activity contributed to the better understanding of that concept 
and to practice the flexible transition between the iconic and numeric 
representations. 
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APPENDIX 1 



 

OLD AND NEW METHODOLOGIES FOR FACTORING 
QUADRATIC EQUATIONS

Malgorzata Mart
Concordia University, USA 

This study investigated the effect of using graphing tools for factoring trinomials 
to students in introductory algebra classes. Students in the study were taught to 
graph parabolas to establish factorability of quadratic trinomials, to estimate 
solutions, and to verify their answers by using algebraic methods. The study 
found that students using graphing tools significantly outperformed the control 
group that used computational methods only in understanding and solving 
quadratic equation.
INTRODUCTION  
Various advancements of science and technology, along with constantly 
changing the socio-economical world in the 21st century, called for the revision 
of the goals of teaching mathematics. Current curricula for high school or 
college level mathematic assume that students master algebra by the age of 
eighteen. The expectations include, among others, the use of the proper 
mathematical language and structures to represent, analyse, generalize, model 
and solve problems of various complexity in various contexts (RAND & Ball,
2003). An important part of the algebra curriculum is the ability to factor 
polynomials and use it to solve algebraic equations and graphing of functions. 
However, it turns out to be one of the most challenging topics to teach. The 
difficulties come from the complexity of the tasks and the amount of different 
methods of factoring that students are exposed to. 
DIFFERENT METHODS OF SOLVING QUADRATIC EQUATIONS 
Each of the four main historical periods in the development of algebraic 
methodology (geometric, static equation-solving, dynamic function, and 
abstract) added new views on factoring and solving quadratic equations (Katz & 
Barton, 2007). At first, they were interpreted as geometric problems 
(Babylonian algebra and ancient Greece), then algorithms started to be used, still 
justified by geometry (al Khwarizmi), and after that, new non-geometric 
methods were developed (Islamic mathematics). The improvement of the 
mathematical notation in the seventeenth century allowed algebraic equations to 
interpret science underlying their importance. 
Currently, we recognize three basic methods of solving quadratic equations: the 
quadratic formula, completing the square, and using zero property of 
multiplication (factoring). All these techniques are part of the United States 
Common Core Mathematics Standards. Out of those three methods, factoring 
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polynomials is the most challenging to teach (Kotsopoulos, 2007), particularly 
in introductory algebra courses. Heavily based on previous mathematical 
knowledge, factorization requires students to learn and incorporate many 
formulas like: the square of a binomial, the difference of two squares, the 
greatest common factor of monomials, the “guess and check” method, 
“grouping,” and more. To make a situation even more complex, teachers and 
educators have been creating new procedures (Table 1), hoping to produce 
a better and easier way for students to understand the concept. Therefore, we can 
find a variety of algebraic techniques at schools, for example: Moskol’s method, 
Autrey’s and Austin’s method, Baker’s method, Savage’s method, slip-slide 
method, and X method. Teachers also use geometric interpretations, physical 
models, puzzles, and manipulatives (algebra tiles). Even though, physical and 
geometric models have limitations, they could be viewed as “the opportunity to 
bridge the gap to algebraic thinking” (Patterson, 1997, p. 240).  

Name Example

“Grouping”
or

“Long” Method

Factor 6x2–19x+10.
Since 6×10=60, so the product of the two 
splitting coefficients must be also 60. At the same 
time the sum of those two coefficients must be –
19.
All the possibilities:

Splitting Coefficients Product Sum
– 1 – 60 60 – 61
– 2 – 30 60 – 32
– 3 – 20 60 – 23
– 4 – 15 60 – 19
– 5 – 12 60 – 17
– 6 – 10 60 – 16

The only way to split the middle term is:
–19x= –14x –15x.
Therefore, 6x2–19x+10= 6x2 – 15x – 4x +10 =
3x(2x –5) – 2(2x –5)=(2x –5)( 3x –2).

Lemmon (2004)

Savage’s Method

Factor x2 +14x –207.
Since the sum of the numbers must be 14, let the 
numbers be (7 + a) and (7 – a).
Therefore, (7 + a)(7 – a)= – 207.
49 – a 2 = – 207, so a = ±16.
The required numbers are: 7+16=23
and 7–16= –9.
Therefore, x2 +14x –207=(x+23)(x–9).

Savage (1989, p.35)
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Physical
Models

Factor x2 +3x+2.

Therefore, x2 +3x +2=(x+2)(x+1).
Hirsch (1982, p. 388)

Factoring Puzzles Factor 10x2 +23x+12.
The first puzzle corresponds to factorization of the 
trinomial.
Therefore, 10x2 +23x +12=(2x+3)(5x+4).

Hollingsworth & Dean (1975, p. 428)

Autrey’s& Austin’s 
Method

Factor 8x2 +10x+3.
First write:
(8x )(8x ) leaving space to write other numbers 
after each 8x.
Consider 8×3, where 8 is the coefficient of x2 and 3 
is the constant. We want to find two integers whose 
product is 24 and whose sum is 10, such as 4 and 6.
Write these integers after 8x to get
(8x + 4)(8x+6) (It does not matter whether 3 or 6 is 
first). Now, divide each parenthesis by their greatest 
common factor. Here 8 and 4 are divided by 4, and 8 
and 6 are divided by 2.
Therefore, 8x2 +10x +3=(2x+1)(4x+3).

Autrey & Austin (1979, p. 127)



Old and new methodologies for factoring quadratic equations 151

Slip-Slide Method
Factor 6x2 –19x+10.
(Using integers only)
Let’s multiply the leading coefficient by the 
constant.
We will get: x2 –19x +60
Now, we can factor this trinomial.
We are looking for two numbers
with a sum of –19 and a product of 60.
Both numbers must be negative: –15 and –4:
(x–15)(x–4).
Next, “slide” back the leading coefficient:

(𝑥𝑥 − 15
6 ) (𝑥𝑥 −

4
6)

Then, let’s reduce it:

(𝑥𝑥 − 5
2) (𝑥𝑥 −

2
3)

Next, “slide” back the denominators
in front of each x: (2x–5)(3x–2).
Therefore, 6x2 –19x +10=(2x–5)(3x–2).

Steckroth (2015)

X-Method
or

Diamond Method

Factor 6x2–38x–80.
6x2–38x–80=2(3x2–19x–40)
Thus, a = 3, b = – 19, c = – 40

Therefore, 2(3x+5)(3x–24)
Divide each factor by its GCF:

2 (31 𝑥𝑥 +
5
1) (

3
3 𝑥𝑥 −

24
3 ) = 2(3𝑥𝑥 + 5)(𝑥𝑥 − 8)

Therefore, 6x2 –38x –80=2(3x+5)(x–8).
Lemmon (2004, p. 35)

                     

Moskol’s Method
Factor 6x2–19x+10.
Draw 3×3 box:

a· c
–120

5 –24

–19
b
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6x2 10     60x2

– 4x
– 15x

Because

Find a factor of 6x2 and a factor of 10 whose product is 
– 4x. Put those numbers into second row. 
By convention, the linear factor must always be 
positive.

6x2 10     60x2

2x –2 – 4x
– 15x

Find a factor of 6x2 and a factor of 10
whose product is  –15x.
Put those numbers into second row. 

2x – 4x
3x – 15x

Therefore, 6x2 –19x +10=(2x–5)(3x–2).
Moskol (1979, p. 676)

Baker’s 
Method

Factor 6x2 –41x +63
Solution:
6𝑥𝑥2 − 41𝑥𝑥 + 63 = 6𝑥𝑥2 + 𝑎𝑎𝑥𝑥 + 𝑏𝑏𝑥𝑥 + 63
Where:

1. −41 = 𝑎𝑎 + 𝑏𝑏        2.  6𝑏𝑏 =
𝑎𝑎
63    

Therefore,
𝑎𝑎𝑏𝑏 = 6 ∙ 63 = 378
(𝑎𝑎 − 𝑏𝑏)2 = (𝑎𝑎 + 𝑏𝑏)2 − 4𝑎𝑎𝑏𝑏

So, 
(𝑎𝑎 − 𝑏𝑏)2 = (−41)2 − 4 ∙ 378 = 1681 − 1512 = 169

Therefore, 

If

xxx
xxx

19)15()4(
60)15()4( 2




2
5

13ba








41
13

ba
ba

then   
           

282 a
14a

and   
           

542 b
27b
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Therefore, 
Baker (1969, p. 631)

Box 
Method

Factor 10x2 +31x +15
1. Factor GCF
2. Draw 2×2 box
3. Put the ax2 term in the top left box and the c term 

in the bottom right box
4. Multiply this diagonal. The other blank diagonal 

has to multiply to be the same product
5. Find the positive or negative factors of this 

product to get the bx term. Those two factors will 
go in the blank boxes. Don’t forget the variable!

6. Find the CCF from the top row and “solve” the 
box. 

7. Write these factors using parenthesis. Don’t 
forget the GCF from step 1!

10x2

15

10x2
15=150x2

          150=1150
          150=275       
          150=350  
          150=530
          150=6×25
Therefore:

5x 3
2x 10x2 6x
5 25x 15

Therefore, 10x2 +31x +15=(5x+3)(2x+5).
Harbin, D. (n.d.)

Table 1: Different methods of factoring quadratic functions.

Challenges with teaching factoring quadratic functions inspired us to search for 
solutions. Vygotsky (1978) stressed the importance of introducing different 
interpretations of a concept when constructing students’ knowledge: “if one 
changes the tools of thinking available to a child, his mind will have a radically 
different structure” (p. 126). Many educators support using multiple 

26 14 27 63 2 (3 7) 9(3 7)
(3 7)(2 9)

x x x x x x
x x
       
 

  26 41 63 3 7 2 9x x x x    
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representations to enhance students’ learning (Ainsworth, 2006; Cabahug, 2012;
Ogbonnaya, Mogari & Machisi, 2013). According to Ainsworth (1999) 
“a common justification for using more than one representation is that this is 
more likely to capture a learner's interest and, in so doing, play an important role 
in promoting conditions for effective learning” (p. 131). 
All the functions of multiple representations apply to graphing technology, the 
modern tool in mathematics classrooms. In particular, incorporating graphing 
calculators to teach factoring quadratic functions as early as possible to
introductory algebra students could play an essential role in teaching-learning 
processes. Graphs of parabolas could be used to establish factorability of 
quadratic trinomials (existence of real solutions), to estimate possible solutions, 
and to verify answers calculated by algebraic or computational methods. 
USING TECHNOLOGY 
In modern times, it seems natural to expect technology to be included in 
mathematics classrooms. Almost twenty years ago, (Pan, 1998) emphasized: 
“the robots of the future are waiting”, “speedy computer algorithms offer new 
answers.” And in fact, the technological era has opened completely new options 
for mathematics educators. For instance, computer-assisted instructions (CAI) 
allow students to learn at their own pace (access to computers and Internet is 
necessary). A more affordable option and suitable for algebra classrooms are 
smaller graphing tools (such as iPads or graphing calculators).  The National 
Council of Teachers of Mathematics and National Research Council encourage 
using graphing calculators as a supplementary tool in mathematics classroom 
(Dreiling, 2007; NCTM, 1989). Graphing tools are often seen as powerful 
teaching enhancements - not only for teachers, but also for students, as 
a teaching and investigative tool (Laughbaum, 1998). 
GRAPHING/GUESS AND CHECK METHOD 
We advocate for an enhancement of the existing algebraic methods by early 
introduction of graphs of polynomials related to the equations.  This study 
investigated the effect of using graphing calculators as a basic tool in guess and 
check method of factoring trinomials. After a comparative analysis of different 
methods of factoring quadratic equations, we proposed the new approach. In our 
study, students were taught, how to use calculators to graph polynomials to 
establish factorability of quadratic trinomials (existence of real solutions), to 
estimate possible solutions, and to verify their answers by algebraic or 
computational methods.
METHODS 
The experimental group participants were chosen to represent different ages and 
levels in math. We used one-on-one tutoring sessions and regular classrooms 
settings. Some students were diagnosed with learning difficulties. We 
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administered a four-question pre-test concentrating of factoring different types 
of quadratic equations.  
The study had three parts. In the first session, students were trained to make 
graphs on graphing calculators and track points to get their coordinates. They 
learned to interpret graphs, especially identify zeros of a function. The level of 
mastering the first part was evaluated by a teacher through the individual oral 
assessment. In the second session, students learned factoring quadratic equations 
using guess and check methods. They were asked to use graphing calculators to 
check factorability (they established the number of solutions based on the 
number of x-intercepts). Students used graphing calculators to track x-intercept 
points and estimate their x coordinates. Then, they used those numbers in their 
guess and check method. Students used graphing calculators and their graphs to 
confirm the final solutions. In the third session students learned the difference of 
squares, the quadratic formula and the completion of the squares method.  
The control group had also three sessions following the lectures and examples 
based on a standard textbook. We started by administering the same pre-test to 
this group.  At the end of the study all students took a post-test and a survey was 
administered to participants and teachers. 
RESULTS 
This study showed that using graphing technology as a supplementary tool for 
factoring quadratic equations significantly improved students’ abilities to solve 
the problems, and the study group significantly outperform the control group on 
the post-test (Table 2).   

(p < 0.05)
Control Group (N=16) Study Group (N=21)
Mean SD Mean SD

Pre-test 0.25 0.45 0.14 0.36
Post-test 4.50 1.51 5.33 0.97

Table 2: Pre-test and Post-test Mean and Standard Deviation for Both Groups 

The main goal of using graphing tools was to help students with guess and check 
method of factoring quadratic functions and indeed it improved their abilities to 
solve problems like  and . Especially students with 
learning differences (for example dyslexia) really appreciated an option to be 
directed by graphs to find or check their solutions since they experience 
difficulties with basic operations on integers. In addition, the study showed that 
using graphs of parabolas helped differentiate between two formulas: the 
difference of the squares and the perfect square formulas. Students with dyslexia 
have tendencies to confuse  with 

 and . The students using 
graphing tools were able to catch the mistakes if they mixed up two opposite 

2 6 8x x  2 4 3x x 

2 4 ( 2)( 2)x x x   
2 4 4 ( 2)( 2)x x x x     2 4 4 ( 2)( 2)x x x x    
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solutions with a double solution. However, graphing calculator did not help 
them with double roots, such as  and 

. Note that teachers’ responses on the survey 
evaluating the method were positive. They underlined the visual aspect of 
solving equations via graphing and pointed out that the method could be 
beneficial for higher degree polynomials. Some teachers pointed out that the 
incorporation of graphing calculators in the mathematics curriculum should be 
a part of their professional development.  
Students taking introductory algebra at the middle school level liked to use 
graphing calculators, because it was a piece of technology that made them look 
smart (“cool”). Struggling high school students liked the predictability of this 
method. Some of them stressed that at least they knew where to start, because 
with guess and check methods they were often simply ‘stuck.’ Based on the 
students’ self-assessment they felt more confident solving quadratic equations 
having graphing calculators for visualization.
CONCLUSION 
There is a general belief about the necessity of incorporating technology into 
mathematics instruction. Many research studies have been done to demonstrate 
the significance of graphing tools in higher levels math classes, such as pre-
calculus and calculus. However, there are very few studies about using graphing 
tools in pre-algebra and algebra courses. The study shows that graphing tools are 
effective if introduced early as a supplementary visualization for solving 
quadratic equations in introductory algebra.
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In the present study, we investigate the influence of realistic contexts on
students’ problem solving. We adapted three mathematical tasks from relevant 
studies, which were based on a realistic context and we asked seven students of 
grade 6 to solve them. The students demonstrated different levels of 
consideration of the realistic constraints of the given tasks. Our analysis shows 
that they performed considerably better in the task which was assumed to be 
closer to their lives. Thus, the distance of the context of the tasks from the 
students’ realities together with the researcher’s interventions in the whole class 
discussions proved to be important factors in the contextualised problem solving 
of these students.
INTRODUCTION 
Mathematics is a core subject in school curriculum; however, for most students 
it is a source of anxiety or even fear. Negative connotations can be also traced in 
popular culture, such as films and books (Darragh, 2018). For many students, 
mathematics is seen as “‘hard’, ‘logical’, ‘certain’ and ‘ultra-rational’” and 
“mathematicians as eccentric, even insane, and […] highly emotional” (Epstein, 
Mendick & Moreau, 2010, p. 49). By acknowledging these facts, several 
movements in mathematics education within the last decades have attempted to 
increase the popularity of mathematics among students at all educational levels. 
One of the ways to achieve this was by enhancing students’ ability to transfer 
their learning of school mathematics to different contexts, including their 
everyday lives (Boaler, 1993). In the same line, for the last decades, ‘Realistic 
Mathematics Education’ (RME) (e.g., Freudenthal, 1973; 1991) has been putting 
the focus on the role of context in mathematical problems. Nowadays, several 
countries have adopted the views of RME, whose influence is clearly visible in 
international mathematical surveys, such as O.E.C.D.’s Programme for 
International Student Assessment (PISA). At the same time, as we will present 
in the next section, the effect of context in mathematical problems is 
continuously being investigated with sometimes conflicting results. 
Our study stems from our interest in the ways context affects mathematical 
problem solving. Particularly, we aim to investigate whether grade 6 students 
consider the realistic contexts of the tasks given to them. Additionally, we were 
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interested to see whether students’ familiarity with the contexts would affect 
their solutions. Our research questions are: 

 Do students consider the realistic constraints of contextualised 
mathematical problems? 

 How do different contexts affect the students’ solutions? Particularly, 
what is the role of the distance of the context from the students’ lives?

 Can the teacher’s actions affect the degree of students’ consideration of 
the realistic constraints of contextualised mathematical problems? 

THEORETICAL FRAMEWORK 
Mathematics is a discipline usually linked to logic and unambiguousness; 
however, as Hersh (1991) points out, there is a ‘frontside’ and a ‘backside’: the 
frontside is based on the widely spread beliefs about the unity, objectivity, 
universality and certainty of mathematics. These beliefs (which are called myths 
by Hersh) “need not be true; they need to be useful” (p. 132); a mathematician 
though, needs to make a transition to the backside and “develop a less naive, 
more sophisticated attitude toward the myths of the profession” (p. 132). 
According to this attitude, mathematics is not an isolated discipline, but it takes 
part in the interpretation of interdisciplinary phenomena from various aspects of 
reality. Such an approach allows for the appreciation of the aesthetic dimensions 
of mathematics, engaging in critical thinking and generally avoiding a dogmatic 
and sterile certainty, especially in economy and education (Ambrose, 2017). 
At the same time, mathematics education also seems to suffer from similar 
dichotomies; for example, rote memorisation vs. active, participatory learning. 
The last decades we have seen movements that have put the student(s) at the 
crux of teaching and learning (for example, constructivism or socio-cultural 
approaches). In line with these, concerns are expressed about the content of 
school mathematics. One of the main issues is about the way to improve the 
students’ ability to apply their school mathematics knowledge to out-of-school 
situations. The design of contextualised mathematical tasks has been proposed 
as a fruitful way to achieve the ‘transfer’ aim. Apart from enabling students to 
transfer their mathematical knowledge to real life (and vice-versa),
contextualised tasks increase students’ motivation, thus they can combat the 
negative feelings associated with mathematics: 

Students must understand that the mathematics instruction they receive is useful, 
both in immediate terms and in preparing them to learn more in the fields of 
mathematics and in areas in which mathematics can be applied (e.g., physics, 
business, etc.). Use of ill-structured, real-life problem situations in which the use of 
mathematics facilitates uncovering important and interesting knowledge promotes 
this understanding. (Middleton & Spanias, 1999, p. 81)
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With respect to contextualised task design, one of the main issues that needs to 
be decided is what is a real (or an authentic) context, or, from a mathematics 
educator’s point of view, how to design such a context. Niss (1992) claimed that 
an authentic context is “one which is embedded in a true existing practice or 
subject area outside mathematics, and which deals with objects, phenomena, 
issues, or problems that are genuine to that area and are recognised as such by 
people working in it” (p. 353). At the same time, contextualised tasks are 
expected to be compatible with assessment demands, thus they also have to be 
meaningful and informative (Van den Heuvel-Panhuizen, 2005). 
The Realistic Mathematics Education (RME) movement, which was grounded 
on the work of Freudenthal (1973; 1991) has taken the above considerations 
seriously, and this has resulted in a large amount of studies. In most of these 
studies, the issue of how to design a ‘good’ realistic task is of central 
importance. A first potential concern was identified by Boaler (1993), who 
cautioned mathematics educators not to design tasks that “have little in common 
with those faced in real life” (p. 343), because they are merely school problems 
‘dressed’/disguised with a thin coating of ‘real world’ elements. Palm (2009)
addresses the same issue, proposing a framework that “comprises a set of 
aspects of real-life situations that are reasoned to be important to consider in the 
simulation of real-world situations” (p. 8). The aspects of real-life situations 
mentioned are:  

 event: “the event described in the school task has taken place or has a fair 
chance of taking place” (p. 9);

 question: “being one that actually might be posed in the real-world event” 
(p. 9); 

 information/data: it should match the one in the real situation; 

 presentation: the language used, together with other forms of visual 
representations; 

 solution strategies: “the match in the strategies experienced as plausible 
for solving the task in the school situation and those experienced as 
plausible in the simulated situation” (p. 11);

 circumstances: available tools that may assist the solver, time restrictions, 
as well as possibilities for solving the task alone or in collaboration; 

 solution requirements: should be consistent with the real life situation; 

 purpose in the figurative context: it has to be clear enough to the solver. 
The above considerations constitute a comprehensive framework for realistic 
task design. However, we should not overlook the fact that sometimes there is 
a discrepancy between the aims of the task as perceived by the designer, the 
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actual presentation/implementation of the task by the teacher and the task 
solution by the students (Clarke & Roche, in press). Thus, in order to fully grasp 
the phenomena that may intervene from the task design to the students’ 
solutions, one has to consider a multitude of factors, including among others, the 
classroom social and sociomathematical norms (Yackel & Cobb, 1996), as well 
as the teacher’s subject matter and pedagogical knowledge (Shulman, 1986). 
In the present paper, we choose to focus only on the context of the task. 
Particularly, and according to our research questions, we were interested in 
whether some of the aspects of real-life situations have affected our students’ 
solutions/solving. Furthermore, we focussed on the distance of the context to the 
students’ lives: with the closest being the one related to the students’ daily life, 
followed by school, sports and work, then by the local community and with 
furthest being the scientific contexts (De Lange, 1999). Moreover, the relevant 
research has not led to conclusive results on the relationship between the 
context’s distance to the students’ lives and their performance, although there is 
the assumption that the underperforming students prefer contexts closer to their 
daily life, because these contexts are more supportive in the students’ 
comprehending of the proposed task (De Lange, 1999). 
CONTEXT AND METHODOLOGY 
The participants of our study were seven students – four girls and three boys –
attending a primary school in an urban part of Rzeszow, Poland. All students 
were at grade 6 (12-13 years old), who volunteered to participate in a series of 
additional mathematics classes (taught by the second author of the paper), 
including the one which is the focus of the paper. Their mathematical abilities 
varied considerably from a girl who was characterised as mathematically gifted 
by her teacher to a boy who was characterised as inactive by the teacher, 
although he was eventually offering some fruitful ideas. The research session 
lasted 45 minutes. The students were given three tasks, each one in a separate 
worksheet. After working on every task, a discussion was initiated with the 
researcher (the second author of the paper) about the solutions. At the end all 
students were asked about the task they preferred and why. The whole process 
was video recorded and then the discussions that took place were transcribed.  
Our choice of tasks was based on our research aims, given the time restrictions. 
Thus, we had to choose a limited number of tasks; we concluded that three tasks 
would suffice for the given time, including the planned discussions. Then, based 
on relevant studies we firstly decided to choose tasks that would contain varying 
contexts, i.e., coming from different aspects of everyday life. Following Palm’s 
(2008) framework, the tasks were differentiated in terms of the possibility of the 
events described, while at the same time, we were careful that the questions
posed matched those that could be posed in real life. As we will show below, the 
contexts chosen were: work, scientific/school context and everyday life – these 
were chosen in order to ensure the variation in their distance from the students’ 
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lives. Each context posed different realistic constraints to the potential solvers, 
but the form of presentation was the same in all tasks. In one case (Task 2) the 
information/data given did not match those that one might expect in reality. 
Additionally, the type of context affected the nature of mathematical activities 
needed in order to reach a solution. 

Work Task 1: The elevator. 
This is the sign in a lift in an office block:

In the morning rush, 269 people want to go up in this lift. How many times must it 
go up? 

Task 1 initially appeared in the English secondary testing programme (Schools 
Examinations and Assessment Council, 1992) and according to the proposed 
marking scheme, only the answer “20 times” was considered correct. In order to 
reach that answer the students had not only to successfully perform the division 
269:14=19.21, but also consider some realistic (and pseudo-realistic) factors: 
“lifts go up in whole numbers, the lift never has fewer, where possible, than 14 
passengers or ever more than this, and no-one use the stairs (Cooper & Harries, 
2009, p. 94). 

School Task 2: Traffic. 
The children in Year 6 of a school conduct a traffic survey outside of the school for 
1 hour. 

Type Number that passed in one hour
car
bus

lorry
van

13
8

50
10

When waiting outside the school they try to decide on the likelihood that a lorry 
will go by in the next minute.

They also try to decide on the likelihood that a car will go by in the next minute. 

This lift can carry up to 14 people

Put a ring round how likely it is that a lorry will go by the next minute.

certain very likely likely unlikely impossible

Put a ring round how likely it is that a car will go by the next minute.

certain very likely likely unlikely impossible
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Task 2 is a revised task, taken from the English primary tests (Schools 
Examinations and Assessment Council, 1993). In the original version the 
numbers of vehicles recorded in one hour were: 75 cars, 8 buses, 13 lorries and 
26 vans. What was noticed was that in order to correctly respond to that task, the 
students did not have to consider the given data at all; they merely had to draw 
“on their knowledge of typical frequencies of cars, lorries, etc., in their everyday 
worlds” (Cooper & Harries, 2009, p. 95). In order to avoid the “false positives” 
produced by that task (i.e. correct responses not based on the given data), 
Cooper and Harries (2009) revised it in the form shown above. Another reason 
for the particular choice was that students were not taught probabilities at 
school, but they were familiar with the term. 

Everyday Task 3: The airport. 
You need to arrive at Krakow-Balice international airport 
at 18:00 to pick up a friend. At 16:00, you left for the 
airport that is 180 km away. You drove the first 90 km in
an hour. Will you be on time? 

A similar version of Task 3 was included in a study on whether the task’s 
expressed goals have led the students to considering realistic factors in their 
solutions (Inoue, 2008). The consideration of realistic factors (such as the traffic 
at the particular time and place) may affect remarkably the response given. 
As soon as the solving process of each task was completed, in which students 
worked individually, a discussion was initiated by the researcher. Among the 
questions asked were (Inoue, 2008): 

- What was your answer in the task? 
- How did you reach your answer? 
- Imagine yourself being in the situation described in the task. What would 

you do? 
- Is the given task realistic according to you? 
- Which of the given tasks did you like the most and why? 

According to our research questions, our analysis was based on students’ written 
solutions and their contributions to the discussion that took place. In order to 
analyse this rather disparate set of data we deployed methods from the studies 
mentioned in the theoretical section of the paper. Particularly, following Inoue 
(2008), we firstly categorised the solutions into calculational (CL) and realistic 
(R). A solution was considered calculational if the student merely performed one 
or more operations and provided the result of the operations as the answer to the 
task. A solution was considered realistic if the student considered some realistic 
factors before providing the answer. Then, based on the discussion that 
followed, we expanded the solution categories according to the following 
scheme, adapted from Inoue (2008); the adaptation was necessary, since the 
original categories were proposed for a clinical interview: 
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 calculational (CL): refers to the students who provided a calculational 
answer and while they admitted that they ignored realistic factors, they 
did not justify their initial answer; we also assigned that code to the 
students who did not participate in the discussion; 

 reflecting a shared understanding of reality (SR): refers to the students 
who provided a realistic answer; 

 reflecting a personal understanding of reality (PR): refers to the students 
who provided a calculational answer and during the discussion they 
provided a justification based on their personal understanding of the 
context. 

 recognition of realistic constraints (RR): refers to the students who 
although were aware of the realistic constraints of the problem, they chose 
to ignore them since they are not explicitly stated.  

At the same time, we considered particular aspects of the tasks, in order to 
examine any relations between them and students’ consideration of the contexts. 
The results of that process are presented in the next section. 
RESULTS 
As mentioned in the previous section, we firstly analysed students’ written 
solutions in the tasks and categorised them into calculational (CL) and realistic 
(R). The results are summarised in Table 1. 

Students Work Task 1 School Task 2 Everyday Task 3
answer cat. answer cat. answer cat.

S1 18 CL very likely CL yes CLlikely

S2 20 CL likely CL no Rlikely

S3 20 CL unlikely CL yes CLlikely

S4 10 CL very likely CL yes CLlikely

S5 22415 CL unlikely R yes CLcertain

S6 20 CL very likely CL depends CLunlikely

S7 16 CL likely R depends Rlikely

Table 1: Students’ written solutions

We may firstly note that the vast majority of written solutions (17 out of 21) is 
calculational. Especially in Task 1 all solutions were calculational, based on the 
division 269:14. It is noteworthy that only three were mathematically correct; 
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among the mistaken ones the most unanticipated answer was 22415. In Task 2 
we encountered two types of calculational solutions: the first type contained a 
calculation of vehicles per minute and the second was based on merely 
comparing the numbers of vehicles in an hour. The variety of calculational 
answers is remarkable. Here are two examples of these types of solutions: 

S6: A car passed only 13 times during 1h, which gives us 1 car per 4.5 min. That is 
why it is rather impossible for a car to pass in the next minute.  
S1: It is very likely, because the number of passing lorries is the largest.  

Concerning the two realistic responses in Task 2 below we can see a student’s
responses on the two posed questions: 

S5: It is unlikely, because next to the school there are no lorries passing.  
S5: It is certain, because next to the school there are many cars. 

In Task 3 the calculational responses were mostly based on calculating time by 
using the distance and the speed of the car, which was considered constant 
throughout the journey by all students except one. Figure 1 shows 
a characteristic example of such solution (S1): 

Figure 1. A calculational solution of Task 3 

The realistic solutions in Task 3 contained some considerations about traffic and 
expected traffic jams on the way, as well as in the city of Krakow. 
A characteristic example is the following: 

S7: Yes, however, traffic jams can appear on the way, so we are not 100% sure that 
we’ll be on time. Even if we are late, our friend will wait.  

After the analysis of the written responses was completed, we performed the 
analysis of the transcribed discussion that took place after each task’s solution. 
Table 2 summarises students’ consideration of the tasks’ contexts in their
written responses (already presented in Table 1) as well as in their participation 
in the classroom discussions. 
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Students Task 1 – Elevator Task 2 – Traffic Task 3 – Airport 
written discussion written discussion written discussion

S1 CL SR CL PR CL PR
S2 CL PR CL PR R SR
S3 CL SR CL PR CL RR
S4 CL SR CL RR CL RR
S5 CL - R CL CL CL
S6 CL - CL - CL SR
S7 CL - R SR R SR

Table 2: Students’ consideration of realistic constraints before and during discussions 

As seen in Table 2, some students did not participate in the discussion for 
particular tasks, thus we could not assign any category to their participation. 
What is quite clear though, is that in all but two cases (which both refer to S5) 
the students switched their approach and considered the tasks’ context, either in 
a personal or in a shared way of understanding.  
After completing the individual solving of Task 1, a discussion was initiated. 
The students were firstly asked to present their answers. Student S2 clarified that 
her response (20) represented the minimum number of times that the elevator 
should go up: 

S2: Dividing by 14 doesn’t mean that 14 people have to go every time, once can be 
6 people going up. 

This response was categorised as reflecting a personal understanding of reality, 
since S2 provided a justification of her response based on her understanding of 
the situation. The interesting thing though, was that this utterance triggered 
a reconsideration of the context of the task by other students; this was enhanced 
by the researcher, as shown in the exchange that follows: 

R: Imagine that you are one of these 269 people. You are entering the building, 
there is the elevator and there are 268 other people. What do you do?

[No reply by the students for 5 seconds] 
S3: We are waiting for everybody to go up, until it will be our turn. 
S4: We are pushing ourselves to the front! 
S1: We are going by the stairs. 

After this exchange, all four students who participated in the discussion realised 
that the problem’s solution is not as straightforward as initially thought and that 
20 is just an indicative number of times; the actual number can be bigger or 
smaller than that. 
During the discussion for Task 2, the students initially presented their solutions. 
Then the following discussion took place: 

R: Okay, so when you look at the task, at the table... Does it make sense?  
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[All students look at the table] 
S1: Usually there are more cars than lorries.
R:  So, why didn’t you consider it in your answers?
S1: I did it because the number of cars is the second biggest number. 
S3: It also depends on time because lorries like to go more during the day and rest 

during the night, although sometimes the opposite.  It depends also 
where...  If we go to the motorway, you need to see if there is traffic 
jam or…

R: But it’s right out of the school.

All students immediately reacted to the last comment of the researcher, showing 
that they realised a significant factor of the problem. Then the following 
exchange took place: 

R: Hasn’t anybody thought that these are quite a lot of lorries?
S4: No, because I am used to.
R: To what?
S4: That in mathematical tasks a person buys, for example, 50 watermelons. 

The last utterance by S4 demonstrates not only his attitude towards school 
mathematics, but also his reluctance to consider the real life factors in the given 
context – although he was aware of them. The same attitude was expressed by 
student S4 in Task 3 as well, thus was categorised as a recognition of realistic 
constraints. 
Another interesting case in Task 2 was student S5, who switched from his 
realistic written solution mentioned before to a calculational approach, by 
referring merely to the table provided: 

S5: It is very likely, because there were many lorries. 
S5: It is likely, because there were few cars. 

In Task 3 we have encountered the most active participation by the students; it is 
noteworthy that the researcher did not have to give any prompt to the students to 
imagine themselves in the given situation. This is because this context, as we 
anticipated, proved to be the closest to the students’ everyday lives. This fact led 
them to easily identify realistic factors that might affect the answer to the task: 

S6: Depends on the speed. 
S2: The same with S6. 
S3: If there will be traffic jams. But we should be on time because there’s nothing 

written about it. [in the task]
Additional factors mentioned were: higher speed (even if it is against the law), 
accidents, broken car, broken tire and busy city. There were still cases though, 
like student S1, whose participation reflected a personal understanding of 
reality. Despite the fact that she mentioned possible traffic jams or accidents on 
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the way, she claimed that these happen rarely; so, if she maintained a constant 
speed of 90 km/h she would be on time at the airport. 
DISCUSSION 
Our study aimed to shed light on phenomena related to contextualised 
mathematical tasks. Bearing in mind that the students while solving such tasks 
demonstrate a “suspension of sense-making” (Schoenfeld, 1991), we provided 
three contextualised tasks to seven students and examined the effect of varying 
contexts to the solutions. We have seen that students without the teacher’s 
guidance (thus in their written responses) were eager to provide calculational 
solutions, without any consideration of the realistic constraints of the situation. 
Thus, the “suspension of sense-making” has been evident throughout the tasks, 
and students seem bounded by the prevailing notions of mathematical truth and 
objectivity. 
Another finding (although not among our research aims) is the variety of 
solutions in Task 2; this is probably due to students’ informal knowledge of 
probability. We have also encountered a considerable amount of mathematical 
mistakes in Task 1, although the required operation could not be considered 
demanding. 
As the results from the whole class discussions have demonstrated, many 
students were capable of considering the realistic constraints of contextualised 
tasks, as soon as these were highlighted by the researcher. Thus, the role of the 
teacher becomes prominent in two aspects: contextualised mathematical 
problems should be carefully designed, and continuous prompts should be made 
for realistic interpretations of the given situations. 
Seeing students’ performance among tasks and especially their eagerness to 
(re)consider the realistic aspects of the given situations, we may claim that the 
students performed better in Task 3 – The Airport. Particularly, they were able 
to identify more realistic factors that might affect the task solution. Our 
assumption is that this was due to the context’s closeness to the students’ 
everyday experiences. The nature of our case study does not allow for safe 
generalisations; a larger amount of data is needed for that. Of particular interest 
would be a study in which varying tasks with varying contexts would be 
provided to a bigger group of students. A larger group of students would also 
allow for the examination of other factors, such as gender and socioeconomical 
background. 
However, and in line with relevant research (e.g., Inoue, 2008), we believe that 
open-ended, contextualised problems given by an informed teacher can 
encourage students to interpret the given data, reconstruct the described 
situations and try to reach a meaningful and sensible solution. Moreover, if we 
accept as an aim of mathematics education the appreciation of creativity, 
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aesthetics, risk taking and non-typical thinking (Sriraman, 2005), we need to 
provide ample such opportunities to our students from the early school years. 
Appreciating these dimensions of mathematics can strengthen its links to the 
real world and help contest mathematical anxiety as well as views that 
mathematics has little to do with the real world. 
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NON-STANDARD AND STANDARD UNITS AND TOOLS FOR 
EARLY LINEAR MEASUREMENT

Chrysanthi Skoumpourdi 
University of the Aegean, Greece 

Taking into consideration that research results on kindergarten children’s 
capabilities in linear measurement are not always in agreement, we assumed 
that the auxiliary means used for early linear measurement may play a crucial 
role. To investigate kindergarten children’s actions when using non-standard 
and standard units and tools for linear measurement, we conducted an inquiry-
based classroom experiment in which the designed task created an environment 
for children to investigate linear measurement in teams. The results showed that 
through children’s measurement actions specific parameters arose that varied 
according to the different characteristics of units and tools. 
INTRODUCTION-THEORETICAL FRAMEWORK
Length is one of the main magnitudes in the content area of measurement in 
early childhood mathematics curriculums (Smith, Tan-Sisman, Figueras, Lee, 
Dietiker & Lehrer, 2008; Smith, van den Heuvel-Panhuizen, & Teppo, 2011). Its 
importance is highlighted by the fact that it is the simplest form of measurement 
(quantification of continuous quantities) and thus is considered an accessible and 
understandable magnitude even by young children (Tan-Sisman & Aksu, 2012). 
It is also fundamental for perceiving other magnitudes, such as perimeter, area 
and volume; for connecting mathematical content areas for example number and 
geometry; as well as for linking mathematics to the real world that children live 
in.
The perception, comparison, and measurement of length as a magnitude, as a 
length or width of two-dimensional shapes, as a height of a three-dimensional 
shape, as a distance or as a movement between two points, is a slow and 
evolving process and develops through several stages (Sarama, Clements, 
Barrett, Van Dine & McDonel, 2011). According to Clements and Sarama 
(2007) there are eight main concepts that are fundamental for children’s 
understanding of length measurement, 1. Understanding of the attribute of 
length. 2. Conservation of length. 3. Transitivity. 4. Equal partitioning of the 
object to be measured. 5. Iteration of the unit; the placing of the unit end to end 
alongside the object and the counting of these iterations. 6. Accumulation of 
distance; the number words of the counted iterations signify the space covered 
by the units up to that point. 7. Origin; any point on a ratio scale can be used as 
the origin, 8. Relation between number and measurement. The sequence that 
these concepts are developed in is not commonly accepted yet, since it is 
influenced by age, experience and instruction. Different pedagogical approaches 
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do not seem to influence children’s performance on linear measurement 
(Kotsopoulos, Makosz, Zambrzycka & McCarthy, 2015) whereas the 
complexity of measurement tasks does (van den Heuvel-Panhuizen & Elia, 
2011). 
Curriculums suggest starting to teach length with the qualitative perception of 
the concept using relevant words such as big-small, long-short, as well as the 
ability to make direct comparisons, such as length-based ordering of objects. 
After that they suggest continuing with estimations, with indirect comparisons 
and with the ability to quantify length, giving it a numerical value. Indirect 
comparisons can be made both by placing multiple units or by iterating a unit. 
Initially, non-standard units are used and then standard units. The final stage of 
teaching is the cultivation of the ability to use measurement tools, such as rulers 
(Ministry of Education 2010; NCTM, 2006; ΠΣN, 2011). This sequence of 
instruction which is also proposed by many researchers (Barrett, Cullen, 
Sarama, Clements, Klanderman, Miller, et al. 2011), is based on Piaget’s theory 
of measurement. However, there is also research that suggests beginning the 
instruction with standard units and rulers, for an initial understanding of 
measurement, and a later introduction of non-standard units. This suggestion 
comes from the fact that young children show a preference for rulers and are 
able to use them before they fully understand the unit represented on rulers 
(Clements, 1999; Mac-Donald & Lowrie, 2011; van den Heuvel-Panhuizen & 
Elia, 2011).  
Research results on kindergarten children’s capabilities in linear measurement 
are not always in agreement. Most of the research suggests that young children 
have an intuitive understanding of length (Clements & Sarama, 2007) and are 
able to make direct comparisons and classifications of objects according to their 
length (Barrett, Jones, Thornton & Dickson, 2003; Clarke, Cheeseman, 
McDonoug & Clarke, 2007). They perform length estimations by activating the 
cognitive processes of holistic visual recognition, classification and unification 
(Van den Heuvel-Panhuizen & Elia, 2011). They can measure the objects’ 
length by following the necessary procedures such as placing the units from one 
end to the next, without gaps and overlays, measuring the number of units and 
communicating the result of the measurement (Sarama et al., 2011). 
However, there is also research, suggesting that young children use units in 
a non-systematic way and are not able to determine the length of an object 
(Barrett et al., 2003; Castle & Needham, 2007; Clarke et al., 2007). 
Nevertheless, even if they measure length using an appropriate method, not all 
of them give the right numerical value. This is affected by the measuring 
material and the object to be measured, which could lead them to meaningless 
measurement results (Skoumpourdi, 2015). Children’s main strategies in 
measuring length are the linear, the perimetrical and the spatial placement 
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strategy. Additionally, research results indicate that young children, although 
they show a preference for the use of rulers (Kotsopoulos et al., 2015), they find 
difficulties in using them methodically, despite their repeated use during 
teaching experiments (Sarama et al., 2011).  
The most reported students’ errors during length measurement are (Tan-Sisman 
& Aksu, 2012): units overlapping, mixing length units with other measurement 
units, confusing the concept of perimeter with area, incorrect alignment with 
a ruler, starting from 1 rather than 0, counting hash marks or numbers on 
a ruler/scale instead of intervals and focusing on end point while measuring with 
a ruler. Problems arise also when children have to iterate units-blocks to 
measure a length when blocks are fewer than the necessary (Kotsopoulos et al., 
2015).  
From the above mentioned we made the assumption that the role of the auxiliary 
means used in a linear measurement may be crucial. The type of the magnitude 
to be measured, as well as the units and tools that are used for the measurement 
influence children’s ability to measure accurately. Thus, the purpose of this 
paper is to investigate kindergarten children’s actions when using non-standard 
and standard units and tools for linear measurement. The research questions 
posed were the following:   

1. How do kindergarten children use anglegs1 and Cuisenaire rods2 as non-
standard units for linear measurement? 

2. How do kindergarten children use a ribbon as a non-standard tool for 
linear measurement? 

3. How do kindergarten children use snap cubes3 as standard units for linear 
measurement? 

4. How do kindergarten children use a ruler as a standardized measurement 
tool for linear measurement? 

5. What characteristics of the units and the tools used seemed to influence 
early linear measurement? 

METHOD 
To investigate kindergarten children’s actions when using non-standard and 
standard units and tools for linear measurement, an inquiry-based classroom 
                                                 

1   Anglegs (One set contains 48 snap-together plastic pieces, in 6 different lengths/colours)                          

2   Cuisenaire rods (One set contains 74 rods: 4 each of the orange, blue, brown, black, dark green and 
yellow, 6 purple, 10 light green, 12 red and 22 white)                                

3    Snap cubes (One set contains 100 snap-together plastic cubes, in 10 different colours)                                  
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experiment took place. A pre-service kindergarten teacher, through a designed
linear measurement task, created an environment for the children to explore, 
experiment with and investigate linear measurement in teams.  
The task was implemented in a public kindergarten4, with 18 students (6 girls 
and 12 boys) divided in five teams of three or four persons. In the designed 
linear measurement task, children had to measure the length of the four sides of 
a field, for ordering a fence to protect the planted carrots. Common non-standard 
and standard units and tools for linear measurement, different for each team, 
were used to investigate children’s actions. Anglegs and Cuisenaire rods were 
used as non-standard measurement units, because of their multiple sizes and 
colours, but also because anglegs could be snapped together, whereas Cuisenaire 
rods could not. A roll of 3 meters ribbon was used as a non-standard 
measurement tool that, due to its continuousness, covers a length easily. Snap 
cubes were used as standard measurement units because of their consistent size 
and their multiple colours. Also, a ruler was used as a standardized measurement 
tool. All the units and tools were familiar to the children with no specific 
knowledge of their used required, except for the ruler. 
RESULTS AND DISCUSSION
At the beginning of the process, and before children’s separation into teams, the 
scenario and the carrot field were presented to the students, who were asked 
both to show what they should measure and to estimate the length of the fence. 
Children seemed to understand what they should measure, and a child showed 
how to do it by moving his hands and saying "this, all around". They seemed to 
be willing to estimate, but offered answers at random without much 
consideration. Their estimations were numbers with a measurement unit, such as 
“3 meters”, “2 meters”, “10 meters”, “20 meters”, etc. Because of the variety of 
the estimations, the need for a more accurate measurement came up. To the 
teacher’s question about how they should measure in order to have an accurate 
result, all of them answered “with a ruler”. 
After that episode, children in teams had to measure the length of the fence and 
write the result of their measurement on a piece of paper. The first team had to 
measure with a ribbon, the second team with the anglegs, the third team with the 
cubes, the fourth team with the Cuisenaire rods and the fifth team with a 50cm 
ruler. 

                                                
4 This kindergarten (students from 3 years and 9 months to 6 years and 6 months old) was chosen a) because of 
the frequent cooperation we have with the teacher who likes integrating innovations in her teaching, b) because 
the children in that classroom were able to compare two objects directly and recognize their equality or 
inequality, c) because they were also able to place in order objects according to their length and d) because they 
knew to count and write numbers up to 100.
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Measuring with a ribbon  
The first team, 2 boys and 2 girls, had to measure with the use of a ribbon. One 
of the boys, who had the ribbon in his hands, asked the teacher some clarifying 
questions about how they should measure, while one of the girls started to count 
the carrots. Counting objects is a common activity in their class. The teacher 
reminded to the girl that they had to measure the carrot field to order the fence 
and not count the carrots and at the same time she gave the initiative to the boy 
to decide with his team what to measure and how to measure it. The boy showed 
with his hands where to measure saying “here all around”, and then, with the 
help of the other two team members he started measuring with the ribbon. They 
placed the ribbon around the carrots, holding the ribbon with their fingers firmly 
on the corners and saying, “approximately this much” (photo 1). To the 
teacher’s question about what the result of their measurement was and what they 
were going to write on the paper, their answers varied from 1 to 15 meters. 
Finally, the team members came up with the result “4 meters”. They did not 
determine the ribbon’s actual length nor did they attempt to cut the ribbon to 
match the perimeter of the carrot field. 
Measuring with the anglegs 
The second team, 3 boys and 1 girl, had to measure the carrot field with the use 
of a set of anglegs. The measurement started with a boy who placed 2 red 
pieces. Then he picked purple pieces, which were shorter, intending to place 
them beside the red ones but the girl preceded and placed a blue one beside the 
red ones. At the same time the other two boys placed multiple sized pieces along 
two other sides of the field. The former placed first 1 yellow, then 1 blue, then 1 
yellow and finally 1 purple piece. The latter placed 1 blue, 1 blue and 1 yellow 
piece. The last piece to be placed was a matter of concern, because in the 
meantime the first boy had already completed the fourth side with 5 purple 
pieces but there was a small gap left. After several attempts, two of the boys 
filled the gap by placing 2 orange pieces (photo 2). To the teacher’s question 
about what the result of their measurement was and what they were going to 
write on the paper, their answer was 17, the number of pieces they had placed 
around the field, without regard to the different sizes. 

Photo 1
Measure

with
ribbon

Photo 2 
Measure

with
anglegs

Photo 3 
Measure

with
cubes

Photo 4 
Measure

with
Cuisenaire

rods

Photo 5 
Measure

with
ruler
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Measuring with cubes
The third team, 2 boys and 2 girls, had to measure the field with the use of 
cubes. Three of the children (1 boy and 2 girls) connected some cubes and 
placed them along one side of the field. The length of these cubes, however, was 
longer than the side of the field and a girl removed the excess number and 
continued placing cubes on another side. The two girls seemed to be concerned 
with the accuracy of the placement and perhaps for this reason they were careful 
to place the cubes exactly along the perimeter. Or perhaps they just wanted to
use as many cubes from the box as they could (Photo 3). The second boy did not 
place any cubes, but he tried to count all the arranged cubes. To the teacher’s 
question about what the result of their measurement was and what they were 
going to write on the paper, their answer was 56, a number not corresponding to 
the actual number of cubes (90). 
Measuring with Cuisenaire rods  
The fourth team, 2 boys and 1 girl, had to measure with the use of a set of 
Cuisenaire rods. One boy started the placement with the orange rods, which 
were the longest rods. He used them all (4) and he added 1 purple rod. Then he 
continued along the next side with 1 black, 1 blue, 1 brown, 1 dark green, 1 
yellow and 2 white rods. At the same time the other two sides had already been 
covered by the rest of the team members: the boy had covered one side with 2 
blue, 1 black and 2 yellow rods, while the girl had placed, 1 purple, 1 blue, 1 
black, 2 dark green, 1 yellow, 1 light green and 1 purple rod along the other side 
(Photo 4). To the teacher’s question about what the result of their measurement 
was and what they were going to write on the paper, their answer was 25, the 
number of rods they had placed around the field, without distinguishing the 
different sizes. 
Measuring with ruler  
The fifth team, 3 boys, had to measure with the ruler. The first boy placed the 
ruler along one side of the field in such a way that the side of the field matched 
the middle section of the ruler (the ruler was 50cm and the side 40cm). The 
second boy pushed the ruler so that the its edge matches the side of the field’s 
edge. Then, the first boy started counting imaginary units with his index finger 
ignoring the units on the ruler (Photo 5). The second student interrupted him and 
told him “No need to count, its 40”, indicating the ruler's units. However, the 
first boy continued to use the same strategy on the next side starting from 40 and 
ending at 54. To measure the 3rd side he placed the ruler as he did in the 
beginning, counting his imaginary units along the length, 10 in total and 
continued along the next side in the same way, announcing “20” as the 
measurement’s result. Essentially, the student acted on his own. The other 
children of the group, apart from the original correction and the placement of the 
ruler, did not interfere. 
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After the measurements with the units and tools the class had to decide on the 
final length of the fence, so the carpenter would know how much material would 
need. But the answers varied since each group reported a different number as the 
result of their measurement without any justification. To the teacher's question 
about which of these auxiliary means they considered to be the best for 
a measurement they replied that the best for measuring was the ruler because it 
had numbers on it. 

Non-
standard 
tool

Non-standard units Standard 
units

Standard
tool

Ribbon Anglegs Cuisenaire 
rods

Cubes Ruler

Strategy Perimetrical 
along sides

Linear
placement

Linear
placement

Linear
placement

Linear
placement

Team 
work

Placement 
along sides/
holding on 
corners

Place
pieces
along
sides/
separately

Place rods 
along
sides/
separately

Place
cubes
along
sides/
separately

Placement 
along sides 
by a 
student

Answers 4
meters 

17 25 56 54+20

Measu-
rement
result

A length of 
the ribbon

Pieces5:
2r, 2o, 3y, 
4b, 6p

Rods6:
1lg, 1b, 
2w, 3p, 3b, 
3dg, 4b, 
4y, 4o

90 cubes ~170cm

Time 1.5
minutes

3
minutes

2.5
minutes

9.5
minutes

1.5
minutes

Table 1: Parameters that vary according to the auxiliary means and its use.

Children’s measurement actions set parameters that seemed to vary according to 
the non-standard and standard units and tools specific characteristics and 
influenced the measurement results (table 1). Regarding the anglegs and the 
Cuisenaire rods, as non-standard units, it seemed that their multiple sizes did not 
seem to trouble the children who used them but counted them as if they were of 
the same size. The time they spent measuring with these materials was not long 
(2.5-3 minutes) and the numerical value they gave when quantifying their result 

5 r: red, o: orange, y: yellow, b: blue, p: purple
6 lg: light green, br: brown, w: white, p: purple, b: black, dg: dark green, b:blue, y: yellow, o: orange
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was meaningless because it was equal to the non-standard units’ total number of 
pieces. Τhe number of the pieces allowed all the children of the group to use 
them independently, without cooperating with each other. In the case of the 
ribbon, a non-standard tool, it was clear that although it made the measurement 
a quick and easy process, it was not helpful for quantifying the measurement’s 
result. As for the cubes, standard units, children used them in the same way as 
the non-standard units, although the time they spent to complete the 
measurement differed significantly. The uniformity of their size could have led 
to a correct quantification of the measurement’s result, but that did not happen, 
because of their large number. The ruler, a standard tool, also led to incorrect 
measurement results.  
From the above results many questions arise: The method of measurement with 
the cubes is considered to be a correct one but should the method with the 
anglegs and the Cuisenaire rods are considered to be wrong? Since in both cases 
we do not know if children have any understanding of (non) standard units. If
we choose to give to the children units of the same size, such as cubes and the 
children fit them correctly, measure them accurately and quantify their 
measurement, should we consider that children have understood linear 
measurement? Do they realize transitivity, equal partitioning of the object to be 
measured, iteration of the unit, accumulation of distance? And if the above does 
occur with the children of this age, should this be the starting point for teaching 
measurement in the kindergarten? Should also emphasis be given on the 
accuracy on the quality data of the measurement rather than solely to the 
numerical result? 
CONCLUSIONS 
The classroom experiment showed that the children effectively used non-
standard and standard units, but not tools, to perform a linear measurement 
yielding a result that was logical for them. However, this result cannot be 
accepted as an actual result of measurement.
Through children’s measurement actions specific parameters arose that varied 
according to the different characteristics of the units and tools used as auxiliary 
means for measurement. These were the strategy used, the type of the 
cooperation, the children’s answers and the time spent for the measurement in 
relation to the measurement result. 
As it is often suggested, children have to be educated in the use of the ruler, as 
a standardized tool. From this experiment it became clear that it is necessary to 
educate children also in the use of any auxiliary means used for measuring, and 
mostly in the announcement of an accurate measurement result with qualitative 
data related to the unit/tool used. Thus, we can add to the dilemma, about how to 
start teaching linear measurement from non-standard or from standard units and 
tools, the necessity to educate children how to use units and tools for linear 
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measurement, as well as how to quantify their results giving the qualitative data 
that come from the means they used.  
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USING YOUNG CHILDREN’S REAL WORLD TO SOLVE 
MULTIPLICATIVE REASONING PROBLEMS
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This study focuses on kindergarten children’s multiplicative reasoning. The 
participants were 12 children (5-6-year-olds) from Viseu, Portugal. Pre- and 
post-tests were used to assess the effect of an intervention program focused on 
multiplicative reasoning. The intervention program comprised 12 multiplicative 
reasoning problems and was carried on in four sessions, during three weeks. 
Children’s performance and arguments were analyzed when solving selective 
problems of multiplication, partitive and quotitive division. The results suggest 
that children can succeed in some multiplicative reasoning problems, presenting 
valid or partially valid arguments, and that their multiplicative reasoning can be 
improved relying on their informal knowledge.
INTRODUCTION 
Children possess informal knowledge relevant for the learning of mathematical 
concepts. The mathematical ideas children acquire in kindergarten constitute the 
basis of future mathematical learning. Thus, the development of the 
mathematical skills in early age is crucial to the success for future learning 
(NCTM, 2008). In Portugal, the Curricular Guidelines for Pre-School Education 
(Silva, Marques, Mata & Rosa, 2016) emphasize the importance of mathematics, 
in everyday life as in the structuring of the child’s thinking, with a special focus 
on problem solving. In practice, it can be said that solving problems enables the 
development of thinking skills and stimulates a creative search for solutions to
everyday problems. Children involvement in resolution of tasks and problem 
solving that allow different strategies, improve their mathematical reasoning 
(NCTM, 2017). 
Concerning quantitative reasoning, literature reveals children’s difficulty 
establishing a multiplicative reasoning, and the long period of time that is 
necessary to develop the ideas involved on it (see Vergnaud, 1983; Clark & 
Kamii, 1996; Sullivan, Clarke, Cheeseman & Mulligan, 2001; Siemon, Breed & 
Virgona, 2005), contrasting with the relatively short time that is required to 
develop additive reasoning. However, there is evidence that many children have 
already an informal knowledge that allows them to solve some multiplicative 
reasoning problems (see Becker, 1993; Frydman & Bryant, 1994; Nunes et al., 
2007). Children can use their informal knowledge to analyse and solve simple 
addition and subtraction problems before they receive any formal instruction on 
addition and subtraction operations (Nunes & Bryant, 1996). But they can also 
know quite a lot about multiplicative reasoning when they start school (Nunes & 
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Bryant, 2010). Here, some research results are presented from a study focused 
on kindergarten children’s multiplicative reasoning, in Portugal. 
THEORETICAL FRAMEWORK 
Numbers are used to represent quantities and to represent relations. Nunes and 
Bryant (2010) argue that when numbers are used to represent quantities they are 
the result of a measurement operation from which a quantity can be represented 
by a number of conventional units (e.g., 3 children, 4 chairs). When a number is 
used to represent relations, the number does not refer to a quantity but to 
a relation between two quantities, expressing how many more or fewer (e.g., 
there is 1 more chair than children). In mathematics children are expected to be 
able to attribute a number to a quantity, which is measuring (Nunes & Bryant, 
2010), but they also are expected to be able to quantify relations. When 
quantities are measured, they have a numerical value, but it is possible to reason 
about the quantities without measuring them. In agreement with Nunes, Bryant 
and Watson (2010), it is crucial for children to learn to make both connections 
and distinctions between number and quantity. Quantitative reasoning results 
from quantifying relations and manipulating them (Nunes & Bryant, 2010). 
Quoting Nunes and Bryant (2010), “[…] quantifying relations can be done by 
additive or multiplicative reasoning. Additive reasoning tells us about the 
difference between quantities; multiplicative reasoning tells us about the ratio 
between quantities.” (p.8). In literature additive reasoning is associated to 
addition and subtraction and multiplicative reasoning is associated to 
multiplication and division problems (see Nunes & Bryant, 1996; Vergnaud, 
1983). 
The fact that children learn about addition and subtraction before multiplication 
and division maintains the idea that multiplicative reasoning is accessible to 
children only when they already master additive thinking. This idea supports the 
notion of an additive phase predictive of multiplicative reasoning (Hart, 1981; 
Karplus, Pulos & Stage, 1983; Piaget & Inhelder, 1975). Piaget and Inhelder 
(1975) argued that there should be any superior qualitative transformation in 
children's thinking to understand and perform such complex operations as 
multiplication and division. Moreover, because some multiplicative problems 
can be solved with additive strategies such as repeated addition, it has preserved 
the idea that multiplicative reasoning depends totally on the additive reasoning, 
so, this should be consolidated first. However, understanding multiplication as 
a complicated form of addition is a very reductive way of realizing 
multiplicative reasoning. 
In spite of his undoubted contribution to research, more recently research has 
been giving evidence of a different position. Thompson (1994), Vergnaud 
(1983) and Nunes and Bryant (2010) support the idea that additive and 
multiplicative reasoning have different origins. Vergnaud (1983), in his theory 
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of conceptual fields, distinguishes the field of additive structures and the field of 
multiplicative structures, considering them as sets of problems involving 
operations of the additive or the multiplicative type. Vergnaud (1983) argues 
that “multiplicative structures rely partly on additive structures; but they also 
have their own intrinsic organization which is not reducible to additive aspects” 
(p.128). Nunes and Bryant (2010) also consider that additive and multiplicative 
reasoning have different origins, arguing that “Additive reasoning stems from 
the actions of joining, separating and placing sets in one-to-one correspondence. 
Multiplicative reasoning stems from the action of putting two variables in one-
to-many correspondence (one-to-one is just a particular case), an action that 
keeps the ratio between the variables constant.” (p.11).
Multiplicative reasoning involves two (or more) variables in a fixed ratio. Thus, 
problems such as: “Joe bought 5 sweets. Each sweet costs 3p. How much did he 
spent?” Or “Joe bought some sweets; each sweet costs 3p. He spent 30p. How 
many sweets did he buy?” are examples of problems involving multiplicative 
reasoning. The former can be solved by a multiplication to determine the 
unknown total cost; the later would be solved by means of a division to 
determine an unknown quantity, the number of sweets (Nunes & Bryant, 2010).  
Research has been giving evidence that children can solve multiplication and 
division problems of these kinds even before receiving formal instruction about 
multiplication and division in school. For that they use the schema of one-to-
many correspondence. Carpenter, Ansell, Franke, Fennema and Weisbeck 
(1993), reported high percentages of success when observing kindergarten 
children solving multiplicative reasoning problems involving correspondence 
2:1, 3:1 and 4:1. Nunes et al. (2005) analysed primary Brazilian school children 
performance when solving multiplicative reasoning problems. When children 
were shown a picture with 4 houses and then were asked to solve the problem: 
“In each house are living 3 puppies. How many puppies are living in the 4 
houses altogether?”, 60% of the 1st-graders and above 80% of the children of the 
other grades succeeded. When children were asked to solve a division problem, 
such as: “There are 27 sweets to share among three children. The children want 
to get all the same amount of sweets. How many sweets will each one get?”, the 
levels of success for 1st-graders was 80% and above that for the other graders 
(2nd to 4th-graders). 
In Portugal, there is still not much information about kindergarten children 
understanding of multiplicative reasoning, relying on their informal knowledge. 
This study focuses on children’s ideas when solving multiplicative reasoning 
problems. It tries to address three questions: 1) How do children perform when 
solving multiplication, partitive and quotitive division problems? 2)  What 
arguments children present to justify their resolutions? 
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METHODS
An intervention program was conducted with 12 kindergarten children (5-years-
old, n=6; 6-years-old, n=6), from a public supported kindergarten in Viseu, 
Portugal. These children belong to an economic middle class group. Pre- and 
Post-tests were used to identify changes on children’s understanding during the 
intervention. The study integrates a wider research program conducted by 
Soutinho (2016).  
Individual interviews were used in the Pre- and Post-tests, and were conducted 
in a separate room in the Kindergarten, prepared for it. In each interview 
children solved 28 problems (18 additive structure problems; 6 multiplicative 
structure problems; 4 control problems). The problems presented in the 
interview followed an established order, and was the same for all children. Due 
to the higher number of problems, each child was interviewed in two different 
moments, during two straight days. The same procedure was use with all the 
children.  
The problems presented to the children were selected and adapted from 
Vergnaud’s classification (see Vergnaud, 1982, 1983). The problems of both 
tests were similar. The additive structure problems presented to children in the 
tests comprised: i) composition of two measures; ii) transformation liking two 
measures, with the starting and element of transformation omitted, (2 for 
addition, 2 for subtraction); iii) static relation linking two measures, (2 involving 
“more than”, 2 for “less than”). The multiplicative structure problems in the tests 
comprised: iv) Isomorphism of Measures, selecting the problems of 
Multiplication, Partitive Division, and Quotitive Division. The control problems 
included only geometry tasks (geometric regularities, shape with tangram). The 
problems presented to the children in each test comprised two problems of each 
type. Tables 1 and 2 give, respectively, some examples of problems of additive 
and multiplicative structures presented to the children in the Pre- and Post-tests.
Type of problem Examples of problems of additive reasoning structures
Composition of 
two measures

Mary has 8 dolls but only 2 are in the box. How many dolls are 
outside the box?

Transformation 
liking two 
measures

Bill had 7 marbles. He gave some to Paul and now Bill has only 
4. How many marbles did Bill give to Paul?
There are 5 frogs in the lake. Some more join the group. Now 
there are 8 frogs. How many frogs came to join the group?

Static relation 
linking two 
measures

Anna has 4 puppies. John has 2 more than Anna. How many 
puppies does John have?
Mary has 5 bananas and 2 strawberries. How many strawberries 
are there less than bananas?

Table 1: Examples of problems presented to the children in Pre- and Post-tests.
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Type of problem Examples of problems of multiplicative reasoning structures

Partitive division Sara has 10 candies to give to 5 children. She is doing it 
fairly. How many candies is each child receiving?

Multiplication Bill has 3 boxes with pencils. Each box has 4 pencils. How 
many pencils does Bill have in total? 

Quotitive division The teacher Anna has 12 children in her group. She wants to 
seat the children in groups in the tables. Each group must 
have 4 children. How many tables does teacher Anna need?

Table 2: Examples of problems presented to the children in Pre- and Post-tests.

All the problems were presented to the children by the means of a story, and 
materials were available to represent the problems. After each resolution, each 
child was asked “Why do you think so?” in order to reach a better understanding 
of his/her reasoning. All the information was registered in video. A quantitative 
analysis of Pre- and Post-tests results was conducted using the Statistical 
Package for Social Science (SPSS 20.0). 
In the intervention, the participants were divided into three groups of four 
children each, having each the same age and Pre-test results conditions. The 
intervention took place in the pre-test following week and lasted for 3 weeks. 
Four sessions were planned, organized by level of difficulty, equal to all the 
groups. In each session children solved 3 problems, and the same kind of 
problems was explored twice a week. Each group had the opportunity to discuss 
and solve the same type of problem 4 times, in a total of 12 problems. The tasks 
presented to the children, during the intervention comprised 4 partitive division 
problems, 4 multiplication problems, and 4 quotitive division problems. The 
problems presented to the children in the intervention program were similar to 
those of the multiplicative structure problems given in the tests (see Table 2).  
The interviewer presented the problems to the children orally by the means of 
a story. In each session, the interviewer presented each problem to the group and 
the material related to the context of the problem was available for 
representation. The children were challenged to solve the problem individually 
and present his/her response to the group. After each resolution, the interviewer 
asked questions related to their resolutions in order to gain an insight of 
children’s reasoning and stimulate their discussion. All the information was 
video and audio recorded. Qualitative methods were used to analyse children’s 
interviews when solving the problems.
RESULTS 
Children’s performance in solving problems
One point was awarded to each child’s correct response. Children’s performance 
in solving Pre- and Post-tests problems was analysed to understand the effects of 
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the intervention on the children’s performance. Table 3 presents the mean of 
proportions (and standard deviation) of correct responses for Pre- and Post-tests, 
according to each type of problem.

Type of Problem

Mean (s.d.)

Pre-test Post-test

Additive Structure .45 (.22) .55 (.21)

Multiplicative Structure .40 (.31) .61 (.31)

Control .77 (.23) .77 (.25)

Table 3: Mean of proportions (standard deviation) of correct responses, in Pre- and 
Post-tests.

The Wilcoxon’s Test reveals that children’s performances improved 
significantly from pre- to post-tests in both the additive structure problems 
(W = 50.000; p<.05), and in the multiplicative structure problems (W = 42.000; 
p< .05). No significant improvements on children’s performances were observed 
regarding problems of control, despite the higher level of success in these kinds 
of problems. This indicates that the intervention on multiplicative structures 
problems was effective. 
By focusing the attention on multiplicative reasoning problems, it becomes 
relevant to analyse children’s performance when solving multiplication, partitive 
and quotitive division problems. Figure 1 presents the distribution of percentage 
of children’s correct responses when solving these problems, in Pre- and Post-
tests. 

Figure 1: Distribution of percentage of correct answers when solving problems. 

The intervention focused on multiplicative reasoning problems seemed to 
improve children’s understanding of multiplication, but also partitive and 
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quotitive division. Regarding the multiplicative structure problems, the 
Multiplication problems seemed to be easier for children to understand than 
division problems. Quotitive division problems revealed to be the most difficult 
ones for children. Nevertheless, some improvements were observed with the 
intervention. According to Friedman’s test, in post-tests there are significant 
differences between Multiplication and Quotitive division problems (χ2

F(2) = 
7.786; p<.05). Friedman’s test also revealed that differences between children’s 
performances in Pre- and Post-test are only significant in Multiplication 
problems, (W=28.000; p<.05). Thus, this intervention program seemed to be 
effective for children understanding of multiplicative reasoning problems. 
In order to clarify that children’s performance was not reached by chance when 
solving the multiplicative reasoning problems, their arguments were analyzed as 
they were always challenged to explain their answers.
Children’s arguments after solving the problems 
After solving each problem in Pre- and Post-tests, children’s verbal explanations 
were required when asked “Why do you think so?”. An analysis of children’s 
arguments was conducted among those who solved the problems correctly, in 
order to have an insight of their reasoning when solving the tasks. Four 
categories of arguments were distinguished when solving the multiplicative 
structure problems: valid argument (V), comprising an explanation that 
articulates correctly all the quantities involved in the problem; partially valid 
argument (PV), comprising an explanation in which a child attends only to part 
of the quantities of the problem, producing an incomplete argument; no 
argument (NA), comprising expressions such “I don’t know”, and the absence of 
an argument; and invalid argument (I), comprising an explanation that could not 
be understood or is decontextualized from the problem. Table 4 summarizes the 
frequency of type of argument given by the children when solving multiplicative 
reasoning tasks correctly. 

Type of argument Pre-test (%) Post-test (%)

Valid 48.3 50

Partially Valid 20.7 13.6

Invalid 27.6 25

No argument 3.4 11.4

Table 4: Type of arguments presented for correct responses, in Pre- and Post-test. 

Many children presented valid arguments in the explanations of their correct 
resolutions, revealing an understanding of the problem. In many cases, the 
partially valid arguments were presented using material, representing the 
situation correctly, in spite of the difficulty in the verbal communication. To 
present an explanation is not a simple task for young children; some children 
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were able to solve the problems correctly providing no explanation at all. This 
can be explained by the difficulty that some children have in putting into words 
their reasoning. This difficulty was expected among children of ages 5 and 6 as, 
according to Piaget (1977), they have to reflect upon their action. With the 
intervention, children seemed to become more aware of process and explanation, 
being more prone to be quieter, giving no explanation, than to give an answer 
that was not compatible with their procedure. The decrease of invalid arguments 
and the increase of valid arguments after the intervention discards the possibility 
of the success in problem solving be achieved randomly. 
Also children’s explanations in the intervention sessions when solving the 
multiplicative structure problems revealed some improvement on their way of 
thinking. The following Transcript gives evidence of children arguing solving 
the multiplication problem “Bill has 3 bicycles without wheels in his garage. 
Each bicycle must have 2 wheels. How many wheels does Bill need to fix all the 
bicycles?”. Figure 2 shows children presenting their arguments solving the 
multiplication problem. 

Child 1, 3: Two.
Child 2: Six.
Child 4: [Remain in silence.] 
Child 1: It’s 2! [Argues while getting 2 wheels to represent it.]
Researcher: There are 2 wheels in each bicycle... Show me why do you think so? 
Child 2: I got 2 [shows it with paper material] and it is only for 1, got more 

and it is for 2 [takes more 2 paper wheels], got 2 more and is for 3 
[takes 2 more paper wheels]. 

Researcher: So, how many wheels do you need?
Child 1,2,3: Six!
Child 4: It’s 4… No… Two are for 1, and more wheels are for another [put it 

below the previous ones], and these are for bicycle 3 [put them 
below the last ones]. 

Figure 2: Children presenting their arguments when solving a multiplication problem. 

In many problems, the material was mostly used by children not to solve the 
situations but to explain their resolutions. 
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FINAL REMARKS 
This study explores the effects of a short intervention program focused on 
multiplicative reasoning on young children solving problems of additive and 
multiplicative structure. The intervention was effective as children improved 
their understanding of multiplicative reasoning problems. Multiplication 
problems revealed to be easier for children than division ones. Also children’s 
arguments revealed improvements. Young children provided arguments and 
explanations that sustain the idea that their successful resolutions were not 
obtained randomly.
Previous research carried out with kindergarten children solving multiplicative 
reasoning problems (see Carpenter et al., 1993) reports levels of success, but 
does not refer to children’s explanations or arguments to give a better insight of 
children’s way of thinking.  Also Nunes et al. (2005) report remarkable success 
levels when 1st-graders solve multiplication and division problems, but give no 
reference to their explanations. The study reported here gives evidence that 
young children can reach success levels when solving multiplication and 
division problems, relying on their informal knowledge, presenting arguments 
that show that they are able to establish the correct reasoning when solving the 
tasks, articulating properly all the quantities involved in the given problems.
This study suggests that children’s multiplicative reasoning can be enhanced 
when they can experience problem solving being able to interact with peers and 
discuss their ideas, after receiving some prompts from teacher, and the problems 
are presented by means of stories. It also suggests that both additive and 
multiplicative reasoning, in their simplistic forms, seem to be simultaneously 
reachable to kindergarten children, making sense to them. Thus, perhaps 
kindergarten mathematics should include more of these experiences in order to 
develop children’s mathematical reasoning. When problems are presented to 
young children through a story connecting them to the children’s real world, the 
mathematics make sense for children.
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YOUNG CHILDREN CAN LEARN TO REASON AND TO 
NAME FRACTIONS
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This study investigates the effects of a teaching intervention on children’s 
reasoning and labelling of fractions in Quotient, Part-whole and Operator 
situations. A Pre-test, Intervention and Post-test design was used with 37 six- to
seven-year-olds from Primary schools in Braga, Portugal. The children had not 
been taught about fractions in school. Reasoning and labelling questions were 
presented in the three situations in the Pre- and Post-test. During teaching, each 
intervention group learned about fractions in only one of the three situation. 
Children who were taught in the Quotient situation made significant progress in 
the reasoning and naming fractions; Children taught in the Part-whole or in the 
Operator situations only learned how to label fractions. 
INTRODUCTION 
Fractions can be used to represent quantities in different types of situation. The 
aim of this study was to investigate the impact of the situation in which fractions 
are taught on children's learning. Three types of situation were included: 
Quotient, Part-whole and Operator. In quotient situations, a/b represents the 
relation between a number of items shared equally among b number of 
recipients (e.g., 2/3 represents 2 chocolate bars shared fairly by 3 children); a/b 
also represents the quantity received by each recipient (e.g., 2/3 represents the 
amount of chocolate received by each child). In part-whole situations, a/b 
represents the relation between b, the number of equal parts in which the whole 
is divided, and a, the number of these parts taken (e.g., 2/3 of a chocolate bar 
means that the bar was divided into 3 equal parts and 2 of these parts were 
taken). In operator situations, which involve a set of discrete items taken as 
a whole, b indicates the number of equal groups into which the set was divided 
and a is the number of groups taken (Nunes & Bryant, 2008). 
Quotient situations involve sharing (Streefland, 1997; Mamede, Nunes & 
Bryant, 2005), where the denominator and the numerator of a fraction involves 
variables of distinct nature, recipients and items being shared, respectively 
(Nunes et al, 2007). Part-whole situations involve dividing continuous quantities 
into equal parts, and the denominator and the numerator involve variables of the 
same nature (Nunes et al, 2007), respectively the number of equal parts into 
which the whole was cut and the number of those parts taken. Fractions in 
operator situations also involve variables of same nature, the denominator and 
the numerator refer to the number of equal groups initially made and the number 
of groups taken, requiring the child to ignore the number of elements of each 
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group. Although quotient, part-whole and operator situations may seem very 
similar to an adult, they may be perceived as quite different by children. 
FRAMEWORK 
Previous work (Correa, Nunes & Bryant, 1998; Kornilaki & Nunes, 2005) on 
children’s understanding of division has shown that children aged 6 and 7 
understand that, the larger the number of recipients, the smaller the part that 
each one receives. So in sharing situations, they display some informal 
knowledge and are able to order the values of the quotient. It should be noted 
that these studies were carried out with divisions where the dividend was larger 
than the divisor. In the present study, all situations involve dividends that are 
smaller than the divisor. So it is necessary to see whether the children will still 
understand the inverse relation between the divisor and the quotient when the 
result of the division would be a fraction. The equivalent insight in part-whole 
situations - the larger the number of parts into which a whole was cut, the 
smaller the size of the parts (Behr et al., 1984), has not been documented in 
children of this age. Research is needed to know more about how do young 
children understand this inverse relation in situations where the divisor is larger 
than the dividend, when they do not have to deal with it numerically, but only 
make a judgement, similar to those required by Correa et al. and Kornilaki and 
Nunes in quotient situations. 
There is little information regarding equivalence in quotient situations but 
Empson (1999) found some evidence for children’s use of ratios with concrete 
materials when children aged 6 and 7 years solved equivalence problems. 
Concerning part-whole situations, Piaget, Inhelder and Szeminska (1960) found 
that children in this age level understand the equivalence between the sum of all 
the parts and the whole and some of the slightly older children could understand 
the equivalence between parts - 1/2 and 2/4 - if 2/4 was obtained by subdividing 
1/2. Different informal strategies have been identified (drawing and shading, 
using knowledge from money situations) by other researchers but these were 
observed at later ages, after children had already received instruction on 
fractions.  
Previous research on children’s informal knowledge (Empson, 1999) shows that 
children aged 6 and 7 found it difficult to understand the operator concept, but 
this difficulty is reduced after receiving instruction. Research with older 
children, who received instruction on fractions (Behr et al., 1984; Post et al., 
1985), shows that for some children the operator concept is still difficult. 
However, these studies were not focusing on children’s informal knowledge and 
do not compare children’s reactions across situations.
Thus, one still needs to investigate children’s understanding of equivalence and 
ordering of quantities represented by fractions in distinct situations, before being 
taught about it in school. Although there are some studies on informal 
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knowledge, systematic and controlled comparisons between the quotient, part-
whole and operator situations have not been carried out. These situations may 
seem very similar to an adult, but it is hypothesized that they are perceived as 
quite different by children as the meaning of numerator and denominator varies 
across situations. Thus it is predicted that, if children learn about fractions in one 
type of situation, they will not transfer easily what they have learned to the other 
two types of situation. 
Literature presents some studies on the effects of situations in which fractions 
are used on children’s understanding. Previous research shows that children 
perform differently in parallel items presented in the context of quotient and 
part-whole situations. For example, 8- and 9-year-old British children answered 
items about fraction equivalence in quotient and part-whole situations; when 
comparing 1/2 and 2/4, the rate of correct responses was 35% in part-whole and 
66% in quotient situations (Nunes et al., 2007). Similar results were found 
amongst Portuguese children aged 6-7 years: when ordering fractional 
quantities, 42% of the answers were correct in part-whole and 61% in quotient 
situation; in equivalence items, 14% correct answers were observed in part-
whole and 22% correct answers in quotient situations (Mamede, Nunes & 
Bryant, 2005). In another survey Nunes and Bryant (2008) asked to 318 Year 4 
and 5 pupils to judge whether the fractions 1/3 and 2/6 were equivalent, or not. 
The items were presented simply as numbers, without a context, in the context 
of part-whole situations, and in the context of quotient situations. Pupils were 
most successful in quotient situations (68% correct), followed by part-whole 
situations (41% correct) followed by numerical problems without context (39% 
correct). Similar results were obtained in a study with 8- and 9-year-olds in 
England, who had been taught about fractions in part-whole situations and 
attained 40% (8-year-olds) and 74% (9-year-olds) correct responses in part-
whole problems; their rates of correct responses to the quotient questions were 
71% and 83% (Nunes & Bryant, 2011).  
In Brazil, Campos, Magina, Canova and Silva (2012) compared the impact of 
intervention sessions focused on fractions in quotient, part-whole, operator and 
intensive quantities on 138 Brazilian 3rd and 4th-graders. The authors refer that 
students of the quotient situation intervention group registered the higher 
improvement. More recently, Canova (2013) analysed the effect of a teaching 
experiment, comprising reasoning and naming fractions tasks with part-whole 
and quotient intervention groups, involving 378 fourth- to sixth-graders from 
Brazilian primary schools. The quotient intervention group performed better on 
the reasoning fractions problems, and the part-whole intervention group 
performed better in the naming of fractions. 
These results strongly support the significance of the distinction between 
quotient and part-whole situations for educational practices. However, previous 
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studies did not investigate the consequences of teaching and learning about 
fractions in these different situations; teaching had been done in schools without 
the researchers' interference. The present study analyses the effects of teaching 
children about fractions in each of these types of situation in comparison to the 
others. It is hypothesized that what children learn about fractions is at first 
connected to the situation in which they were taught. If the situations are truly 
distinct from the children's perspective, their newly acquired knowledge will be 
situated rather than generalized. Thus further teaching and experiences with 
fractions would be required to allow for a more general understanding of 
fractions that can be used in a variety of situations. 
METHODS 
Participants were 37 six and seven-year-olds (mean age 6.6 years) from two 
state supported primary schools, in Braga, Portugal. According to the 
information given by the teachers, the children had not received formal 
instruction on fractions at school. This study was carried out with un-instructed 
children, otherwise the results would be influenced by the type of instructions 
that they had received. In Portugal, the children contact with equal sharing 
activities in the 2nd grade (7- to 8-years-old) and were formally introduced to 
fractions in the 3rd grade, and part-whole and operator situations were the most 
common ones to explore fractions in the 3rd and 4th grades. 
Pre- and Post-tests, administered individually, were used to assess whether there 
was progress after the intervention. These tests comprised 12 reasoning items, 
involving equivalence or ordering fractions, presented in each type of situation –
quotient (Qt), part-whole (Pw) and operator (Op) - without the use of fraction 
labels. Figure 1 gives an example of an equivalence problem presented in the 
Pre- and Post-tests.  
Type of situation Example

Quotient Three boys are going to share 1 chocolate bar fairly. Six 
girls are going to share 2 chocolate bars fairly. Does 
each boy eat more chocolate than each girl? Does each 
girl eat more chocolate than each boy? Or do the boys 
and girls eat the same amount of chocolate? Circle the 
one that you think that ate more or both if they ate the 
same. Explain your answer. Write in the box a number 
to show how much chocolate each girl (each boy) is 
going to eat.

Part-whole Betty and Ruth have each a chocolate bar. But as they 
are not very hungry, they decide not to eat all the 
chocolate bar at once. Betty divides hers into 3 equal 
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parts and eats 1 part; Ruth divides hers into 6 equal 
parts and eats 2 parts. Does Betty eat more chocolate 
than Ruth? Does Ruth eat more chocolate than Betty, or 
are they eating the same amount of chocolate? Circle 
the one that you think that ate more or both if they ate 
the same. Explain your answer. Write in the box a 
number to show how much chocolate each girl is going 
to eat.

Operator

1. Anna and Phil have each 12 sweets (first slide).

2. Anna decided to share hers into 3 equal bags, with 
the same number of sweets in each; Phil shares his into 
6 equal bags, all with the same number of sweets 
(second slide).

3. Anna eats 1 bag of sweets and Phil eats 2 bags (third 
slide). Does Anna eat more sweets than Phil, does Phil 
eat more sweets than Anna, or do they eat the same 
number of sweets? Circle the one that you think that ate 
more or both if they ate the same. Explain your answer. 
Write in the box a number to show how much chocolate 
each one is going to eat.

Figure 1: Examples of an equivalence problem of the Pre- and Post-tests. 

After solving the reasoning questions, the children were also asked to name the 
12 pairs of fractions in each of these situations. Fractional language is relatively 
rare in Portuguese culture in everyday life. The most common fraction in 
everyday language is “metade” (half), but is often used to refer to a division in 
two parts without rigor in the equality of parts. So in order to examine whether 
children can adopt fractions signs in writing and oral language more easily in 
one type of situation than another, the children received a brief explanation of 



200 EMA MAMEDE

how to use fractional representation and then were assessed on their ability to 
use these representations. 
The same fractions were used across the different situations making it possible 
to compare the children’s performance on reasoning and naming problems in 
each situation. Table 1 presents the pairs of fractions used in the problems of 
equivalence and ordering of quantities represented by fractions in the Pre- and 
Post-tests. 

Pre-Test Post-Test
Equivalence Ordering Equivalence Ordering

1/3 ; 2/6 1/3 ; 1/4 1/3 ; 2/6 1/3 ; 1/4
1/2 ; 2/4 1/3 ; 1/6 1/2 ; 2/4 1/3 ; 1/6
3/5 ; 6/10 2/3 ; 2/9 3/5 ; 6/10 2/3 ; 2/9
2/3 ; 4/6 2/5 ; 2/10 2/3 ; 4/6 2/5 ; 2/3
1/2 ; 3/6 3/4 ; 3/6 1/4 ; 2/8 3/4 ; 3/8
3/6 ; 6/12 4/5 ; 4/10 3/4 , 6/8 4/5 ; 4/10

Table 1: Fractions used in the problems of equivalence and ordering of fractions in 
each condition of study for Pre- and Post-tests. 

Children were randomly assigned to learning in one of the three situations –
Quotient (Qt), Part-whole (Pw), or Operator (Op) intervention – or to 
a Comparison group, who solved multiplication and division problems with 
whole numbers. 
Eight groups of 5 children (one of them with 3 children) participated in two 
teaching sessions of about 35 minutes each. These teaching sessions took place 
outside the classroom, in a small room of their school. Thus, no changes on the 
curriculum were provided due to this intervention. 
In the first session, the children received instruction on how to label fraction in 
their working situation, and then they had to solve 2 problems of labelling and 2 
of ordering of fractions. In the instruction sessions on how to label fractions, the 
unitary fractions up to 1/5 and the non-unitary fractions 2/3 were used. After 
being taught to label the fractions, the children were asked to name the fractions 
in the subsequent labelling and ordering problems, and their answers were 
discussed in the group by the researcher. In the second session, the children had 
to solve 2 problems of equivalence of fractions. Table 2 summarizes the 
fractions involved in the intervention sessions when solving reasoning and 
naming problems. 

Naming Ordering Equivalence
3/7 1/2; 1/3 2/3; 4/6
5/8 2/3; 2/4 3/4; 6/8

Table 2: The fractions involved in the problems used in the intervention sessions. 
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All problems were presented using an approach similar to the test items 
exemplified in Figure 1, in which the researcher showed the children an 
illustration while presenting the problem orally, and the children had a booklet 
with the same illustration in which they could write or draw as they wish. 
The researcher presented the problem and then explained the question; each 
child answered in their own booklet. For the problems of labelling, each child 
had to write down the answer; for the problems of reasoning, they had to judge 
about the equivalence and ordering of fractions individually, drawing a circle 
around those that they considered to be having/eating more. When all the 
children had finished and all the answers were written dawn, each child had to 
say why they answered so. Finally, the researcher discussed their answers with 
the children of the group. 
No judgements were made by the researcher whose role was to pose the 
questions, create opportunities for the children to present their individual 
responses to the group, and manage the group discussion. 
RESULTS 
One point was awarded for each child’s correct response, the maximum score on 
reasoning problems of fractions is 12. Table 3 presents the means and standard 
deviations for accuracy on reasoning items in each situation by testing occasion. 
The means are separated by intervention group. At Pre-test (Table 3), all 
children performed better on reasoning problems presented in quotient 
situations, irrespective of the group to which they were later assigned. There 
were almost no correct responses to reasoning problems presented in part-whole 
or operator situations. At Post-test, children in the Quotient Intervention Group 
improved in accuracy in the quotient reasoning items, but no other improvement 
in reasoning is noticeable.

Reasoning problems (Maximum score = 12)

Pre-test Post-test

Qt Pw Op Qt Pw Op

Qt (n=10) 5.6 (3.3) 0 0 8.6 (3.1) 0 0
Pw (n=10) 2.7 (3.4) 0.1 (0.3) 0 3.0 (3.7) 0.6 (1.9) 0
Op (n=10) 2.5 (2.6) 0 0 3.8 (3.7) 0 0
Control
(n=7)

3.0 (3.9) 0.29
(0.8)

0.43 (1.1) 3.0 (4.5) 1.57(4.2) 1.71 (4.5)

Table 3: Mean accuracy (standard deviations in brackets) by Testing Occasion on 
Reasoning Items in Each Situation by Intervention Group. 

In the naming problems, one point was awarded to each fraction correctly 
named. The total score of naming problems ranged from 0 (minimum) to 24 
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(maximum). At Pre-test, no child was able to label a fraction correctly but there 
are improvements in the children’s accuracy in labelling items in the post-test 
(Table 4). 

Labelling problems (Maximum score = 24)

Post-test

Qt Pw Op

Qt (n=10) 8.6 (3.1) 0 0

Pw (n=10) 3.0 (3.7) 0.6 (1.9) 0

Op (n=10) 3.8 (3.7) 0 0

Control (n=7) 3.0 (4.5) 1.57(4.2) 1.71 (4.5)

Table 4: Mean accuracy (standard deviations in brackets) by Testing Occasion on
Labelling Items in Each Situation by Intervention Group.

The improvements are selective: children in the Quotient Intervention Group 
improve their performance in naming fractions in Quotient situations being able 
to name more than half of the fractions presented in Part-whole and Operator 
situations. The children in the Part-whole and Operator intervention groups 
improve their accuracy in naming fractions in both types of situation and are 
able to transfer these learning to name fractions among Part-whole and Operator 
situations. Nevertheless, the Part-whole and Operator intervention groups find 
more difficult to name fractions presented in Quotient situations. 
In view of the floor effects in pre- and post-test accuracy scores in reasoning 
items in Part-whole and Operator situations, it was only possible to analyse the 
effect of the intervention on reasoning items in Quotient situations. In order to 
analyse whether one type of intervention led to greater improvement than the 
other on Quotient reasoning items, an ANCOVA was carried out, controlling for 
the Pre-test. The score for the pre-test Quotient reasoning problems was a factor 
and Type of Intervention session (Quotient, Part-whole, Operator, Control) was 
a between–participants factor. The dependent variable was the score for post-test 
Quotient reasoning problems. The results showed that the covariate predicts 
significantly the children’s performance in solving the Quotient reasoning items 
(F(1,32)=86.74, p<.001). There was also an interaction of Quotient reasoning 
items by Session Intervention Group (F(3,32)=4.48, p<.05). Post-hoc 
(Bonferroni) tests revealed that the Intervention Sessions on Quotient Situations 
significantly increased children’s performance compared to both the Part-whole 
Intervention Session Group, t(32)=-3.15, p< .05), and the Control Intervention 
Sessions Group (t(32)=-3.19, p<.05), but not with the Operator Intervention 
Sessions Group (t(32)=-2.07, n.s). 
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As there was no variation in the children's accuracy in naming fractions in the 
pre-test, only post-test performance can be analysed. A repeated Measures 
ANOVA was carried out, with naming problems as a repeated measure in Post-
test and the Type of Intervention Group as a between participants factor. There 
is an interaction between the type of Group Intervention and the situation to 
name fractions, (F(6, 66) = 36.37, p<.001); Children in the Quotient Intervention 
Group performed better on naming problems presented in Quotient situations 
than those of the Part-whole or Operator Intervention Groups (p<.001), but 
weaker on problems presented in Part-whole or in Operator situations; on 
naming problems in Part-whole situations, the children of both Part-whole 
Intervention Group (p<.001) and Operator Intervention Group (p<.001) 
performed better than the Control and Quotient Intervention Groups; on naming 
problems on Operator situations, children of both Part-whole (p<.001) and 
Operator Intervention Groups (p<.001) also performed similarly and better than 
Control and Quotient Intervention Groups. 
Thus, the type of situation in which fractions are used to present the problems to 
children affects differently children’s reasoning and naming of fractions.
FINAL REMARKS 
The findings of this study show that some changes occurred with the teaching 
experiment in which the children were introduced to fractions, in each type of 
situation analysed. The children who were introduced to fractions in Quotient 
situations improved their performance on reasoning problems, involving 
equivalence and ordering, revealing some understanding of the inverse divisor-
quotient relation. This understanding was also found previously in the literature 
(see Mamede, Nunes & Bryant, 2005), when fractions were introduced to young 
children, but also when comparing fractions problems were solved by older 
children in Quotient situations (see Nunes & Bryant, 2008; Canova, 2013). 
Contrasting with these findings, the children who were introduced to fractions 
either in Part-whole or Operator situations did not show improvement with the 
instruction sessions when solving reasoning problems. These findings suggest 
that Part-whole and Operator situations are very difficult situations for the 
children to attend to all the dimensions involved in the problem. 
It is concluded that learning in Quotient situations was more effective, as the 
children progressed both in reasoning and naming items, but it was situated: 
there was no transfer. In contrast, learning in Part-whole and Operator situations 
was limited, as there was no progress in reasoning, but the use of fraction labels 
was generalized between the two situations. 
Teaching about fractions in many countries is often done in part-whole and 
operator situations, with emphasis on learning to name fractions. Children easily 
learn to name fractions in specific situations, so it is easy to believe that they 
understand the reasoning underlying this new numerical form. This study 
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underscores the limitations of teaching in these situations and the need to 
combine different situations in teaching fractions, as each of them has strengths 
and weaknesses. 
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The article contains information about the preliminary results of pilot studies 
carried out by the author on 127 students with the age 14 in the period 2017-
2018. The aim of the research was to check students' readiness to use formal 
operations while solving mathematical problems, as well as to check the 
correctness of the tool construction by means of which the author attempted to 
search for answers to the questions posed. 
INTRODUCTION AND THEORETICAL FRAMEWORK 
Mathematics is “a science using the method of deduction, dealing mainly with 
the study of sets of numbers, points and other abstract elements” so modestly 
about mathematics is written in one of the dictionaries of the Polish language 
(Dubisz, 2003, p. 583). School Encyclopaedia from the 80s of the last century 
describes the motto of Mathematics up to 8 pages in small print, showing its 
development and showing the richness of mathematical concepts, their use and 
activity and skills in which a professional mathematician should be equipped to 
be able to handle tools flexibly and simultaneously this scientific discipline 
(Pańkowska, 1988, p.140). Finally, about  the mathematics in the book Lectures
on Mathematics Teaching, (Turnau, 1990) writes the famous Polish didactician 
of mathematics Stefan Turnau. He looks at mathematics - the school subject and, 
answering the question of his tasks in the process of developing a potential 
student, makes the reader aware of  how different this object is from other taught 
at school. Well, here and on other objects, we develop by mastering a certain 
fragment of knowledge defined in the core curriculum, and even often 
transcending it. The knowledge gained on each subject should contribute to 
supporting us in action, based on its application. In mathematics, we say that the 
knowledge gained should help us in solving tasks and performing certain 
operations, it should be assimilated operatively, it should be flexible and 
functional. Are the skills developed in maths lessons only useful for solving 
school math problems? Well, no, good and operatively assimilated mathematical 
knowledge will certainly pay off not only in maths classes, but also in everyday 
life. After all, in the process of solving mathematical problems, you could 
develop the following skills: 

 perceiving and using analogies; 
 schematization; 
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 defining, interpreting a given definition and its rational application; 
 deduction and reduction; 

 coding, constructing and rational application of mathematical language; 
 algorithmisation and rational use of algorithms (Krygowska, 1986). 

Today it is difficult to consciously function in everyday life without having the 
above mathematics activities, although the vast majority of them are specific 
only to the work of a professional - a mathematician. 
We are not born with the abovementioned skills, we acquire them and shape 
them on the path of intellectual development. This process, in accordance with 
the theory of the Swiss psychologist Jean Piaget, is a constant struggle with what 
we know and new information on the path of adaptation. It consists of two 
processes: assimilation and accommodation. The first one is adapting new 
information of external origin to what the person already knows and knows, the 
second is adapting his knowledge to new information. Man builds new patterns, 
his intelligence develops. There is a kind of competition between 
accommodation and assimilation, which is based on comparison, a process that 
is an important basis for the development of mental operations. According to 
Piaget, the child's development depends primarily on him, the very actions he 
undertakes, which underlie thinking, or a continuous cognitive process. It 
consists of intellectual operations, mental operations as an internalized action, 
which is internalized and therefore runs in the mind (Piaget, 1963, 1966, 1972, 
2012). 
According to Piaget, this internalization takes place in four separate stages of 
development of intelligence, linearly following each other: 

 Sensorimotor (from birth to about 2 years of age), the child learns the 
world by perceiving directly through the senses and acting in space. 

 Pre-operational (from 2 to about 6 years of age), then symbolic thinking is 
shaped, but intellectual possibilities are still dominated by observations 
and not thinking and using concepts. 

 Concrete operations (from 7 to about 12 years old), the child uses 
operational reasoning, when he can manipulate particulars, tries to solve 
problems logically, loses self-centeredness. 

 Formal operations (over 12 years of age) the child acquires the ability to 
reason with abstract thinking, is able to solve problems in the mind, 
thinking becomes more and more similar to the thinking of an adult man. 

According to Piaget, everyone, regardless of their place of residence and the 
environment in which they grow up, goes through all the above-mentioned 
stages of development, in which reasoning changes from simple forms, strongly 
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related to perception and performed activities, to forms implemented in the 
mind, abstract and hypothetical . These are qualitative changes, not quantitative 
changes, new behaviours are built on previous ones and they do not cause their 
disappearance only they complement and correct. 
Piaget's research shows that not all people, regardless of where they live and 
what they do, reach the level of formal operations, it is also true that many of us 
do not use formal operations for many aspects of their lives (Przetacznik-
Gierowska, Tyszkowa, 2000). 
A person who thinks at the level of formal operations is characterized by: 

 abstract thinking, i.e. the ability to logically use symbols in relation to 
abstract concepts (without the need to link them with reality), 
hypothetical-deductive reasoning and development of your thinking about 
abstract objects. 

 metacognition, or the skill of parallel reasoning and its monitoring, it is 
the ability to constantly reflect on one's own cognitive process. 

 the ability to logically and methodically solve problems, in particular 
those of mathematics. 

The theory of Jean Piaget is embedded in development-cognitive constructivism. 
The child’s / student’s knowledge is actively created, not passively drawn from 
the environment. It is not the environment that gives shape to the child, but it 
actively pursues its understanding. He studies, manipulates and analyses objects 
and people in his own environment (Dylak, 2013, Gofron, 2013). 
GOALS, ORGANIZATION, METHODOLOGY AND TOOLS 
In his intellectual development model, Piaget determined that over 12 years of 
age most students are already thinking at an early level of formal operations. 
However, from British research conducted in the seventies, on a sample of 
around 10,000 students aged 14, it turned out that the vast majority of them, 
about 80% did not reach this level yet (Shayer, Kuchemann, Wylam, 1976). 
There is a need to check the current state and level of reasoning used by Polish 
students aged around 14. Professor Edyta Gruszczyk-Kolczyńska, who for many 
years has been studying mathematically gifted children and those with specific 
difficulties in learning mathematics, writes in her books that one of the potential 
causes of Polish children’s difficulties in the creative development of 
mathematics may be the shift in the age in which we begin to think with the use 
of formal operations, the author of the article is not familiar with research in 
which in recent years a discussion on this subject would have been undertaken 
in Poland (Gruszczyk-Kolczyńska, 1992, Gruszczyk-Kolczyńska, 2012). The 
author of this work has undertaken to examine the manifestations of formal 
reasoning that characterize Polish students. 
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The aim of the research was, among others, to check whether in the process of 
solving mathematical problems students: 

 logically use symbols in relation to abstract concepts, 

 they reason hypothetically and deductively, 
 think about abstract objects, or do they perceive and do things? 

The aim of the research was, among others, to check whether in the process of 
solving mathematical problems students: 

 logically are using symbols in relation to abstract concepts, 
 they reason hypothetically and deductively, 

 think about abstract objects, or do they perceive and do things? 
The article will present the results of some pilot studies. They were conducted in 
two rounds in 2017 on a group of 100 students from one of the Poznań 
gymnasiums (these studies were part of the research carried out for the diploma 
thesis of Mrs. Monika Drgas, prepared under the direction of the author of the 
article). The second part of the research was carried out in 2018 on a group of 27 
students from two classes 7 from one of the primary schools in Poznań.
The research tool in the first round of tests consisted of three tasks, all of them 
come from a textbook for class 1, Gdańskie Wydawnictwo Oświatowe. The goal 
of each of these tasks was to run students' reasoning to check or justify a certain 
mathematical regularity or fact. 
The tool used in the second stage of the study consisted of 6 tasks, all geometric 
ones, two of the tasks from the first stage were used in the second study and they 
will be analysed in this article. The students had exactly 45 minutes to solve the 
tasks in both the first and the second stage. 
Examples  
Task 1 
Points A, B and C divide the circle with centre O into three equal parts. Justify 
that the triangles ABO and BCO are congruent. 

Task 2 
Check what part of the rectangle’s field is shaded field of the figure.
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The first task was to, among other things, check whether students know the 
concept of congruent triangles. For the correctness of the solution, it was 
important to choose the appropriate congruence feature and justification for the 
choice made. The second task forced the student to analyse the conditions of the 
task, and then by reasoning in accordance with the state of knowledge available 
to answer the question. 
As you can see in both tasks, it was necessary to use a symbolic language of 
mathematics for rational use of knowledge and launching hypothetical-deductive 
reasoning in order to obtain a full and correct solution. 
Analysis of task 1 solutions 
Round 1 
During the first round of the pilot study, the content of the task was devoid of 
a drawing, which was attached in the second part. Over 60 works contained only 
a drawing, which was not always executed correctly, did not reflect the data 
conditions in the task. In 20 works there were no solutions. 15 students did not 
remember what triangles we call congruent, and 35 did not have an idea how to 
show it. Two students did not see the point of showing something that is 
obvious. 
Below is a table with a quantitative description of the features that support 
launching formal reasoning.  
Data in the table concerns 18 works, only those attempts have been made to 
solve the task. 

Feature

logically 
use

symbols

they reason 
hypothetically and 

deductively

think about abstract objects / 
perceive / perform activities

Amount 
of 

students

13 - yes

5 - no

8 - no

5 - manifestations

5 - yes

9 - abstraction

6 - perceive

3 - perform activities

Table 1: Features of formal reasoning_task 1_ junior high school students 
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Example 1 

Figure 1 

This reasoning is correct. It is true that there is no commentary supplementing 
the full process of deduction, no indication of the moment of using the 
assumptions of the task, but the student showed that she has knowledge and can 
use it correctly. The mathematical symbols were used in the right way, the 
record shows the deductive path of reasoning. What is more, a person concludes 
on the basis of abstract knowledge about mathematical concepts, perhaps it is 
supported by insights, although the drawing is made in such a way that it is 
difficult to deduce specific regularities from it. 
Example 2 

Figure 2 

The student mistakenly equated the equality of the triangle fields with their 
congruention. He decided that the radius is equal to the height of the triangles 
analysed in the task. The student did not need to make an auxiliary drawing. 
Reasoning detached from the concrete, but incorrect and the knowledge used in 
a wrong way, the lack of manifestations of reflection on their own work and the 
belief that this is a well thought-out deduction. 
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Round 2 
10 out of 27 works do not contain a solution to this task. The remaining 
solutions are only an attempt to indicate in the figure some perceived 
regularities, the lack of a full and correct solution, which is confirmed by the 
data contained in the table below. 

Feature

logically 
use

symbols

they reason 
hypothetically and 

deductively

think about abstract objects / 
perceive / perform activities

Amount 
of 

students

6 - yes

11 - no

12 - no

5 - manifestations

2 - abstraction

10- perceive

5 - perform activities

Table 2: Features of formal reasoning_task 1_ pupils of grade 7. 

Example 3 

Figure 31

The student drew two triangles, described them incorrectly using the uppercase 
letters used to mark the points indicated on the circle to indicate the length of the 
sides. The student marked it manually, without indicating the angle of the simple 
height of the data of the triangles, and then after measuring all the lengths 
necessary to calculate the triangles, he obtained the obtained quantities to the
formula. The reasoning is not detached from the concrete, moreover, the student 
does not use the regularity and facts observed in the drawing, but only performs 
the measure of length. Congruation justifies incorrectly because of  equality of 
fields. 

1 Translation of the text from the solution: I drew two triangles, the first ABO, the Second BCO. After 
measuring, it can be stated that the triangles are congruent that they are the same.
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Analysis of the task number 1  
From the analysed solutions, it appears that students: 

 they conclude, but most often based on some insights (from the figure), 
 they conclude, but the facts based on which they carry out their reasoning 

are not always correct mathematical knowledge, they are not always 
knowledge about the analysed situation, 

 students do not need to proof the regularities observed in the drawing, 
 students incorrectly conclude, 
 they mostly do not reason with deduction. 

Analysis of task solutions 2 
Round 1 
Junior high school students correctly commented on their solutions. More than 
half of the students noticed that the area of the shaded figure is half of the area 
of the rectangle, but they could not justify it.  
The data from the table 3 confirm the above thesis. 

Feature
logically 

use
symbols

they reason 
hypothetically and 

deductively

think about abstract objects / 
perceive / perform activities

Amount 
of 

students

5 - yes
7 - no

4 - no
6 - manifestations

2 -yes

3 – abstraction
9 - perceive

Table 3: Features of formal reasoning_task 2_ junior high school students. 

Example 4 

Figure 42

The student introduces additional divisions in the drawing, thus obtaining four 
rectangles divided by their diagonals. It introduces markings that are surely 

                                                
2 Translation of the text from the solution: The area of the shaded figure is half of the rectangle.
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related to the fields of the resulting triangles. The idea is correct, the lack of a 
comment showing the applied reasoning allows to presume that the lack of 
detachment from the concrete given in the drawing, enforces inference based on 
observations, although the student may draw from knowledge that he cannot 
write neither verbatim nor symbolic. 
Example 5 

Figure 53

The student using the notation similar to the film tries to show the "shifting" of 
the hatched triangle in such a way that the initial rectangle can be transformed 
into a parallelogram. There are no essential assumptions for the entire reasoning 
process that authorize such conduct. The attempt to prove the fact is based on 
specific activities and observations, and this certainly does not testify to formal 
reasoning. 
Round 2 
Out of 27 participating in the study, only 11 students attempted to solve the task, 
not every one of them answered the question posed in the task, and those who 
gave it correctly. Most of the students did not carry out correct and full 
reasoning, certainly they were not formal reasoning, students were not able to 
use symbolic language, the conclusions were based on intuition, often correct 
but not supported by knowledge, and about specific activities, ie measuring the 
length of line segments and indicating certain facts or approximate values. 

Feature
logically 

use
symbols

they reason 
hypothetically and 

deductively

think about abstract objects / 
perceive / perform activities

Amount 
of 

students

9 - yes
2 - no

7 - no
4 - manifestations

1 – abstraction
1 - perceive

10 - perform activities

Table 4: Features of formal reasoning_task 2_ pupils of grade 7. 

3 Translation of the text from the solution: The area of the shaded figure is equal 24of field of  the rectangle.
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Example 6 

Figure 64

The student introduces his own markings, which are to be field sizes, but it is 
not obvious why this is the case, the student introduces some assumptions 
himself and does not explain this step. In addition, the facts observed are 
completely false. The student combines a symbolic record with the text, tying it 
with the sign of equality. He puts the correct hypothesis, but based on false 
premises. 
Analysis of the task number 2 
From the analysed solutions, it appears that students: 

 most of them gave the correct answer, 

 the answer in the vast majority was not the result of formal / abstract 
reasoning, 

 their response was due to the perception of certain regularities that they 
saw in the drawing, 

 their response was often a consequence of specific actions performed with 
the use of a ruler, the sides of figure were measured and although the 
results were often different, the correct answer was given, 

 pupils do not need to justify their statements, 

 students incorrectly conclude, 

 students do not apply the rules of deductive reasoning, 

                                                
4 Translation of the text from the solution: (𝑥𝑥 𝑥 𝑥𝑥) 𝑥 (𝑦𝑦 𝑥 1

2 𝑦𝑦 𝑥 1
2 𝑦𝑦𝑦 𝑦 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦. The shaded area 

is half of the rectangle, because 1 non-shaded triangle is divided into 2 parts after assembly are 2 shaded and 2 
shaded.
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 students  cannot tear their reasoning away from the concrete given in the 
drawing, 

 their intuitions are often correct, but students cannot tear themselves away 
from them to launch formal reasoning. 

SUMMARY 
The article presents preliminary results and conclusions from a pilot study aimed 
at describing the readiness of Polish students at the age of 14 to use in the 
process of solving mathematical tasks of formal operations, which according to 
the theory of Jean Piaget's intellectual development after the age of 12 should 
already have their place in the pupil's mathematical thinking. Initial conclusions 
are unambiguous, the vast majority of students are not ready to reason with 
deduction in detachment from the facts, in isolation from imaginary operations 
and concrete actions. Pilot studies5 were divided into two stages, in the first 
there were 3 tasks of type of evidence, the solution of which turned out to be an 
easy task for most students, but the correction of the tools and equipping them 
with a set of tasks to level the difficulty of knowledge and skills needed to solve 
the task did not bring no positive changes in the test results. Before the author of 
the work, the proper research and an attempt to answer a series of additional 
questions about the reasons for this state of affairs in Polish education. 
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GENERALIZING ALGEBRAIC MODELS THROUGH 
INTERACTIVE LEARNING ACTIVITIES

Ivona Grzegorczyk 
California State University Channel Island, USA  

We report on hands-on interactive activities that require building algebraic 
models and their generalizations. We analyse the performance by three groups 
of learners: teenagers, pre-service teachers and in-service teachers and change 
in their attitudes towards the unfamiliar situations and modelling uncertainty to 
routine lecture based teaching. 
INTRODUCTION  
This study is a part of a larger project focused on designing and assessing 
learning activities leading from basic to advanced levels of critical and 
analytical thinking that promote mathematical modeling, engagement, 
excitement, discussions and students’ creativity. The three activities described 
here targeted early algebra curricular experiences including modeling, 
predictions, development of strategies, analysis of patterns and generalizations 
to other contexts. Initial engaging problems for each session included simple 
algebra based tricks or games, that through explorations, discussions and 
predictions, lead to formalization of the models and their further generalizations. 
Participants discussed the process of creating new structures and ideas, focused 
on making connections and attempting different solutions that were evaluated 
for their creative approach. Following Savic and associates (2017), we defined 
creativity as a process of offering new solutions or insights that are unexpected 
for the learner, with respect to his/her mathematics background or the problems 
s/he has seen before, as well as discoveries made within a specific reference 
group that creates something new (Vygotsky, 2016).
Problem solving and creative thinking are necessary for a professional success 
in a fast-passed technology intensive global setting of 21st century. At every 
level of mathematics education, there have been criticisms about the excessive 
amount of structure imposed on learners, especially at the K–12 level, where 
students are rarely encouraged to solve open-ended problems, think creatively or 
pose their own questions. Already in 1989, the National Council of Teachers of 
Mathematics addressed the need for standards that include modeling, creativity 
and independent thinking, but nearly two decades later situation in American 
schools is not much better, as mathematics education still concentrates on basic 
skills and traditional problem solving (Schoenfeld, 1992). Additionally, the 
worldwide emphasis on high-stakes testing brought basic skills back to the 
center of attention (Lesh & Sriraman, 2005).  While for a long time Polya style 
problem-solving strategies (draw a picture, identify the givens, work backwards,
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solve similar problems) have been advocated as important abilities for students 
to develop their mathematical maturity (Polya, 1957), they are not leading 
pedagogy in our schools (Chazan, 2008; Drew, 2011).
Contemporary students live through many stimuli in their lives, and they prefer 
innovative rather than traditional pedagogy (Star et al, 2008), learning with 
multiple representations (Ainsworth, 2006), through hands-on activities (Cruse, 
2012) that are related to their interests (Whaley, 2012), in an engaging, playful 
environment (Kuh, 2003). Hence, to make mathematics learning more attractive 
and interactive our motivation was to get learners involved in unpredictable 
realistic situations to promote concept development and understanding. The 
activities that we developed promote curiosity, explorations and creation of 
algebraic models, logical thinking through pattern recognition and proposing 
definitions for underlying rules, development of various representations, 
extensions and modifications as well as verbalizations of the thinking. Algebraic 
concepts are now introduced early in the curriculum (Stephens et al, 2015), but 
test results show that even high school seniors have problems understanding 
algebraic ideas (Kuh, 2003). Learning hands-on activities (like puzzles, games, 
art projects, poems) bring fun back to the classroom and provide a new way of 
teaching that mixes context, explorations, and applications and brings new 
interdisciplinary connections to the abstract curriculum (Jones, 2016, Kurz, 
2017, Stylianou et al. 2005, Whaley, 2012). Recently, there have been some 
efforts in various states of systematically implementing new pedagogical 
strategies (such as inquiry-based learning or problem-based learning) to improve 
students’ skills that are related to mathematical modeling and creativity.
 However, such efforts are generally not included at the university level, even in 
mathematics education for future teachers, (Karakok et al., 2015). 
METHODOLOGY  
Our research goal was to evaluate participants’ ability to generate new problems, 
to recognize patterns and to build related mathematical models, which required 
defining many variables. Additionally, we administered pre- and post- survey 
asking about preferred learning activities to assess the change of attitudes 
towards unfamiliar problems and generalizations for three different groups: 12 
summer school pupils aged 13-14 (we denote this group P), 20 pre-service high 
school mathematics teachers who were university students (group S), 24 in-
service mathematics teachers (T).  The groups were very different in terms of 
preparation and maturity, however they turned out to be similar in terms of their 
expectations about of teaching methods in a mathematics classroom. The pre-
survey administered before the activities had the two questions stated below, 
while the post-survey had the question 2 only and requested comments.  

1. Evaluate your knowledge of high school level algebra. 
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Learner (pre-algera) Proficient (passed algebra) Expert (applied/taught algebra)
2. Circle all teaching activities that you prefer in mathematics classroom.  

Lecture    Reading Math Text  Watching Math Videos 

Solving of Problems on Board  Graphing  Individual Problem Solving 

Group Work    Discussions  Asking Questions  

Using Manipulatives  Guessing Answers Games  Using Technology 

Generalizing Patterns  Creating Problems  Modelling 

Note that the activities above are grouped by level of engagement and creativity. 
We assigned scores 1-5 for each level (i.e. Lecture- score one, Modeling-score 
5) and analyzed answers for each group (see Results).  
During the study each one-hour activity was repeated with the three groups with 
reported different preparedness levels (see Table 1) with the same lead instructor 
and 2-3 assisting instructors. Each session started with a magic trick or a simple 
game, which was discussed to uncover underlying patterns, rules and/or optimal 
strategies to be modeled in algebraic language. Small teams implemented 
modifications and/or generalizations to the model and presented them to the 
others. Then participants designed their own patterns creatively; hence variety 
and complexity were added to individualized patterns, which were later 
modeled. Further discussions and explorations led to even more generalized 
problems, which often were formalized as formulas that included several 
different variables. Most of the hands–on tasks were done individually or in 
small teams/pairs and shared with the group for comparison and discussions. 
Some of the participants were openly frustrated at first when asked to work in 
unfamiliar contexts and with initially undefined variables. While the activities 
proved to be quite challenging, learners were fruitfully engaged at trying to 
design the models through logic and reasoning. 
Description of the activities
Magic tricks with dice activity starts by building various towers consisting of 
two dice. The instructor performs magic by guessing the sum of the hidden faces 
on each tower. By discussion, participants figure out how the trick works and 
model the situation using the equation, 14-x, where the variable x represents the 
number at the top of the tower. Next, they build towers with three dice and try to 
figure out how to guess the sum, 21-x. Then they use four and five dice, 
described by 28-x and 35-x. Now they study taller towers and the arising the 
patterns to come up with the linear algebraic formula depending on the number 
of dice and the number on the top of the tower modeling the situation by the 
equation with two variables, 7n-x, where n is the number of dice. 
Next, students put two, then three, then four dice in a row touching each other 
by one side (a tower lying down), where more sides are invisible than in 
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previous situation. At each level, they try to figure out the formula for guessing 
the sides that cannot be seen. After discussing, they come up with the general 
formula depending on the number of dice n and the sum of the visible faces, 
which is unexpected, as it introduces several variables, sequence summations 
and generalizations.  
In the exploration part, participants create their own designs using increased 
number of dice and trying to relate the geometric and numerical patterns. Then 
they are expected to choose their own variables and generate algebraic models 
for the sums of the hidden faces or for other generalized questions.
Guess my number activity starts with each student picking its own secret 
natural number and then following a set of algebraic operations given by the 
instructor. Students share the results of their final calculations, and the instructor 
guesses their individual secret numbers (using the simplified formula). Through 
discussions, students try to figure out the underlying rules and use algebra to 
make computational shortcuts. The activity can be repeated several times with 
different instructions. Once the group understands the underlying algebraic 
models, they design their own guessing games by creating new sets of rules and 
calculating the answers algebraically. They play out their scenarios in small 
groups. Note that the underlying equations could be linear, quadratic or of any 
complexity. 
Guess my graph game involves graphing activities and is similar to the 
traditional battlefield game played in pairs. To start, on the 4 by 4 square in the 
first quadrant of the coordinate system each player secretly draws a line of his or 
her choice that has equation with integer coefficients only. Taking turns, they try 
to ‘hit’ each other’s lines by ‘throwing’ points with integer coordinates. In each 
round, they get the information about the point being ‘above’, ‘below’ or ‘on’ 
the line. To win, a player needs to give the equation of his or her opponent's line. 
Parabolas (or other algebraic curves) can be used for more advanced students. 
Discussion that follows introduces various strategies and the minimal number of 
points on the linear or quadratic graph needed to uniquely identify it. At the end 
of the activity instructor’s Guess my Parabola trick contradicts the usual belief 
that you always need three points to define a parabola. The instructor-magician 
can guess your parabola if you provide one point that lies on it. The underlying 
concepts involve a bit more advanced, but accessible mathematics. 
Note the above activities promote curiosity and participation, address students’ 
different learning styles, by providing visual, auditory, kinesthetic and language-
based tasks. They promote discussions, conjecturing and collaborations as well 
as creativity, problem posing and solving. Students can be divided into groups of 
various sizes, depending on the number and the level of participants.
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RESULTS  
We collected all participants work and structured instructors observations for 
data analysis from all three groups: pupils (P), pre-service teachers (S), in-
service teachers (T), as well as data coming from surveys and evaluation of 
participants’ performance on tasks. Note that knowledge and competency in 
introductory algebra (Algebra Levels in Table 1) were self-reported by 
participants on the survey question 1 and the answers turned out to be quite 
homogenous across each group as expected (see Table 1). Engagement in 
activities for each group was ranked based on reports from instructors. During 
each modelling activity participants worked in pairs or teams of three. The 
generalized more complex models and their creativity were evaluated by the 
instructors based on the following scale: 

Model is a direct generalization of the introductory model (Low)
Model introduces some new ideas into the generalized model (Moderate) 
Model introduces creative/unexpected ideas to generalized model (High)

For example, in dice activity, the generalized model involving building another 
simple dice tower was considered as low creativity, designing a simple 2D or 3D 
pattern with dice and working out the algebraic formula was marked as 
moderate, while proposing interesting geometric 2D or 3D patterns generating 
interesting formulas (possibly with parameters) was considered as highly 
creative.    

Modelling  
Dice Sample Size Algebra Level Engagement      Creativity

P = Pupils 12      Learners High               Moderate

S - students

T- Teachers

20       Proficient

24           Expert

High               High

Moderate        High

Total 56

Table 1: Participants engagement and creativity by groups.  

It is worth noticing that all groups were engaged in the activity at least 
moderately, each group provided generalized models, and participants more 
proficient in algebra provided more sophisticated and creative models. 
The following results for each activity are based on participants’ individual 
written work and coded observations of the instructors. In dice activity, the 2-
dice model was generalized to the 3-dice model and to the n-dice model by 
teamwork and the instructor lead discussions.
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Modelling  
Dice 2-dice model     n-dice model

Generalized    Mastered 
Model                   Gen. 

Model

P = Pupils 100%            92% 75%                 50%

S - students

T- Teachers

100%           100%

100%           100%

90%                 75%

92%                 80%

Table 2: Dice activity.

Almost all participants mastered and were able to use the n-dice model for 
different numbers of dice. Large percentage in each group was able to generalize 
the model in some way and solve the related specific problem (note that pupils’ 
models were less sophisticated than models for the other two groups).  Over 
three quarters of students and teachers were able to provide the accurate 
algebraic formulas (Mastered the Model) and discuss the parameters involved. 
The initial Guess My Number activity involved the entire group and the 
underlying linear model was uncovered by discussions. Then small teams 
designed their own guessing tricks. Table 3 shows the complexity of the models, 
where underlying formula such as (2x+6)/2 -2 was considered simple, (x+1)2-2x
was classified as the use of quadratic functions. Mastering the model meant that 
students were able to simplify the algebra of their formulas to create a quick 
answer for guessing the original number x. Some of the models used more than 
5 steps. 

Modelling Simple algebra          
Quadratic

Created model       
Mastered

P = Pupils 92%                 50% 92%                33%

S - students

T- Teachers

90%                 90%

100%                92%

100%               80%

100%               92%

Table 3: Algebra use in Guess My Number activity. 

During the initial graphing activity participants worked in pairs trying to figure 
out each other’s line. Some of them asked about random points, while others 
were able to describe their strategy (such as finding two points on the line to 
figure out the equation). Then they were designing new games involving lines 
and parabolas (at least 3 points to define the graph). If they were able to explain 
their games and related strategies for finding the secret graphs, they mastered 
the methodology of finding equations for lines and parabolas. 
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Strategies Linear strategy    General 
Linear

Quadratic Model    
Mastered

P = Pupils 75%                   50% 50%                  50%

S – students 90%                  80% 80%                  75%

T- Teachers 90%                  90% 90%                  75%

Table 4: Strategies in Guess my Graph activity. 

50% of the pupils had problems finding lines (and parabolas) using coordinates 
of two (three respectively) given points. 25% of students and teachers had 
similar problems, even though the vast majority of them understood the 
strategies for quadratic models. The most common technical problem in this 
case was setting up and solving appropriate systems of linear equations. 
The above data shows that all participants were able to generalize and then 
model unfamiliar problems with some support from the instructors. To evaluate 
participants’ attitudes toward various learning activities we evaluated data 
collected on question 2 from pre- and post- surveys preferences as stated in 
Methodology.  Every activity chosen on any level was assigned appropriate 
score between 1 and 5 and the scores were than averaged for each participant 
and then each group.  Interestingly, the scores on the pre-survey did not differ 
much per group (the mean score for P was 2.1, the mean for S was 2.3 and the 
mean for T was 2.5) as level 4 and 5 activities were rarely selected  (and no one 
selected Guessing, Manipulatives or Creating Problems). The corresponding 
scores on the post-survey were significantly higher for each group (the mean 
score for P was 3.9, the mean for S was 3.8 and the mean for T was 3.7) and 
majority of participants included as preferred the level 5 unfamiliar situations 
and modelling uncertainty (86%) and only 52% included routine lecture based 
teaching in their preferred group (and that included 88% of teachers, and only 
one student). In comments several participants suggested including songs, 
poems and kinaesthetic activities in question 2.  
Some interesting comments. Below we quote some of the comments on the 
activities and the learning process from post- surveys. Teenagers were engaged 
and came up with creative generalized models, but were generally were worried 
that their math skills are not good enough to analyse them. 

Pupil 1: I liked how algebra is magic. I designed my own trick that is hard to solve.
Pupil 2: My design is complicated. I had to use n, m, l, k to make the correct 
formula to find the totals. But it worked.  
Pupil 3: How do I know we always need n+1 points to find a graph of degree n?
Maybe some of them need more or less? Like xn+ c = y.
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The comment of Pupil 3 refers to finding coefficients of the general equation of 
a polynomial of degree n. This is an interesting abstract question, shows his 
higher level thinking skills. 
In general, pre-service teachers were more confident about the algebraic models, 
and enjoyed the analysis of patterns. Many comments referred to the satisfaction 
of being able to handle a complicated situation they have created. 

Student S1: The magic part was really fun and I was trying to figure out something 
all the time. I never though I can come up an interesting complicated formulas by 
myself, but I did. 
Student S2:  I want to continue on more complicated dice patterns in 3D. Then I 
will find a pattern for patterns. Generalizing is fun! I wish my math courses were 
taught that way, more interactive. 
Student S3: Talking about strategies was interesting. I liked debating the ideas 
freely. For the first time I looked at math as a game. But staff can get too 
complicated. 

The teachers were the most reflective group, commented about the teaching 
process, and pointed out some problems with classroom implementations.  

Teacher T1: These activities were involving and innovative. They taught me how to 
generalize problems. We can get students to make connections and think 
algebraically on their own. Some of the tricks were hard and require some 
preparation.  
Teacher T2: I can do these simple dice models with my students. I’m worried about 
their generalizations, as they may come up with something too difficult for their 
level.
Teacher T3: I never thought to ask my students to be creative. I want to try these 
activities with my algebra students, probably the simpler cases only. I don’t want to 
confuse them with complex equations. 

Over all comments regarding the activities, discussions and the learning process 
were positive across the groups.  The initial tasks inspiring curiosity were liked 
the most, as was the task of designing generalized models. Participants showed 
perseverance analysing these models and expressed concerns about their own 
ability to formalize them in algebraic language.     
 While the activities proved to be quite challenging, learners were fruitfully 
engaged at trying to design the models through logic and reasoning. The 
activities supported teamwork, discussions and mathematical perseverance when 
challenged. Participants found them interesting, rewarding and supporting their 
growth and confidence. The group of pupils presented some of the activities as 
magic tricks to their teachers and parents, who gave them enthusiastic reviews. 



226 IVONA GRZEGORCZYK

CONCLUSION 
In order to support student thinking in algebra, it is important for students to 
experience critical thinking and original model building in various contexts. It is 
beneficial to them to struggle a bit and discuss the possible solutions before 
coming out with correct models.  They should have an opportunity to make 
sense of algebra as a tool for predictions and modeling patterns. Our study 
provided all these opportunities to learners as well as teachers and our 
assessment shows that all three groups at different developmental levels of 
introductory algebra engaged fully into the proposed activities, discussions, 
modeling processes and generalizations. They stayed focused throughout the 
sessions, and came up with creative solutions that required perseverance and 
advanced thinking to analyze. Almost all participants showed their potential for 
generalizations using multiple representations. They performed well when 
exposed to the uncertainty and the difficulty of creating mathematics. Teacher’s 
comments indicate the suitability of the activities for regular classrooms (with 
appropriate preparation) and suggestions that may change their teaching styles to 
include more open-ended and creative problems. Hence, there is a need for 
further training of teachers applying levels 4 and 5 activities in their classrooms, 
as well as further development and testing of interactive learning activities for 
other topics in mathematics that use variety of tools (such as manipulatives, 
technology, games, art and science concepts, etc.).  Hopefully, this pedagogy 
supporting students’ engagement and creativity will become more common and 
schools will educate more creative, open minded and thoughtful students that 
can meet future demands of the society.
Interestingly, majority of two older groups tried to come up with ‘nice’ 
formulas, paying attentions to aesthetic, i.e. beauty of the mathematical models. 
Some of the participants’ comments suggest that they would like to learn more 
about their own cognition and the regulation of the creative processes. These 
suggest that we should study not only learners’ creative actions, but also their 
meta-cognitive skills. 
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This paper presents a mixed methods study whose objective was to learn how 
pre-service elementary school teachers understand and interpret the concept 
‘dimension’. The research sample consisted of 132 pre-service mathematics 
teachers who enrolled in an asynchronous online course entitled “When 
Mathematics Meets Art”. The preliminary results suggest that research 
participants have insufficient prior knowledge about dimension; the majority of 
them have misconceptions about dimension, which have at least two origins: 
prior concept image and the linguistic meaning of the word. In the case of 
dimension, artwork did not contribute to the understanding of the concept.
THEORETICAL FRAMEWORK 
The world we live in consists of complex shapes and forms. To understand it 
and live in it, we must be able to characterize it and to be able to describe 
different properties of natural phenomena correctly. One such characteristic is 
‘dimension’, a concept that we use practically on a daily basis. The concept of 
dimension is so ingrained in geometry that it is often used in schools and even in 
teacher training institutions without it being given a proper definition (Vitsas & 
Koleza, 2000). In textbooks, the word ‘dimension’ appears as a characteristic of 
a geometric object alongside examples of objects with different dimensions such 
as points (zero-dimension), lines (one-dimension), rectangles (two-dimension),
and cubes (three-dimension).
What is the definition of dimension and why it is not presented to learners? 
Selkirk (1990, p.170) presented a mathematical dictionary definition of 
dimension: “The number of measures needed to give the place of any point in 
a given space, the number of coordinates needed to define a point in it”. Morgan 
(2005) points out that one of the reasons that the definition of dimension is not 
presented to learners is its ambiguity: the nature of the ‘given space’ is left open. 
However, she claims that “this is not a weakness in the definition but 
a characteristic of the mathematical concept itself” (p. 104). This conclusion 
contradicts the notion that mathematical language must always attempt to be 
defined precisely so that there is no “possibility of more than one interpretation 
for a mathematical expression arising from sloppy use of language rather than 
any uncertainty in the mathematical ideas” (Barwell, 2005, p. 118). Having this 
in mind, for the purpose of this paper, I based on the topological definition of 
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dimension as the number of directions in which an object can expand 
(Skordoulis, Vitsas, Dafermos, & Koleza, 2009).
Several studies focused on the way students, pre-service teachers, and in-service 
teachers understand dimension in the context of Euclidean geometry. It was 
found that not all teachers could correctly determine the dimensions of known 
objects, and about half of them named a criterion according to which they 
determined the dimension, but were usually inconsistent in applying it (Ural, 
2014; Vitsas & Koleza, 2000). Skordoulis and his colleagues (2009) suggested 
that the difficulty of determining the object’s dimension stems from both a lack 
of clarity regarding the use of the concept in school and the confusion created 
when the geometrical object is placed in a Cartesian coordinate system. 
However, none of these studies examines what is the concept image of 
dimension that researches’ participants have. The concept image can uncover 
learners’ misconceptions. Tall and Vinner (1981, p. 151) define concept image 
as:

The total cognitive structure that is associated with the concept, which includes all 
the mental pictures and associated properties and processes. It is built up over the 
years through experiences of all kinds, changing as the individual meets new stimuli 
and matures.  

The literature review indicates that dimension is important concept and helps us 
understand the nature, yet it is not taught in an organized manner on any level, 
neither in pre-academic programs nor in teacher training colleges. Studies that 
examined the knowledge of pre-service and in-service teachers indicate that 
most of teachers have insufficient mathematical knowledge about dimension in
Euclidian geometry. Therefore, it was decided to submit activities that deal with 
dimension as one of the topics in the asynchronous online course “When 
Mathematics Meets Art”, offered by the Gordon Academic College of Education 
in Israel. The course was designed to implement the principles of STEAM 
(Science, Technology, Engineering, Art and Mathematics) education, and in this 
case, artwork that emphasizes mathematical concepts was included in the course 
curriculum. This approach was chosen to enable pre-service teachers to 
experience interdisciplinary learning, which is considered more suitable for the 
21st century (e.g. Okbay, 2013; Thuneberg, Salmi, & Fenyvesi, 2017).
CONTEXT OF THE STUDY AND METHODOLOGY 
The preliminary results of the student learning outcomes from the course “When 
Mathematics Meets Art” suggest a positive and significant partial overlap
between mathematics and art regarding topics such as zero and infinity (in the 
context of calculating area and perimeters), the golden section, and spatial vision 
(focusing on impossible shapes), which is innovative, intriguing, fun, and 
inspiring (Nutov, 2018). However, in the case of dimension, there were no 
correlations between the artwork and the above-mentioned mathematical
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concepts and so I decided to analyse pre-service teachers’ learning outcomes 
regarding dimension as a case study. The purpose of the study was to learn 
how pre-service teachers understand and interpret dimension.
The research questions were:
(a) How do pre-service teachers understand and interpret dimension?  
(b) Does artwork contribute to the pre-service teachers’ understanding of 

dimension?
The research method 
Of all the mixed methods research strategies, the explanatory design research 
was deemed most suitable (Creswell & Plano Clark, 2007). The first phase of 
the research consisted of the collection and analysis of quantitative data. The 
second phase included the interpretation of the quantitative data using the 
qualitative data. In this way, the advantages of both research paradigms are 
exploited: A quantitative method enables to examine the relationship between 
variables, while the qualitative method provides the participants' interpretation 
of the quantitative findings.
The research environment
The course “When Mathematics Meets Art” was offered for the first time in the 
fall of 2017 by the Gordon Academic Educational College, Israel for pre-service 
elementary school teachers majoring in mathematics. A total of 132 pre-service 
teachers participated in the semester-long (14 weeks), asynchronous online 
course. The objectives of the course were to expand the pre-service teachers’
mathematical knowledge, to create a community of learners, and to apply 
mathematical concepts to art, daily life and natural occurrences. The course 
covered six mathematical topics presented in the following order: tessellations, 
zero and infinity (in calculating area and perimeter), the golden section, spatial 
vision (focusing on impossible figures), dimension, and self-similarity. These
six topics were selected using three criteria that relate to the elementary school 
curriculum: topics included in the curriculum (zero and infinity and spatial 
vision); concepts mentioned in the curriculum but not studied in depth 
(dimension and self-similarity); and concepts that are not part of the curriculum 
but are tightly coupled with both mathematics and art (tessellations and the 
golden section). 
The course was designed on the Moodle platform and consists of six units, one 
for each mathematical concept as indicated above. The following are the student 
requirements for each course unit: (1) Pre-service teachers must take part in 
a forum discussion or answer a survey. These tasks are designed to check the 
pre-service teachers’ prior knowledge (15% of final grade; pre-service teachers 
are graded for participation, not knowledge); (2) Pre-service teachers study the 
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mathematical concept theoretically using a specially prepared video, an article, 
or a PowerPoint presentation. They then apply their acquired knowledge by 
solving exercises or carrying out an inquiry task. Finally they check their 
knowledge by taking a short online test (test score is 20% of final grade); (3) 
Pre-service teachers contribute an artwork (which need not be original) to an 
online cooperative gallery (9% of final grade); (4) A final exam (56% of final 
grade). 
The mathematical content of the Dimension unit consists of a paper that explains 
the topological definition of dimension and presents the Hausdorff formula used 
to calculate it. The unit includes exercises that implement these definitions. Pre-
service teachers were encouraged to watch movies such as “La Linea” that was 
created by Osvaldo Cavandoli and “Flatland” that is based on the book of Edwin 
Abbot.
The research tools
Prior knowledge online survey – consisted of open-ended questions: How 
would you explain to your students what dimension is? What is the dimension 
of a circle, a circle perimeter, a pyramid apex, a pyramid edge, the surface of 
a sphere, and a room? (Table 1). What are origins of your knowledge?  
Online tests – consisted of multiple choice questions which applied the 
definition of dimension to Euclidean objects (point, curve, surface, and 
space), the Hausdorff formula to calculating the dimensions of Euclidean 
objects and to estimating the dimensions of fractals (for example, the 
dimension of the snowflake curve that is between 1 and 2). The pre-service 
teachers had two attempts to answer the questions. The tests were graded
automatically based on pre-determined criteria and the final test grade for each 
pre-service teacher was the higher of the two.
Collaborative gallery – the gallery consisted of the pre-service teachers’ art 
contributions. They could contribute an artwork, original or not original, with 
a short explanation of how dimension is expressed in it. Students could have 
commented on the contributions of their colleagues and indicate ‘like’. The 
Padlet (https://padlet.com) website was selected for the collaborative art gallery. 
All contributions were graded according to a published rubric. 
Data analysis 
The quantitative data were analysed statistically and an attempt was made to 
find a connection between the online mathematics test grades and the artwork 
grades. The qualitative data (prior knowledge) were analysed according to the 
Strauss-Corbin method (1990): first, each of the survey responses was analysed 
to identify primary and secondary themes. Next, links were identified between 
the different categories, and finally, an attempt was made to correlate the 
quantitative and qualitative results.
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RESULTS AND DISCUSSION 
The data analyses offered the following preliminary results: (a) pre-service 
teachers have insufficient prior knowledge regarding the concept of dimension; 
(b) the majority of research participants have misconceptions about the concept 
of dimension, which have at least two origins: prior concept image and the 
linguistic meaning of the word; (c) contribution of art to understanding the 
concept of dimension was not observed. Each of these results is discussed in 
what follows. 
Insufficient prior knowledge of pre-service teachers 
Table 1 presents analyses of the prior knowledge online survey. These results 
suggest that pre-service elementary school mathematics teachers have 
unsatisfactory knowledge of dimension. Even a simple question like “What is 
the dimension of a room?” produced only 55% of correct answers.

Question
No.

What is a dimension 
of… 

Correct
answer

Wrong 
answer

Didn’t 
answer

‘Creative’ 
answers

1 a circle 51.81% 27.27% 10% 10.9%
2 the perimeter of a 

circle
30.9% 45.45% 10.9% 12.72%

3 the apex of a pyramid 40.9% 40% 18.81% 7.2%
4 the edge of a pyramid  46.36% 27.27% 142.72

%
13.63%

5 the surface of a sphere 22.72% 53.63% 12.72% 10.9%
6 a room 55.45% 13.63% 10.9% 20%

Table 1: Prior knowledge survey results (N = 110)

Some of the pre-service teachers ‘creative’ answers to the question “How would 
you explain to your pre-service teachers what ‘dimension’ is?” demonstrated 
a total confusion regarding the frequently used concept. Here are some 
examples: “Dimension is a region that is defined as a specific area, sometimes 
abstract and sometimes real that can be seen and felt”. “Dimension is a ‘wide’ 
place that we can enter”. “A more sophisticated painting, which can be seen 
from different angles”. “Dimension is a space that occupies some form or an 
object, there are several indices and each of them sees it differently.” 
Misconceptions about the concept ‘dimension’
The data analysis reviles two possible roots of pre-service teachers’ 
misconceptions: the concept image of dimension and the linguistic meaning of 
the word ‘dimension’.
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Concept image of dimension: Some pre-service teachers stated that they would 
explain that: (a) Dimension is a measurement (length, width, height) (20 pre-
service teachers); (b) Dimension is a space or a surface (18 pre-service 
teachers). 
In the case of dimension, the concept image presented by the pre-service 
teachers, i.e. dimension as a measurement, is understandable. The pre-service 
teachers had never learned the proper definition and their knowledge is built 
upon examples of different objects. Objects that has only one dimension such as 
a line or a curve have only length; objects that have two dimensions –such as 
rectangles, that have both length and width and are related to a plane; and 
objects that, have three dimensions –such as cubes that have length, width, and 
height and are related to a space. In addition, in the case of the State of Israel, 
where this study was conducted, the online geometry dictionary available on the 
official site of the Ministry of Education contains no definition of dimension, yet 
offers the following definitions: “Length - a dimension connected with a straight
line”; “Space - a dimension connected to a plane”. These definitions are in line 
with the misconceptions of pre-service teachers observed. It seems that the lack 
of a clear and coherent definition contributes to pre-service teachers' confusion 
in the case of the concept image of dimension. 
Here are some examples of pre-service teachers’ answers. Dimension as 
a measurement: “Dimension is a numeric or a quantitative value that defines 
measurements of an object or a shape, such as length, width, height, or the 
quantity that this object can contain, such as volume or capacity.”
Dimension as a space or a surface: “Dimension is a number that describes 
a particular space”.
Linguistic meaning of the word “dimension”: Although “mathematical 
language appears to be identified with its vocabulary” (Morgan, 2005, p. 103), 
many mathematical concepts are, at the same time, used in everyday language in 
which the meaning of the word is different from its mathematical meaning. This 
situation creates ambiguity and can be a source of misconception. Data analysis 
reveals four different kinds of misconceptions related to the linguistic meaning 
of the word ‘dimension’ in Hebrew: (a) Dimension as size or weight (4 pre-
service teachers); (b) Dimension as an axis in space (5 pre-service teachers); (c) 
Dimension as a point of view (7 pre-service teachers); (d) Dimension as 
a protected space (2 students).
These explanations of the concept ‘dimension’ given by pre-service teachers can 
be based on the different meanings of the word ‘dimension’ found in a Hebrew 
dictionary. For example, to describe a large project, one can say “a big 
dimensional project”. 
Here are few examples for each misconception: (a) “Dimension is a concept that 
helps us to notice a certain size. For example, an elephant is huge - it is large 
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and heavy. Its size and weight are enormous.” (b) “A dimension is an axis in 
space that describes a volume. For example, when a person is said to be large in 
size.” (c) “Dimension describes my point of view, which directions I looked at”.
The most surprising misconception is the last one, (d), since it comprises two 
different misconceptions – one is connected to mathematics and another to 
Hebrew as a language. Protected space and dimension are written identically but 
are pronounced differently: protected space is pronounced “mamad” (and is in 
fact an abbreviation) while dimension is pronounced “meimad”. Here is an 
illustrative example: “I will explain that dimension is a place where we hid 
during the war”.
Contribution of art to understanding dimension
The preliminary research results indicate that in the case of dimension there is 
no connection between the pre-service teachers’ online math test grades and 
their artworks (r=0.061, sing. 1-tailed=0.247). However, a more in-depth 
examination of the data showed that pre-service teachers who uploaded original 
artwork to the art gallery did very well on the test. Unfortunately, only six, out 
of the 101 submitted artworks, were original (four of them are presented in 
Figure 1). Based on this data any conclusions cannot be make regarding the 
contribution of original artwork to the understanding of dimension. 

Figure 1: Some of original student art on  dimension 

It is interesting to note that all the artworks (original or not) which were 
uploaded to the art gallery, represented three-dimensional objects. However, 
there is not even one example of one-dimensional or zero-dimensional object, or 
fractals (which have a fractal dimension). That was although pre-service 
teachers had such examples in the theoretical material (films like La Linea and 
Flatland).  
CONCLUSIONS 
This research is part of a larger study whose objectives were to examine the 
possible contribution of art to pre-service teachers’ understanding of 
mathematical concepts and to identify the challenges of learning mathematics in 
combination with art via an online course. The preliminary results of the main 
study confirmed the hypothesis that there is a possible overlap between 
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mathematics and art, inspired by a mathematical concept. This overlap, or the 
math-art connection, can help pre-service teachers enhance their mathematical 
ability to solve a given assignment or to perform an inquiry task; it can also help 
them develop mathematical intuition, since art enables expression that is beyond 
words and numbers. However, the preliminary results of the present research do
not support this claim; on the contrary, they indicate that, in the case of 
dimension, there is no overlap between mathematics and art. This contradiction 
warrants an explanation and future research to explore the question: Do artworks
contribute to the understanding of any mathematical concept or only to those
mathematical concepts that are easy to draw or are not particularly abstract?
The study results show that dimension is an abstract mathematical concept with 
an ambiguous definition (Morgan, 2005) that, in most cases, is not previously 
taught in any curriculum (Skordoulis et al., 2009). There are at least two 
possible explanations for the almost zero correlation between the math test 
results and the artworks in the case of dimension.  
One explanation can be the challenge to understand the abstract nature of this 
concept: in the real-physical world, we can model only two types of objects - 
two-dimensional and three-dimensional; there are no zero-dimensional, one-
dimensional or fractal objects. When pre-service teachers were ask to present an 
artwork, their choice to represent three-dimensional objects seems natural 
because we live in a three-dimensional world. A representation of three-
dimensional object on a two-dimensional surface requires a deep understanding 
of the mathematical concept of dimension and good art skills (as opposed to 
concepts such as zero and infinity or tessellations).  
The second explanation can be the nature of the course. The course presented 
here was designed as an asynchronous online course, which means, that each 
student can complete the course tasks at a time that is convenient for her or him. 
This freedom made it impossible to identify the pre-service teachers’ 
misconceptions while they were studying the unit and to provide immediate, 
real-time response. It is very reasonable to suggest that when the mathematical 
concept is unclear the ability to express the knowledge through artwork is 
limited.  
I believe that the math-art connection holds great potential for math education, 
particularly at the elementary school level, although in the case of dimension the 
results did not support this claim. As a lecturer at an education college, I see it as 
my responsibility to expose pre-service teachers to STEAM as well as to online 
learning. In that spirit, my future plans are to complete the entire data analysis 
and to verify my preliminary results. In addition, I plan to organize an exhibition 
of the pre-service teachers’ original artwork and to study its impact on the entire 
Mathematics Department, including both pre-service teachers and staff. 
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The course “When Mathematics Meets Art” is a new online course and the 
research results indicate several directions for improving the course so that it 
meets student needs more precisely. The questions I will consider are: (a) What 
previous knowledge do pre-service teachers need so that no knowledge gaps 
exists and they feel confident of their knowledge and what are the best ways to 
provide it? (b) Preparing original student artwork versus analyzing professional 
artwork: which is more beneficial for student learning? (c) How can pre-service 
teachers be provided with richer experiences so that they are able to form a more 
coherent concept of dimension? (d) The inclusion of a synchronic lesson in each 
unit and an option of addressing questions pre-service teachers have after 
studying the theory and before taking the online test. 
Acknowledgements 
I like to thank Prof. Leehu Zysberg and the anonymous reviewer for their helpful 
remarks.

References 
Barwell, R. (2005). Ambiguity in the mathematics classroom. Language and 

Education, 19(2), 117-125. 
Creswell, J. W., & Plano Clark, V. L. (2007). Designing and conducting mixed 

methods research, 2nd edition. Thousand Oaks, CA: SAGE Publications, Inc. 
Morgan, C. (2005). Words, definitions and concepts in discourses of mathematics, 

teaching and learning. Language and Education, 19(2), 102-117. 
Nutov, L. (2018). When mathematics meets art: Does art contribute to the 

understanding of mathematical concepts? Bridges Conference Proceedings, Bridges 
Stockholm, Sweden, July 25–29. 

Okbay, U. E. (2013). Art in the middle school mathematics classroom: A case study 
exploring its effect on motivation. Unpublished Masters thesis. Ankara: Bilkent 
University.

Skordoulis, C., Vitsas, T., Dafermos, V., & Koleza, E. (2009). The system of 
coordinates as an obstacle in understanding the concept of dimension. International 
Journal of Science and Mathematics Education, 7(2), 253-272. 

Strauss, A. L., & Corbin, J. (1990). Basics of qualitative research: Grounded theory 
procedures and techniques. SAGE Publications, Inc. 

Tall, D., & Vinner, S. (1981). Concept image and concept definition in mathematics 
with particular reference to limits and continuity. Educational Studies in 
Mathematics, 12(2), 151-169.

Selkirk, K. (1990). Longman Mathematics Handbook. Harlow: Longman.
Thuneberg, H., Salmi, H., & Fenyvesi, K. (2017). Hands-on math and art exhibition 

promoting science attitudes and educational plans. Education Research 
International, 1-13. 



240 LIORA NUTOV

Ural, A. (2014). Mathematics teachers’ criteria of dimension. Educational Research 
and Reviews, 9(20), 885-892. 

Vitsas, T., & Koleza, E. (2000). Student’s misconceptions on the concept of 
dimension. 2nd Mediterranean Conference on Mathematics Education (pp. 108-
119). Nicosia, Cyprus: Cyprus Mathematic Society - Cyprus Pedagogical Institute.



 

PRE-SERVICE TEACHERS’ KNOWLEDGE ABOUT 
SHIFTING BETWEEN FUNCTION REPRESENTATIONS 

Ruti Segal*, Tikva Ovadiya**
*Oranim Academic College of Education & Shaanan Academic College of 

Education, Israel
**Oranim Academic College of Education & Jerusalem Academic College of 

Education, Israel

The current study examines the knowledge of pre-service teachers regarding the 
relations between different function representations as reflected in the way they 
solve various mathematical tasks requiring fluent transition between different 
function representations. By documenting their solution process and 
explanations, we examined their developing knowledge about function 
representations. The research participants comprised students at colleges of 
education studying to become high school mathematics teachers. The findings 
indicate that pre-service teachers lack the knowledge required to understand 
relationships between a function's changing values, its graphical representation 
and changes in its symbolic representation. By solving mathematics tasks, 
students expanded and enhanced their knowledge on this topic.
THEORETICAL BACKGROUND
Required knowledge for mathematics teachers 
Sullivan (2003) noted that as a result of the sharp increase in mathematical 
complexity in the transition from high school math to mathematics in academic 
institutions, some beginning teachers lack a profound understanding of concepts 
in the mathematics curriculum. On the other hand, teachers are expected to be 
aware of in-depth mathematical concepts required for teaching already at the 
initial stages of their career. In recent decades, mathematics education 
researchers have attempted to investigate and characterize the knowledge 
needed by mathematics teachers. Based on the different types of knowledge 
defined by Shulman (1986), Ball and Bass (2003) noted that the knowledge 
required for teaching mathematics is unique and constitutes a decisive factor in 
effective and high quality teaching. Hence, they defined the concept of 
mathematical knowledge for teaching (MKT) as knowledge that, among other 
things, traverses all areas and levels of school mathematics. This knowledge 
supports teachers' pedagogy knowledge and the mathematical knowledge 
required to solve, integrate and manage appropriate assignments in class. One of 
the components of MKT is defined as specialized content knowledge (SCK), 
which among other things includes mathematical knowledge and skills for 
teaching as well as the ability to use a variety of representations of mathematical 
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concepts and to connect between them (Ball, Thames & Phelps, 2008; Ball & 
Bass, 2003). 
Difficulties in learning different function representations 
There is a broad consensus among researchers in the field of mathematics 
education that the learning process entails solving mathematical tasks requiring 
flexibility and adaptation as well as the use of a variety of representations and 
shifting fluently between the various representations of the concepts involved in 
the task (Kilpatrick, Swafford & Findell, 2001; Heinze, Star & Verschaffel, 
2009). The ability to shift flexibly and continuously between different 
representations of a mathematical concept is a critical component of solving 
mathematics problems and provides learners with in-depth and broad knowledge 
of the concept (Duval, 2002; Kaput, 1989). Bieda and Nathan (2009) defined the 
concept of representational fluency as “the ability to work within and translate 
among representations” (p. 637). This central mathematical skill should be 
integrated into mathematical operations in the learning process in order to 
construct knowledge and understanding. Students' difficulties in shifting 
between representations are liable to emerge while describing or mapping the 
connections between an abstract or unfamiliar concept and a concrete or known 
concept (Glenberg, De Vega & Graesser, 2008; Nathan, 2008). These 
difficulties can be manifested in a lack of continuity in using different 
representations, and in the transition between representations, and are likely to 
fall into one of the three following categories:
a) physically grounded – when learners make limited use of graphs, and the 
information they represent, and view the graph as an invariable physical object.  
b) spatially grounded – when learners see the graph as a limited display. They 
can make physical changes in the graph by using a new criterion or extension, 
but they are not able to translate the information displayed in the graph into any 
sort of generalization.  
c) interpretatively grounded – when learners see continuity between the 
graphical representations supported by limited explanations, while preserving 
the link to the original form. (Bieda & Nathan, 2009) 
Mathematics teachers are required to have mathematical and pedagogical 
knowledge and skills, including the ability to process and translate transitions 
between different representations of mathematical concepts, and aware to 
students' difficulties, in order to initiate, organize and manage mathematical 
operations and tasks in the classroom environment with students. 
RESEARCH METHOD 
This study is based on the rationale that until a decade ago, the mathematics 
curriculum in both middle and secondary schools in our country did not include 
content and skills regarding shifting between symbolic and graphic function 
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representations. Ten years ago, the Ministry of Education issued a new middle-
school curriculum that taught this content and these skills by means of linear and 
quadratic functions. In secondary school, the content and skills were extended to 
other types of functions (polynomial, trigonometric, logarithmic), and included 
in the matriculation exams through questions whose solutions required 
understanding the transition between symbolic and graphic representations of 
functions. As a result, we assumed that some students who were unfamiliar with 
the new mathematics curriculum lacked knowledge and skills related to shifting 
between representations of functions. Hence, we decided to examine the subject 
in depth through the current study. 
The objective of the current research was to investigate the development of the 
knowledge of pre-service high school mathematics teachers about different 
representations of functions, particularly the transitions between symbolic and 
graphic representation as this topic emerges in problem solving. 
Research population 
The research participants included two groups of pre-service teachers 
comprising 17 bachelor’s degree students at colleges of education enrolled in 
a one-year course. 
Research questions 

1. What knowledge do pre-service teachers possess regarding symbolic and 
graphic function representations and the transitions between them, as 
manifested in their problem solving at the beginning of the research 
intervention? 

2. What characterizes the development of pre-service teachers' knowledge 
about symbolic and graphic function representations and the transitions 
between them? 

In this framework, we will address only the first research question 
Research instruments 
The research instruments comprised 13 mathematics problems whose solutions 
relied on familiarity with different function representations and the transitions 
between them. Some of the problems were taken from the underground 
mathematics website of Cambridge University in England. The tasks on this site 
were written for mathematics teachers to integrate in their teaching of advanced 
high school mathematics. We chose those tasks that were non-routine and 
unfamiliar, and whose solution is based on a meaningful understanding of the 
transition from graphic representation to symbolic representation of functions. 
The chosen tasks were formulated in accordance with the needs of the study. 
Some of the tasks were formulated and designed by the researchers. In cases 
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where we identified that students had a specific difficulty that needed to be 
overcome before they continued learning, we formulated a suitable task. The 
research tools included documentation of the discussions between the students 
and the whole-class discussions, observations of student work, and a researchers' 
diary that included documentation of the discussion between the students while 
solving the tasks and considerations that guided us in selecting, formulating and 
integrating the tasks. 
In the following sections we describe two examples of tasks assigned to the pre-
service teachers. The first task was assigned prior to the intervention program 
with the purpose of examining the students' knowledge on the topic: e.g., what 
do they know about the transition between symbolic representations and graphic 
representations, and how do they understand the changes in the graph and in the 
symbol representation of the functions? The second task was assigned to the 
students at the beginning of the intervention program, which in the first stage 
entailed become familiar with various symbolic representations of quadratic 
functions, sliding the quadratic function graph and understanding the connection 
between the symbol and the graph representation. Subsequently the intervention 
program was extended to other types of functions. 

Task 1 
Choose two of the transformations (transitions 
between symbolic representation and graphical 
representation) below and apply them in turn 
starting with the function f(x) (Figure 1). Sketch 
the resulting graph after you have applied one 
transformation and then the other. Does it 
matter in which order you apply the two 
transformations? Does the order matter for all pairs, some pairs or none of the 
pairs?  
The transformations: 1. Horizontal sliding of -2 units.  2. Vertical sliding of -4 units. 
3. Stretch by factor 3 parallel to x. 4. Contraction by factor  parallel to y.

Task 2 (designed by the researchers) 
The graph of the quadratic function f(x) follows 
(Figure 2):  
a. Find symbol representations that fit the 
graphical representation of f(x).
b. The graph of f(x) and other quadratic functions 
g(x), h(x), t(x) and k(x) are shown on the same 
Cartesian axis system (Figure 3). Based on the 
symbol representations you found for the 
quadratic function f(x), find appropriate symbol 
representations for the quadratic functions g(x),

2
1

Figure 1: Starting function

Figure 3: Quadratics functions

Figure 2: Quadratic function
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h(x), t(x) and k(x). Please explain your considerations in selecting the symbol 
representations for g(x), h(x), t(x) and k(x).

DATA ANALYSIS 
In the first stage, data were collected from the students’ process of solving the 
mathematical problems, including solution methods, reasoning methods, 
sketches and written explanations. In addition, we collected data from the 
documentation of the class discourse in the whole-class discussion and among 
the students. In the second stage we analysed the collected data while attempting 
to formulate categories reflecting the students’ knowledge as well as the 
difficulties that arose while solving the problem related to making a fluent 
transition between the representations. The categories referred to those outlined 
by Bidea and Nathan (2009). We documented and analysed the whole-class 
discussions and the discussions between the students during their work in class. 
We examined whether the categories matched the new data and made changes in 
the categories accordingly. 
FINDINGS 
Here we present partial findings based on the above-mentioned resources.  
While solving Task 1 the students were required to choose two of the four 
transformations that include transition between symbolic representations and 
graphic representation, apply them one after the other on the given function 
graph f(x), and present the resulting graph and symbolic representation after 
application of the two transformations. Table 1 summarizes the findings from 
the students' operations in Task 1 in accordance with the chosen 
transformations. The left-most column describes the chosen transformations, 
where the notation (x,y) indicates that transformation x was applied first, 
followed by transformation y. 

Chosen 
Trans

# of 
Students

Graphical 
Graphic Representation

Symbolic
Symbolic Representation

Trans 1
correct 
sketch

Trans 
1 & 2
correct 
sketch

Incorrect 
sketch

Trans 1 
correct
symbol

Trans 
1 & 2 

correct 
symbol

Incorrect 
symbol

(1,2) 4 2 1 2 2 0 2
(1,3) 2 1 0 1 0 0 2
(1,4) 4 2 1 2 2 1 2
(2,3) 1 1 1 0 0 0 1
(2,4) 4 2 2 2 2 0 2
(3,4) 2 1 0 1 1 0 1
Total 17 9 5 8 7 1 10

Table 1: Students’ operations in Task 1 according to chosen transformations (transition 
between symbolic and graphic representation) 
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The data in Table 1 reflect the students’ missing knowledge at the beginning of 
the intervention regarding the use of the symbolic and graphic representations 
and the continuity in shifting between them. Of the 17 students, nine sketched 
the correct graphical representation for the first transformation, while only five 
students sketched the correct final graphical representations after the second 
transformation was applied. Eight students were unable to sketch the correct 
graphical representation for either of the transformations. Moreover, the students 
also lacked knowledge regarding the symbolic representation of the function and 
regarding the shift from the graphical representation to the symbolic 
representation. 
Through analysis of the data in Table 1, the students’ explanations, our 
observations of the students as they worked and the whole-class discussions, we 
attempted to characterize the students' missing knowledge. 
Missing knowledge for understanding the relationship between changes in 
values and changes in the graph 
Students in this category had difficulty in correctly translating the required 
changes in the graph for each of the axes. For example, one student chose to 
apply transformation (2,4): “vertical sliding of -4 units” followed by 
“contracting by a factor of half parallel to y”. The graph the student drew to 
represent the results after applying the two transformations showed the vertical 
downward slide and was contracted by a factor of 2 relative to the y axis and 
also relative to the x axis. The student had difficulty seeing the contraction of the 
function relative to one axis only. This difficulty may stem from 
a misinterpretation of the concept of “contract by a factor of half” relative to the 
y axis as “contract by a factor of 2” for both the x values and the y values. 
Another student chose to apply transformation (1,2): “horizontal sliding of -2
units” followed by “vertical sliding of -4 units”. This student was able to explain 
the results of the transformations verbally. The shift to the graphical 
representation, however, included horizontal sliding of the graph to the left by 2 
units, and then reflection of the graph relative to the x axis: “In the horizontal 
sliding, the change is only in the values of the y axis”. Reflection relative to the 
x axis, the change is only in the values of y.
Missing knowledge for understanding the relationship between changes in 
values and changes in the structure of the symbolic representation
Only seven of the students were able to provide a correct symbolic 
representation for the first transformation. Of these, only one student provided 
a correct symbolic representation after applying two transformations. Ten 
students did not manage to provide a correct symbolic representation for any of 
the transformations they chose. The students' difficulties in switching to the 
symbolic representation emerged in their translation of “horizontal sliding of 
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two units to the left” to the symbolic representation 𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓 rather than the 
symbolic representation 𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓.
Students who had problems with symbolic representation of the transformation 
“stretch by factor 3 parallel to x” suggested 1

3 𝑓𝑓𝑓𝑓𝑓𝑓 as the symbolic 
representation. The discussions led us to conclude that this answer was 
apparently based on the students' intuitive feeling that, some factor in the 
symbolic representation, should be divided by 3, but they lacked an 
understanding of which factor this should be. Similarly, for the “stretch by factor 
3 parallel to x” transformation, other students suggested 𝑓𝑓𝑓𝑓𝑓𝑓𝑓 as the symbolic 
representation. This response was based on the students’ intuitive understanding 
of the translation of “stretch by factor 3 parallel to x”. “I noticed that point (2,0) 
on the original graph corresponds to point (6,0) on the new graph, that is, we 
multiplied 2 by 3”;  “I do not understand the difference between vertical 
contraction or stretching and horizontal stretching, because sometimes they 
seem to me to be the same thing, as for example in the function 𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓2”.
In addition, the students used partial knowledge from the graph, while they 
referred only to a limited number of points on the graph. For example, some 
students suggested the symbolic representation 𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓 as appropriate for 
transformation 4: “stretch by factor half

 
parallel to y”. They did so by referring 

only to the change in a limited number of points on the graph: (0,0) and (0,4). 
Before assigning Task 2 to the students and based on their missing knowledge 
that emerged while they solved Task 1, we held a lesson dedicated to teaching 
the various representations of quadratic functions. The students were familiar 
with the standard symbolic representation of the quadratic function 
𝑦𝑦 𝑓 𝑦𝑦𝑓𝑓2 𝑓 𝑏𝑏𝑓𝑓 𝑓 𝑐𝑐 and the roles of the parameters including this symbol 
representation. During the lesson the students refreshed their knowledge about 
the symbolic representation of the quadratic function represented as a multiple 
of two linear factors: 𝑦𝑦 𝑓 𝑦𝑦𝑓𝑓𝑓 𝑓 𝑓𝑓1𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓2𝑓, and for the first time they learned 
about the vertex symbolic representation 𝑦𝑦 𝑓 𝑚𝑚𝑓𝑓𝑓 𝑓 𝑝𝑝𝑓2 𝑓 𝑘𝑘 that results from 
sliding, stretching or contracting the function 𝑦𝑦 𝑓 𝑓𝑓2. They also learned about 
the role of the parameters in this vertex symbol representation. Table 2 presents 
the representations selected by the students in the presentation of the various 
functions:

f(x) k(x) h(x) g(x) t(x) k(x)
8 2 1 1 1 2
3 5 4 1 5 4
6 10 12 15 11 11

Table 2: Students’ operations in Task 2 according to chosen representations 

cbxaxy  2

))(( 21 xxxxay 

kpxmy  2)(



248 RUTI SEGAL, TIKVA OVADIYA

The students’ processes in formulating and applying this new knowledge 
became apparent as they solved Task 2. Their new knowledge was reflected in 
the fluent transition between the different representations of functions, and in 
this case the quadratic function. The students used different symbolic 
representations, and fluent transitions between the graph representations, and 
symbol representations. For example, in solving the task, one student chose to 
represent the function f through this symbolic representation: 
𝑓𝑓(𝑥𝑥) = (𝑥𝑥 𝑥 𝑥)(𝑥𝑥 𝑥 𝑥). He then provided the symbolic representation of function 
k that resulted from horizontal sliding to the right relative to function 
𝑓𝑓𝑓 𝑓𝑓(𝑥𝑥) = (𝑥𝑥 𝑥 𝑥 𝑥 𝑥)(𝑥𝑥 𝑥 𝑥 𝑥 𝑥). He also adjusted the values to the location of 
the function on the Cartesian axis system. For representing function g(x), he
moved from a symbolic representation as a multiple of two linear factors two 
linear factors to representation by vertex. Each of the other representations of 
the quadratic function chosen by the students provided other examples.
CONCLUSION 
In this study we examined the knowledge and ability of pre-service teachers to 
shift between representations. The data indicate that even before the topic of 
shifting between representations was raised, the students’ concept about 
functions was limited. Bardini, Pierce, Vincent and King (2014) found that 
students either did not create connections between the different types of 
representation of functions or at least were more likely to identify a function 
correctly from its graph. Moreover, more students appeared able to recognise 
a hybrid function when they were provided with its algebraic rule than when 
they were shown its graphic representation.
According to Vinner and Dreyfus (1989) and Sierpinska (1992), students need to 
develop a concept of functions through experience with many examples in
which the several representations are connected. They then need to summarise 
and formalise this learning by applying the definition of function. It is critical 
that students be aware of which aspects of the definition of function they call on 
when asked to consider functionality and be able to make connections between 
the various function representations. Dreyfus (2002) contends that to be 
successful in mathematics, students need rich mental representations of 
concepts, that is, many connected aspects of the concept. He notes that “poor 
mental images of the function concept…are typical among beginning college 
students, who think only in terms of formulas when dealing with functions” 
(p. 32). Connecting representations and gaining “representational fluency” 
through which students can interpret mathematical ideas in dissimilar 
representations and then move between them supports the development of strong 
conceptual schema. Oehrtman, Carlson and Thompson (2008) pointed out that a 
strong procedural emphasis in which students think about functions only in 
terms of symbolic manipulations and procedural techniques has not been 
effective for building a deep conceptual understanding of functions. 
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The students participating in this study lacked SCK regarding the conceptual 
image of functions, different representations of functions and the relationship 
between the representations, and the fluent transitions between them. Their 
difficulty in shifting to a graphical representation was related to their problems 
in seeing the changes in the graph for each of the axes separately as well as their 
difficulties in seeing the changes in the graph for all the points on the graph. 
This difficulty diminished as they solved additional problems but continued to 
find expression during the entire intervention process. Bieda and Nathan (2009) 
used the term “spatially grounded” to describe this type of difficulty that 
teachers encounter in the context of different representations of functions. In the 
current study, spatially grounded difficulties were manifested in partial 
transitions between representations along with only partial generalizations due 
to incomplete understanding of the relationship between changes in values and 
changes in the graph on the axis system. Interpretatively grounded difficulties 
are based on incomplete understanding of the relationship between changes in
values and changes in the components of the symbolic representations. The 
students were unable to interpret the changes in the graphical representations 
correctly and apply the interpretation appropriately in the symbolic 
representation. The students’ body of knowledge regarding the various 
representations of functions and the transitions between them increased during 
the problem-solving process, and typical difficulties at the beginning of the 
research gradually diminished. Mathematics Teacher educators who train pre-
service teachers to become high school mathematics teachers must be aware of 
the students’ missing SCK and thus assign the students appropriate tasks to 
provide them with this knowledge.
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This article discusses the use of the activity approach as the main means of 
training future teachers of mathematics in the formation of their ability to self-
development on the basis of reflexive self-organization, which is put forward 
among the actual requirements for graduates of higher education. Additionally, 
the formation of abilities for knowledge and the creative use of the received 
knowledge in any educational and vital situation as one of the leaders in 
structure of readiness of the teacher for professional activity is described. The 
purpose of the study: the use of the activity method in the practical lesson 
“methods of teaching mathematics”. The relevance of the activity approach in 
the formation of students’ ability to self-develop on the basis of reflexive self-
organization is proved at teaching mathematics at physical and mathematical 
faculties of pedagogical higher educational institutions which provides 
acquisition of ability to organize at students search activity. 
INTRODUCTION  
Currently, the higher school has the task to equip the graduate with knowledge, 
to form his ability and desire to learn all his life, to work in a team, the ability to 
self-development on the basis of reflexive self-organization. The activity method 
of training helps to accomplish this task. In this regard, the solution of the task 
in the training of future teachers of mathematics for professional activities is one 
of the most important goals of higher education.   
The formation of the ability to self-development is possible through the 
involvement of students in search of active activity. The teacher who has the 
ability to implement social activities “may later be the steward of their own 
destiny, the continuation of education of his life” (Diesterweg, 2018, p. 25)
However, the level of formation of the ability to self-development, self-
determination, self-realization and reflection in the conditions of pedagogical 
University does not fully meet modern requirements, tasks of modernization of 
higher pedagogical education. 

Activity method of training allows to carry out: 1) the formation of thinking through 
learning activities: the ability to adapt within a certain system with respect to its 
norms (self-determination), conscious building of their activities to achieve the goal 
(self-realization) and adequate evaluation of their activities and their results 
(reflection); 2) the formation of a system of cultural values and its manifestations in 
personal qualities; 3) the formation of a holistic picture of the world, adequate to the 
current level of scientific knowledge (Kholodenko, 2018, p. 5).
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It is obvious that the traditional methods of training future teachers of 
mathematics, explanatory and illustrative methods, on the basis of which is 
based today in higher education, does not meet the objectives.  
The modern transition to an innovative system of education poses a task for 
pedagogical science to form and develop a teacher who owns the ability of 
a person to implement socially significant activities, who owns the technology 
of development of students' abilities to cognition, creative use of knowledge in 
any educational and life situation. This technology is an activity-oriented 
learning method.
In this regard, the activity approach is used as the main means of training future 
teachers of mathematics. The unconditional requirement in the preparation of 
the future teacher is the formation of his activity abilities. Purposeful application 
of activity approach in training of the future teacher demands introduction of 
modern search methods and forms of training in educational process of higher 
education institutions. However, the current educational practice does not 
contribute to the maximum implementation of the activity method in the 
preparation of future teachers of mathematics and organization of their own 
educational and cognitive activity of students. There is a need to find ways to 
implement the activity method and develop new methods of formation of 
abilities to cognition, creative use of knowledge in any educational and life
situations, as one of the leading in the structure of the teacher's readiness for 
professional activity. 
THE AIM OF THE RESEARCH
The activity method of teaching is theoretically presented in different fields of 
scientific knowledge and studied by many teachers and psychologists, but its 
application in practice in the conditions of pedagogical higher education is 
insufficiently studied that predetermined relevance of this subject. 
Subject of research: the use of activity method in various forms of organization 
of the educational process.
The aim of the study is to implement the activity method in practical teaching. 
Tasks:
- to justify the relevance of the activity approach  
- to show the application of the activity method in the practical lesson “methods
of teaching mathematics”.
The hypothesis of the study: if the activity approach is applied as the main 
means of training future teachers of mathematics, it will increase the readiness 
of the future teacher of mathematics for professional activities. 
Research methods: study and theoretical analysis of domestic and foreign 
literature on the problem of research; observation, generalization.
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THEORETICAL BACKGROUND
The concept of “exercises through activity” was proposed by the American 
scientist Dewey (Yerokhin, 2006). The basic principles of its system: taking into 
account the interests of students; teaching through the teaching of thought and 
action; knowledge and knowledge as a consequence of overcoming difficulties; 
free creative work and cooperation. The main thing in the activity method is the 
activity itself, the activity of the students themselves. Getting into a problem 
situation, students are looking for a way out of it. The function of the teacher is 
only a guide and corrective in nature.
The activity approach is focused on mastering the ways of professional activity. 
Basics of personality-activity approach in psychology by the works of 
Vygotsky, Leontiev, Rubinstein, Davydov and others (Vygotsky, 1982).
Personality in these works is considered as a subject of activity, which 
determines its personal development through activity and communication. The 
activity is characterized by common essential properties and a single structure, 
in which the presence of the necessary components (purpose, motive, content, 
methods, result) provides the result to which the student seeks.  
The concept of the activity approach to learning is the situation: the assimilation 
of the learning content and the development of a student happen not by passing 
it some information, and in the process his own motivated and purposeful 
activities This is confirmed by Sukhomlinsky (1973): all our plans, searches and 
constructions turn into ashes, into a lifeless mummy, if there is no children’s
desire to learn. From this we can conclude that a necessary condition for the 
development of the individual student is its high cognitive activity, but not every 
activity develops the children's ability, and the only one that arouses interest.  
According to the personal-activity approach, the purpose of training is formed in 
the language of activities, where the task is a situation in which it is necessary to 
achieve a certain goal; the activity itself is the process of achieving the goal; 
reception is a way of carrying out activities (Mamykina, 2009, p. 135).
According to Elkonin (1995, p. 37) “the main difference of the educational task 
from any other tasks is that its purpose and result consist in change of the acting 
subject, but not in change of subjects with which the subject acts”. Activity 
approach is carried out by us in the practical classes of the course “methods of 
teaching mathematics”, when there is interaction of students, both with each 
other and with the teacher. Interaction is one of the integral and essential 
characteristics of learning in the context of the activity approach. The 
universality of this category is that it represents and describes the joint activities 
of students, their communication as a form of activity as a condition, means, 
goal, driving force. The mechanism of such interaction is seen in the 
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combination of the ability not only to act, but also to perceive the actions of 
others. 
Interaction thus is a way of being - communication and a way of action - the 
solution of problems.  

The teaching environment is an activity, diverse in content, motivated for the 
student, problematic in the way of mastering the activity, the necessary condition 
for this is relations in the educational environment, which are based on trust, 
cooperation, equal partnership, communication (Leont'ev, 1978, p. 21).

The basis of pedagogical activity is an action. It consists of a chain of 
interrelated actions, which form its structure. Markova (1994) identifies three 
main components in the structure of pedagogical activity: 1 - motivational and 
indicative link (orientation in the situation, setting goals and objectives, the 
emergence of motives); 2-performing link (implementation) and 3 - control and 
evaluation link (result). 
At the first stage, the teacher formulates pedagogical goals and objectives (in 
any kind of activity), the second selects the necessary pedagogical tools for their 
implementation, not the third - analyzes and evaluates their own actions. 
The implementation of the technology of activity method in practical teaching is 
provided by the following system of didactic principles: the principle of activity, 
the principle of continuity, the principle of integrity, the principle of minimax, 
the principle of psychological comfort, the principle of variability, the principle 
of creativity. The stated above didactic principles set the system of necessary 
and sufficient conditions of the organization-the activity method of training. 
Activity method, we defined as a method of training in which the assimilation of 
the content of educational material by students and their development do not 
occur through the transfer of some information to him, and in the process of his 
self-development on the basis of reflexive self-organization and their own active 
activity.
METHODOLOGICAL BACKGROUND 
The methodological basis of the activity approach to learning mathematics 
consists of the following concepts:

 the concept of humanization and humanitarization of mathematical 
education: the training focuses on the personality of the student; 
mathematical knowledge is considered as the basis of intellectual 
development of students (Dorofeev, 1990; Mordkovich, 1985); 

 the concept of student-centered learning: involves orientation to the 
student’s personality, strengthening its independence and subjectivity 
(Yakimanskaya, 1979, etc.); 
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 the concept and strategy of modernization of General secondary 
education: the main goal is to prepare a diversified personality, oriented in 
the modern system of values, capable of active social adaptation in 
society and independent life choice, self-education and self-improvement 
(Galperin & Talyzina, 1968) 

 psychological and pedagogical concept of formation and development of 
cognitive interest of the student's personality in the learning process is 
considered as an electoral positive focus on the process of cognition that 
contribute to the internal motivation of the student, his self-activity 
(Markova,1994; Shchukina, 1979); 

 the concept of developing learning mathematics determines the need for 
training, takes into account and uses the levels of knowledge and features 
of the student, aimed at the development of a set of qualities of the 
individual (Vygotsky,1982);

 the concept of the activity approach to learning is that the assimilation of 
the content of learning and the development of the student is not by 
transferring a certain amount of knowledge to the student, and in the 
process of his own activity.

 The concept of the level of assimilation - the ability of the student to 
perform targeted actions to solve a certain class of tasks associated with 
the use of the object of study. 

Shamova (1982, p. 61) defines the following levels of assimilation of knowledge 
and methods of activity: 

I level – willingness to play consciously perceived and recorded in memory 
knowledge; 
II level-readiness to apply knowledge on a model and in a familiar situation; 
III level-readiness on the basis of generalization and systematization to transfer 
knowledge and methods of activity in the situation of their application; 
IV level-readiness for creative activity. 

Psychological and pedagogical researches and experience of development and 
application of pedagogical technologies show that it is expedient to estimate 
knowledge and abilities of students at the same levels, namely:  

Level I-understood, remembered, reproduced;  
II level-acquired knowledge at the first level, applied them on the model and in 
modified conditions, where you can find a sample;  
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III level – have mastered the knowledge on the second level and learned how to 
transfer them into an unfamiliar situation without the presentation of ways of 
working;
IV level-creative activity – cannot be achieved by any of the students, it is the level 
of gifted (Sporova, 2014, p. 9).

In the field of didactics developed by active learning methods that stimulate 
cognitive activity and creative abilities of pupils the student is an active 
participant in the learning process, but he mainly interacts with the teacher.  
One of the actual active methods is interactive learning, in which the interaction 
is carried out not only between the student and the teacher, in this case, all 
students contact each other. This is more conducive to the development of 
independence, self-education, solution of communicative problems. 
A person becomes a person in the process of joint activities with other people. In 
other words, every person has the opportunity to become or not to become 
a person. And it largely depends on the teacher, on how he organizes the joint 
activities of his students. 
An interactive (from “inter” – mutual, “act” – to act) learning model is carried 
out in conditions of constant, active interaction of students with each other, with 
the teacher, the environment and provides for certain joint activities of students. 
In this case, the student and the teacher are equal subjects of education. Note 
that in modern research interactivity is understood as interaction with the 
computer and through the computer. Interactive teaching methods “it is always 
interaction, cooperation, search, dialogue, game between people and information 
environment” (Kaskatayeva, 2015, p. 57).
Depending on the content studied, the method of the round table, practical work 
competitions with their discussion, trainings, problem method, modeling of 
production processes or situations, discussion of special videos, including 
recording of own actions, methods with the use of computer technology and 
a skilful combination of traditional and innovative means, forms and methods of 
training can also be used.
The choice of forms and methods of training used in the educational process 
depends primarily on the level of individual qualities and abilities of the 
participants of the group, the activity of the group, the specifics of a particular 
course, the content of the educational material. 
The activity aspect of the content of learning in the activity model of learning is 
expressed in the fact that the content of learning is the activity in connection 
with solving the problem and the activity of communication as mastering the 
social norm, verbal activity and types of nonverbal self-expression, i.e. the 
educational process is: interaction, solution of communicative (problem) tasks.  



The activity approach as the main means of training future teachers 257

Using active and interactive methods of teaching in the classroom, the teacher 
has the opportunity to form the ability to self-development. This means that 
interactive learning, as a reception of activity approach to learning mathematics, 
becomes particularly relevant in the formation of students’ ability to self-
development, to self-determination, to self-realization and to reflection.
For the organization of educational activities of the greatest interest are the tasks 
of intellectual and cognitive plan, which are realized by the students themselves 
as a thirst for knowledge, the need to learn this knowledge, as a desire to expand 
horizons, deepening, systematization of knowledge. 
ORGANISATION OF STUDENTS’ ACTIVITY
Let us consider the problem of finding the Fermat point of intellectual and 
cognitive plan at the practical lesson of the course “MPM”. The problem is 
offered to students of the third year of the specialty “mathematics”. The theme 
of the lesson: “learning mathematics through problems”. An interactive method 
is used, which is focused on wider interaction of students not only with the 
teacher, but also with each other. The teacher directs students to achieve the 
goals of the lesson. To solve this problem, including organizational and 
propaedeutic work, it takes two hours (academic).
Task: There are three deposits of oil. Engineers need to build only one refinery. 
Specify the nearest location of the refinery to visit the specified three oil fields? 
This stage of the learning process involves the conscious entry of students into 
the space of learning activities in the classroom. 
The teacher offers students a task that leads them to the self-discovery of a new 
one.
For the three specified oil fields, find the fourth point, such that if you draw 
straight lines from it to these points, the sum of the distances will be the 
smallest.  
Decision: 
There is a joint activity of students, their communication as a form of activity.
Students connect three points in segments. If the connection will turn out 
straight, the plant should be built at the point lying between two others (Figure
1).
If the connection of the three points lines you get a triangle, the angles are less 
than 120°, then search the location of the refinery – F, as follows:  
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Figure 1 

If the connection of the three points lines you get a triangle, the angles are less 
than 120°, then search the location of the refinery – F, as follows:  
1. We construct equilateral triangles ABC', BCA', CAB' on the sides of an 
arbitrary triangle ABC.  
2. The resulting triangles will describe a circle.  
3. Lines AA', BB', CC' intersect at a point F. 
4. If all angles of the ABC triangle do not exceed 120°, then F lies in the ABC 
triangle and is the Fermat point.  If one of the angles of the ABC triangle is 
greater than 120°, then F lies outside the ABC triangle, and the point F coincides 
with the vertex of the obtuse angle.  
At this stage, the reflection of educational activities (outcome). 
The new content studied at a lesson is fixed, and reflection and self-assessment 
by students of own educational activity is organized. 
For the student who completed the task, his result is a subjectively new result, as 
it is new for him, who received it. But he was looking for ways and means to 
solve this problem, ways that he had never met in his practice and as a result 
acquired research skills. 
At the end of the lesson, when students passed their assignments, the teacher 
informs them of E. Torricelli's theorem, which gives an algorithm for 
constructing a Fermat point using a compass and a ruler (Aksenova, 2001).
CONCLUSIONS
Thus, as a result of observations and generalization of our experience, we come 
to the conclusion that the joint activities of students in the process of learning, 
learning material means that each makes a special individual contribution, there 
is an exchange of knowledge, ideas, ways of activity. This is done in an 
atmosphere of goodwill and mutual support that allows you to not only obtain 
new knowledge but also develops the research activities. This activity requires 
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students cognitive, intellectual ability, motivates to persistent and enthusiastic 
work on the educational task. So, there is a formation of cognitive, intellectual 
ability and research abilities of students and through them pupils of high 
schools. 
To continue this study in the future we set the following task: to carry out 
experimental work to identify the effectiveness of the activity method in the 
study of higher mathematics courses. 
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In this paper, we present a theoretical methodological framework that has been 
developed as a part of a PhD study focusing on the image of mathematics in the 
special education in Greece. This systemic approach investigates three levels of 
educational discourse and their relevance to the affective domain of a learner’s 
relationship with mathematics: the research literature; the official instructions, 
curricula and textbooks; and the various educational protagonists (students, 
teachers, parents, broader society) involved in both special and mainstream 
education. The interrelations, included in the proposed conceptualisation image, 
amongst the accumulated affective orientation of mathematics experience 
(beliefs, values, attitudes), the real time affective experience (emotions) and the 
affective pragmatic potential (expectations) construct a visual model of the 
relationships among the various subsystems of mathematics education. 
PAINTING AN IMAGE OF “IMAGE”
The crucial role of the affective domain in the teaching and learning phenomena 
has been widely acknowledged (Hannula, 2014; Oatley & Jenkins, 1996), 
including the whole affective spectrum (for example, emotions, attitudes, 
beliefs, values). Ernest (1989, 1995, 2008a, 2008b) adopts a more holistic 
approach to the affective domain (cf. Hannula, 2011, 2012) to discuss the notion 
of image of mathematics, referring to a complex whole, consisting of a system 
of beliefs and views about mathematics. We posit that such a more holistic 
approach is in line with the affective complexity that the students (and other 
educational protagonists) experience with and about mathematics.  
Moreover, we argue that a positive image for mathematics is being constructed, 
when a school unit fosters positive attitudes, beliefs, values, emotions and 
expectations towards mathematics, and that the more positive images for 
mathematics one student constructs, the better educational results are achieved.
Furthermore, the image for mathematics is not constructed exclusively within
the school experience, since, for example, the views about the importance or the 
usefulness of mathematics in everyday life and in the development of 
civilization are often independent of, or even contradictory to, the school 
mathematics experience. Thus, these broader constituting conditions crucially 
affect both the decisions about the role of mathematics in the school system and 
the family choices with respect to the educational paths of their children. 
In this study, which is part of a PhD study, we build upon these ideas to broaden 
Ernest’s conceptualisation, defining as “image for mathematics” the system of
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both cooler and hotter aspects of the affective domain (beliefs, attitudes, values, 
expectations and emotions), thus allowing for a three-dimensional affective 
mapping of the mathematics experience, including: the accumulated affect, the 
real time affect and the affective potential. In specific, in this study we included:

a) The accumulated affective orientation towards mathematics experience,
as represented by beliefs, values and attitudes. Beliefs are relatively stable 
across time and task subjective understandings and views (Philipp, 2007), 
values represent the importance assigned on a belief (Seah, Atweh, 
Clarkson & Ellerton, 2008), whilst attitudes describe the positive or 
negative affective dispositions towards mathematics (Philipp, 2007). 

b) The real time affective experience, which is represented in this study by 
emotions. Emotions describe short-term, spontaneous and volatile 
affective reflexes (Hannula, 2002; McLeod, 1992; Moutsios-Rentzos & 
Spyrou, 2017). 

c) The affective pragmatic potential of mathematical experience, which is 
represented in this study by expectations, defined as the perceived 
performance capabilities regarding to mathematics (Betz & Hackett, 
1983) that are related to appraisal of mathematical situations and results 
(Hannula, 2002). 

We employ this broadened conceptualisation, in order to investigate the 
complex image of mathematics: a) both as a discipline and as a course, b) as 
appearing in the research literature, c) as appearing in the official educational 
documents, and d) as viewed by the various educational protagonists (students, 
parents, teachers etc). By adopting such a broadened perspective, it is posited 
that invisible aspects of the relationships amongst the affective experiences may 
be noticed, thus enabling a more pragmatic and effective educational 
planification. For example, these aspects may constitute a context for describing
and explaining the genesis and development of otherwise invisible educational 
obstacles. Importantly, by investigating the images within and across both the
mainstream and the special education school unit systems, the multidimensional 
cross-mappings of the existing educational interactions and networks is feasible 
(Moutsios-Rentzos & Kalavasis, 2016), allowing for a pragmatic address of the 
call for inclusivity, which is at the crux of the contemporary educational 
programmes and curricula (Brusling & Pepin, 2003; UNESCO, 2001, 2005; 
UNICEF, 2007; Vislie, 2003). It is posited that such a mapping, on the one 
hand, reveals the images of mathematics and their implicit interactions as 
painted in the different systems (mainstream and special education) and 
experienced by the educational protagonists. On the other hand, our approach 
crucially allows for the planification of the communication of those images, 
which constitutes an important first step for empathy and inclusivity.
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Following these, in this paper, we discuss a study investigating the images for 
mathematics taught at special education school units from three aspects: a) the 
research literature, b) the official (and institutional) documents, and c) the views 
held by the educational protagonists (students, teachers, parents, broader 
society) of both special and mainstream education.  
A SYSTEMIC APPROACH TO THE SCHOOL UNIT 
A system is defined as a whole, the parts of which are linked and interrelated in 
such complex ways that the constructed whole significantly differs from 
a simple adding of its parts (Moutsios-Rentzos & Kalavasis, 2016; Moutsios-
Rentzos, Kalavasis & Sofos, 2017). Every system may consist of parts or/and 
sub-systems which interact with respect to a specific goal (Moutsios-Rentzos & 
Kalavasis, 2016). Systems are characterized by the level of interaction with their 
environment or/and their hyper-systems, and by the volume and speed of input
and output they demonstrate (Moutsios-Rentzos & Kalavasis, 2016). 

Figure 1: An approach to the complexity of school mathematics education (Moutsios-
Rentzos & Kalavasis, 2016, p.105) 

In our approach, we view the special education school unit as an open learning 
system, consisting of subsystems and elements that interact with each other, and, 
at the same time, is a part of a broader interacting social and educational system,
as well as with the family system (Kalavasis, 2007; Kalavasis & Kazadi, 2015).
In specific, we draw upon Moutsios-Rentzos & Kalavasis (2016), who 
investigated the links of mathematics within and across the system of disciplines 
and the school unit system. Their approach was accompanied with a model, 
which helped visualising and quantifying the views that the different educational 
protagonists hold about mathematics (see Figure 1): a) as a discipline in 
comparison with other disciplines, and b) as a course in comparison other 
courses, including three foci (the symbolic/normative, the protagonists’ 
perceived official regulations; the pragmatic, the actual lived school reality; the 
desired/intentioned actions, assuming the power to implement them). 
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IMAGES FOR MATHEMATICS: A SYSTEMIC APPROACH 
Consequently, in this study, we focus on the images for mathematics in special 
education school units, to investigate the complex relationships amongst the 
accumulated affective orientation of mathematics experience (beliefs, values, 
attitudes), the real time affective mathematics experience (emotions) and the 
affective pragmatic potential of mathematics (expectations). The image of 
mathematics lens is applied to three areas of experience: a) the documents of the 
research literature, b) the official documents, and c) the views held (the 
symbolic/normative, the pragmatic and the desired/intentioned actions) by the 
protagonists of special and mainstream education (students, teachers, parents, 
broader society).  
In this section, we flesh out these ideas to propose a methodological theoretical 
framework paired with a methodological instrument, which allows us to 
consistently investigate the images for mathematics across all three areas of 
experience (research literature, official documents and protagonists). Thus, in
each area, we investigate the constructed image for mathematics by 
investigating the five aforementioned elements of affect: beliefs, attitudes, 
values, emotions and expectations. Our approach broadens Ernest’s 
conceptualisation (1989, 1995, 2008a, 2008b), as the included elements concern 
three different levels of affective experience: the accumulated affective 
experience, the real time affective experience, and the affective pragmatic 
potential of mathematical experience. As a result, the links amongst these five 
elements may be organised through a trigonal bipyramid (see Figure 2).  

Figure 2: The trigonal bipyramid of image as conceptualised in this study. 

Each element of image is possible to be investigated, as Moutsios-Rentzos and 
Kalavasis (2016) proposed, within two systems (also in line with Ernest, 1995): 
the system of all disciplines and the system of the courses taught in school (in 
this case, in special education; depicted as a dipole, see Figure 3 left). Though 
when investigating the documents the dipole model suffices, when investigating 
the protagonists’ views requires a pyramid model, with the triangular base of the 
pyramid representing the aforementioned three foci of ‘mathematics as school 
course’ (Moutsios-Rentzos & Kalavasis, 2016): the symbolic/normative (‘s’ on 
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the pyramid), the pragmatic (‘p’ on the pyramid), the desired/intentioned 
actions (‘d’ on the pyramid). Hence, a triangular pyramid is constructed the base 
of which represents mathematics as a school course (through the three foci) and 
its apex represents mathematics as a discipline (see Figure 3, right).
Consequently, the image for mathematics in the school unit with respect to the 
protagonists is a synthesis of the tri-focussed pyramid, applied on each of the 
element of the trigonal bipyramid of image (see Figure 4).

            
Figure 3: Mathematics as a discipline and as a school course (Documents, left; 

Protagonists, right). 

Figure 4: The protagonists’ image of mathematics as a discipline and as a school 
course.

When looking into the system of the School Unit, the images for mathematics 
can be investigated for each of the Protagonists (the students, the teachers, the 
parents, and the broader society; in line with Ernest’s (2008a, 2008b) 
differentiation between social and personal images), as well as for the 
Documents (research literature and official documents). The students, the 
teachers and the parents are considered to have significant relevance in the case 
of mathematics and are explicitly elements of the school unit system (Galindo &
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Sheldon, 2012; Kafoussi, 2005, 2006; Kafoussi, Moutsios-Rentzos & Chaviaris, 
2017; Moutsios-Rentzos, Chaviaris & Kafoussi, 2015). 

Figure 5: The School Mathematics Image (Documents, left; Protagonists, right). 

Thus, we posit that the School Mathematics Image emerges across and within 
the interactions of the images of the Protagonists and of the Documents. The 
‘triangular space’ amongst the three poles (students, teachers and parents) 
represents the “school unit” system (mainstream or special education), which 
interacts with the broader society (see Figure 5, right). Each pole consists of the 
trigonal bipyramid of image. Each element of the image represents the five 
elements of affect (beliefs, attitudes, values, emotions and expectations). Each 
pyramid hints the investigation of image for mathematics as a discipline and as 
a school course at the special education school units in three foci (the symbolic, 
the pragmatic representations, the desired actions). Considering the written 
Documents (research literature and the legislation/ official instructions and 
documents), the pyramid of the protagonists is replaced by the documents dipole 
(Figure 5, left).
We posit that the proposed theoretical methodological framework explicitly 
includes and allows for the investigation of the possible hidden interactions, 
concerning the affective domain, amongst students, teachers, parents and the 
broader society, which would be otherwise be conflated and/or invisible. For 
example, the image for mathematics at special education, consisting of the five 
elements of affect (beliefs, attitudes, values, expectations, emotions) may be 
investigated in two systems: both as a discipline compared with other disciplines 
(system of disciplines) and as a course at special education in contrast to other 
subjects (system of subjects). It is argued the higher level of sensitivity, which 
the proposed framework has, is especially important for rendering inclusive
education to be a pragmatic call, since the invisible obstacles pose barriers to
providing equal educational opportunities to all children and, hence, equal 
citizenship opportunities. Through this perspective, we claim it is possible to 
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identify potential differences amongst, on the one hand, the images of 
mathematics in various sources of documents, including the curricula of special 
education and assessment (for example, Van de Rijt, Van Luit & Pennings, 
1999), as well as the related special education research literature (for example, 
Nunes, 2004), and, on the other hand, amongst the images of the educational 
protagonists about mathematics when referring to special education school units, 
including mathematical ability, content, methods and materials (for example, 
Beswick, 2008; DeSimone & Parmar, 2006; Jungert & Andersson, 2013).  
CONCLUDING REMARKS 
In this paper, which is a part of a PhD study, we draw upon systems theory to 
conceptualise the school units as learning systems and sub-systems of the 
broader social and educational system, thus interacting with their sub-systems,
their elements and the broader society. According to this theoretical framework, 
we propose a methodological approach to concurrently investigate the images
for mathematics taught at special education settings and mainstream education 
settings in three areas of experience: official instructions and documents; 
research literature; views held by four educational protagonists (students, 
teachers, parents, broader society). We defined image to be a system constituting 
of five affective elements: beliefs, attitudes, values, emotions and expectations.
In the investigation of the protagonists’ image, we refined our approach by 
applying the lenses of three foci: the symbolic, the pragmatic and the desired 
actions. We posited that the proposed image construct would facilitate the 
realisation of inclusivity in education by revealing hidden aspects of the images 
(of both mainstream and special education school units) for mathematics both as 
a discipline and as a school course taught at special education school units, thus 
rendering possible to more pragmatically and effectively re-plan the teaching-
learning process.  
Overall, in this paper, we propose a systemic theoretical methodological 
approach that provides a mapping of the complex interactions between special 
education and mainstream education, as depicted in the images for mathematics 
in special education (both as a discipline and as a school course) of the 
educational protagonists and the documented realities of the research literature 
and the official instructions and documents. Importantly, the interactions, as 
well as the interactions of the aforementioned interactions may also be become 
visible to the educational policy makers. Crucially, being visible entails that 
some connections, which might affect the learning process, can be a part of the 
educational planning process; be predicted, corrected, and/or upgraded.  
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