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INTRODUCTION 

 

From all processes involved in mathematics, generalization is considered one of 

the most important ones. For some researchers, generalization is what 

mathematics is about. Thus, whether it is viewed as part of a higher level 

process, like abstraction or as the core process involved in a particular 

mathematics field, like algebra, there seems to be an agreement on its significant 

role in advanced mathematical thinking. This is also acknowledged by most 

significant curriculum documents, which make an explicit reference on 

processes related to generalization.  

The need for focusing on generalization might be also justified by the 

development of mathematics as a scientific discipline; this means that arithmetic 

and computational skills are not enough for the students to ‘grasp’ the deeper 

underlying structure of mathematics. The teachers should be well informed on 

that and should be prepared to create opportunities for their students to detect 

patterns, identify similarities and link analogous facts. But generalization does 

not appear just by performing the previous activities; to use John Mason’s terms, 

a shift of attention should take place or, in other words, a shift in the way one 

sees things. 

Contrary to what most people might think, generalization can be even observed 

in young children; such observations are signified by terms such as ‘early 

algebra’, which have recently appeared in the relevant literature.  

This volume presents various approaches on how generalization is or should be 

treated in the mathematics classroom. The five parts offer only one way of 

differentiating between the views presented. Among them the reader may find 

chapters focused on the theoretical foundations of generalization, but also 

chapters focused mostly on the implementation of approaches based on 

generalization, e.g. by pattern recognition. There is a part dedicated to early 

generalization, in line with the current trends in research that we have 

mentioned, and another part focused on teachers’ skills in generalizing. 

According to John Mason generalization is the life-blood, the heart of 

mathematics; being aware of that fact and being able to accordingly adapt the 

classroom practices is a highly important aim of mathematics education. We 

hope that the present volume can offer to mathematics educators and researchers 

a means to a deeper understanding of the many possibilities existing within the 

approaches that highlight the role of generalization at all educational levels. 

 

Rzeszow, June 2012 

The Editors 
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"TO GENERALISE, OR NOT TO GENERALISE, THAT IS 

THE QUESTION"  
(WITH APOLOGIES TO HAMLET AND WILLIAM SHAKESPEARE)  

 

Anne D. Cockburn  

University of East Anglia, U.K. 

 

From a very early age an ability to generalise makes our lives easier in many 

respects. Indeed, developing an awareness of pattern is an important step in 

becoming a proficient mathematician. Over the years as a researcher and 

teacher educator, however, I have observed many cases of 2 – 60 year-olds 

generalising when it is inappropriate to do so. Here I explore some of these and 

the possible reasons behind them. I then discuss some recent research on less 

successful teachers and how we might enhance their professional practice in 

order to capitalise on the rewards of generalising effectively. 

INTRODUCTION 

We all generalise in our everyday lives. We probably do it considerably more 

often than we realise. It usually saves time and it tends to make life easier but it 

is not always the best approach. I begin by considering examples of how and 

why we generalise. My particular focus is mathematics education in the earliest 

years of formal schooling. I will start with the children – the principal players –

followed by their teachers. I will then discuss some fundamental groundwork I 

think is required – but frequently overlooked – before some teachers are able to 

move forward and begin contemplating enhancing their professional practice in 

the early years’ mathematics classroom. Finally I will present some suggestions 

as to how teachers might use generalisation to their advantage and the wider 

implications arising from the question, to generalise, or not to generalise.  

As a psychologist who happens to be interested in young children and their 

education I hope that my perspective will offer you new insights into some of 

the many challenges, and possible ways forward, in the pursuit of mathematics 

education of the highest quality. 

THE YOUNG CHILD’S PERSPECTIVE 

Research suggests that the average six-year-old has a vocabulary of 8,000 to 

14,000 words (Woolfolk, Hughes and Walkup, 2008) and, indeed, Berger (2003) 

estimated that in the early school years children learn up to 20 words a day. 

Whether you favour behavioural (e.g. Skinner, 1957), nativist (e.g. Chomsky, 

1957), social-interactionist (e.g. Bruner, 1983 and Piaget, 1969) or other 

language development theories, observation suggests that children generalise as 
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they learn to talk and, although they make mistakes such as ‘I go, I goed’ rather 

than ‘I go, I went,’ generalisation tends to prove effective and efficient. 

On arrival in the early years’ classroom life becomes potentially more confusing 

as the young child encounters further inconsistencies. For example in English 

some of the words they learn in the home, take on completely different 

meanings when children begin school such as ‘check’, ‘take away’ and 

‘difference’ (Cockburn, 1999). 

In some languages we further complicate matters by being inconsistent in our 

counting.  Thus, for example, in English we say twenty-seven which we write in 

the same order as we say it, ‘27’, but seventeen which, adopting the same 

principle, one would expect to be ‘71’. The French describe ‘50’ and ‘60’ as 

cinquante and soixante -  which suggests a pattern in their counting system - but 

‘80’ is quatre-vingts which can be translated as four twenties.  

Our various languages are not the only potential source of difficulty for 

children’s later generalising. How often, for example, have you heard someone 

say to a child, ‘I will be with you in a second’ and yet it is 60, or even 120 

seconds, before they turn their attention to the child? 

Very early on in my career I came to the conclusion that young children tend to 

have a very powerful inclination to try and make sense of their experiences and 

hence to generalise from them. For example, one of the kindergarten teachers I 

was researching found it hard to believe that her class of five-year-olds were 

unsure about why we use numbers so she initiated the following conversation: 

Teacher: Why do we do these numbers? 

Michelle: So that we can spell things. 

Teacher: Spell things with numbers? 

Antoinette: So we can count properly. 

Teacher: What kind of things do we need to count? 

Antoinette: You need to count the numbers. 

Simon: We need to draw the numbers. 

Teacher: Why do we need to draw the numbers? 

Lisa: So we can copy them. 

Teacher: But why do we need the numbers at all? 

Lisa: So we can colour them in. 

(Adapted from Desforges and Cockburn, 1987, p. 100) 

One does not need to look very far – a quick trip to a classroom or a paper on 

mathematical misconceptions – to find children doing seemingly surprising 

things in mathematics. Although some of them may be amusing, adopting 

a child’s perspective, there are two important factors we need to consider. The 
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first is that mathematics is potentially very confusing. The second is that, almost 

invariably, what the child has done makes sense to them and it is important that 

we recognise and accept that. One of the consequences of these combined 

factors being as Jordan, Kaplan, Oláh and Locuniak (2006) point out, ‘Some 

children gradually learn to avoid all things involving math’ (p. 153). Indeed, 

Margaret Brown and her colleagues (2008) went even further entitling a paper, 

‘I would rather die’: reasons given by 16-year-olds for not continuing their 

study of mathematics.  

To summarise, generalising can serve young children extremely well but it can 

give rise to confusion. As educators our challenge is to capitalise on their 

propensity to generalise but to reduce the extent to which they do so 

inappropriately. As discussed below this does not necessarily mean avoidance 

but rather encouragement to question and challenge. 

THE EARLY YEARS’ MATHEMATICS TEACHERS’ PERSPECTIVE 

From the outset I want to emphasise that my aim is to understand behaviour 

rather than to pass judgement on dedicated practitioners as they endeavour to 

give of their best day in day out. Indeed I am a firm believer of William James’ 

(1899) view that, 

The worst thing that can happen to a good teacher is to get a bad conscience about 

her profession…our teachers are overworked already...A bad conscience increases 

the weight of every other burden…(pp. 13-14) 

Throughout my career I have been extremely impressed by the dedication and 

quality of the early years’ teachers I have encountered. One of the factors which 

have impressed me most has been their almost universal desire to ensure that 

each and every one of the children in their care realised their full potential. 

Indeed early on in my life as a doctoral student I noted that the seven teachers I 

worked with put, 

...considerable thought into their work, were anxious to promote their pupils’ 

mathematical progress and had considerable insight into how their classrooms 

operated. (Cockburn, 1986, p. 253) 

The strategies successful teachers need to adopt has been well recognised for 

over 100 years with William James (1899) advocating that they should, 

 Capture the child’s interest 

 Build on what they know 

 Teach and assess for understanding 

 Provide plenty of oral and practical experience 

 Adopt a varied approach 

 Foster children’s confidence in their mathematical abilities 
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The last of these seemed to be particularly prominent when I began my career as 

a researcher with Mrs T explaining, 

If they (i.e. children) get hung up about anything when they are five years old, what 

will they be like later? (Cockburn, 1986, p. 215) 

The maintenance of pupil confidence continued to be a priority among early 

years’ mathematics teachers in U.K. when we worked with them in 2005 

(Cockburn and Iannone) and I have no reason to believe that their views have 

changed markedly since then. 

In mathematics classrooms around the world I am confident that you can see 

many outstanding examples of teachers making effective use of generalisation. 

The repetition which is an integral part of the number system opening up a wide 

range of possibilities. Such activities can be very satisfying and confidence 

boosting as young children often display  a great sense of achievement on 

realising the pattern 0, 1, 2...10, 11, 12...20, 21, 22.  

Here, however, I want to focus on three examples where some teachers 

generalise without appreciating that it may be inappropriate. 

The first arises when early years’ practitioners do not have a thorough 

understanding of some fundamental mathematical concepts.  In the past I do not 

think that this was perceived as an issue as, until recently in England for 

example, working with young children was perceived as a low status occupation 

requiring few formal qualifications. A common misconception among some 

early years’ teachers is that zero (0) means nothing rather than the absence of 

something (Cockburn and Parslow-Williams, 2008). This can result in much 

confusion when their pupils endeavour to unravel the patterns of place value. 

The second example of a generalisation seems to occur when teachers wish to 

simplify something for their pupils.  This may be for a variety of reasons 

including pressure to get through a syllabus and children finding it difficult to 

grasp a new concept. A classic case in the early years’ classroom is when 

subtraction is only taught as ‘taking away’ and pupils are encouraged to 

generalise by, ‘always taking away the smaller number from the bigger one’ 

(Cockburn, 1999). 

The final example does not relate to mathematics specifically but rather to some 

teachers’ tendency to generalise children’s ability by putting them into groups 

for teaching purposes. This, in turn, can result in some unfortunate self-fulfilling 

prophecies (Rosenthal and Jacobson, 1968) and, in the later years of schooling, 

RHINOS or, in other words, children who are ‘Really Here in Name Only’ (e.g. 

Nardi and Steward, 2003). 
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PRELIMINARY GROUNDWORK 

Before we can consider how we might encourage appropriate generalisations in 

early years’ mathematics classrooms, I would argue that there may be 

a considerable amount of fundamental groundwork to be done. 

In this section I will refer to a variety of sources. Initially, however, unless 

otherwise stated, I will reflect exclusively on data collected as part of a study 

funded by the Nuffield Foundation
1
 for I think it provides some valuable 

insights as to where we should start. By way of background: this was a small 

scale – as yet unpublished - study designed to develop of understanding of less 

successful teachers. It involved 12 semi-structured interviews (Robson, 1993) 

with experienced head teachers and yielded a wealth of material which extended 

far beyond my original remit. 

When discussing how to develop their colleagues’ professional practice the head 

teachers explained that there were several issues which had to be attended to 

before any progress was likely. These are overlapping and interconnecting but, 

in essence, they involve, 

Focusing on attitudes  

Bob
2
 explained of early years’ teachers in general, ‘...a lot of them come in with 

their own baggage, don’t they?’ (592-593). This was echoed by Hannah who, on 

describing the attitudes of her staff to mathematics said, ‘I still think as a culture 

we don’t do maths terribly well.  So easily people say “I’m not very good’ (672-

673).  

It was clear that in some schools changing teachers’ attitudes was not enough 

for, as Jean explained, ‘If we don’t work with the parents, there is no way we 

can get those children because it just isn’t important’ (475-476). 

Building trust 

Some of the head teachers I spoke to were aware that not all of their colleagues 

trusted them making it difficult to move forward. Clare, for example, recounted 

that, 

... the trouble was that very often it (the teacher’s planning) looked very good on 

paper, but actually it didn’t translate like that into the classroom.  And when I had 

supply teachers going in to cover for her, they said: ‘I can’t do all this’ and then 

they felt like failures.  And she would be telling her colleagues that, actually, she 

was doing it all.  So they all thought, gosh, that she’s this wonder woman.  When, in 

fact – in reality – she wasn’t. (Clare 268-273, brackets added) 

                                                 
1
 The author gratefully acknowledges financial support from the Nuffield Foundation (project # 39039) 

2
 All of the participants’ names have been changed. 
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Developing teachers’ confidence 

As with children (James, 1899) it is also important to foster some teachers’ 

confidence in themselves. David reflected on the progress he was making with 

‘a worrier’, 

...we just want her to be a little bit more….braver.  She will probably feel 

uncomfortable doing these things but…a lot of the new things that she feels 

uncomfortable about are the new initiatives that we’ve been driving through.  

Because they are new initiatives to everybody, she knows that everybody, you 

know, she knows that everybody else has similar anxieties so it has helped her. 

(David, 182-187) 

Focusing attention 

Clare succinctly explained that sometimes she has encountered teachers who, 

‘...are extremely industrious but they are focusing on the wrong things’ (88-89). 

Recognising a need 

The head teachers explained that there were a range of reasons why some people 

do not appreciate that there is a need to change their professional practice. The 

two, which are of particular relevance here, are sometimes related. 

The first is that, on the face of it, a teacher may appear to be doing a good job 

with a beautifully organised classroom, contented pupils and complimentary 

parents. Closer examination, however, can reveal that the children may be 

significantly underperforming as Debra explained when she took over the 

headship of a middle class school, ‘The kids were getting the equivalent of 

national expectations but they were bright kids who should have been far, far 

above that’ (222).    

A second obstacle to teachers appreciating that there may be a need to amend 

their practice is that, because their pupils are performing well in mathematics, 

they are unaware that they may be creating problems for the future. This became 

particularly apparent during a European project funded by the British Academy
3
. 

When the equals sign (=) was discussed it was clear that some of the early years’ 

teachers thought of it in terms of an operator rather than a symbol of equivalence 

and that this significantly restricted the way they used it in their classrooms 

(Parslow-Williams and Cockburn, 2008). This observation prompted Marchini 

and colleagues to examine undergraduates’ understanding of equality and 

discovered that, in some cases, it was significantly lacking (Marchini et al, 

2009). 

Uncovering any other underlying problems 

In addition to the above, the head teachers explained that some extra support 

might be required from time to time as in the following cases: 

                                                 
3
 The author gratefully acknowledges financial support the British Academy (LRG-42447) 
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... there were occasions where I think she was physically and emotionally and 

mentally a bit tired and sort of, you know – not cruising to retirement, because she 

was too conscientious for that – but she had lost that kind of real spark (Maggie, 

396-398) 

... teachers go through all sorts of difficult things in their lives and that can affect 

how you perform at school.  So, if suddenly a teacher has been… well, suddenly 

they have a family to care for and therefore their priorities can change. (Clare, 44-

46) 

In some cases, however, head teachers taking up a new post encountered 

colleagues who appeared to be doing an adequate job but, ‘They are sitting very 

comfortably …in too much of a comfort zone.’ (David, 100) 

MOVING FORWARD 

Once the groundwork is underway in early years’ settings focusing on 

mathematics – let alone something as specific as generalisation – is not 

necessarily as straight-forward as one might imagine. Indeed the head teachers 

indicated that there were several further factors to take into consideration before 

they could make substantial progress. The following were discussed in the 

context of committed and experienced teachers although, you will note, that 

there are several similarities the examples I have already presented for their less 

successful colleagues. 

Approaching professional development in a non threatening manner 

In my experience I have often found that the very best early year’s teachers 

often lack confidence in their abilities. Indeed Hannah remarked, ‘The more 

self-critical people are generally the better I find them as teachers’ (24-25). 

Accordingly she tends to work to people’s strengths, 

There’s all that sense of ‘we’re not very good…’ the two teachers who are really 

good in school they are both passionate about literature so what we are trying to say 

is ‘well, what is it you do, in teaching literacy that we can transfer to teaching 

mathematics? (672-676) 

Ellen, recognising that teachers appreciate the opportunity to buy new 

equipment, invited them to bring their catalogues to the staffroom as this proved 

to be, 

...a good way in because it meant that my Deputy could see...what they were 

planning to do and say ‘If you are doing money then perhaps we could get this, you 

know, this equipment’ and ‘Had you thought of doing’ ‘Oh, we could do a shop’ or 

‘We could do this, that and the other’ and feed in ideas and appropriate equipment 

for the children to play with.  So, that was a wonderful way in for Maths. (585, 589-

594) 
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Building on teachers’ interests 

In discussion with the head teachers they were very honest about how they had 

acquired many of the techniques they used through trial and error.  Thus, for 

example, Jean recalled how she had observed that the same topic could be 

presented to her staff in a number of different ways with varying degrees of 

success. By way of illustration she said, 

I think the key thing about them is that on pedagogy they are very, very strong and 

if we sit down and...look at it… with a pedagogical focus…they can go ‘yes, 

actually, you’re right’... Whereas if I started from saying like ‘I’m not happy with 

your planning – do it like this’ they would probably say ‘no, I don’t think I want to 

do it like that.’ But if you can say, ‘Look, this is the outcome.  This is how ….how 

is that child learning within this?’ they will go ‘yeah, yes, I can see what you are 

saying. (184-190) 

Maggie simply recounted, ‘I think, as a whole, people took it on board, you 

know, very willingly because they could see the sense in it.’ (633-634)   

Working across age phases 

Debra found working as a whole school team proved effective, 

It’s actually getting them to really know their children and create the culture of team 

effort within the school and not, for example, to say ‘Well, actually, the year 6 

results belong to year 6’.  Year 6 results belong to the whole school.  And, all the 

time, looking for trends in things so, for example, if it’s Maths, and you say ‘well, 

you know, we dipped this year in our Year 6 SATS (national tests). Let’s analyse all 

the SATS papers and see where they went wrong.’ And ‘OK, it’s subtraction.’  

Right, the whole school, then, is going to have a push on subtraction.  And let’s 

have some staff training on that.  Let’s gets our targets in sight of what we are going 

to do with our kids as far as subtraction is concerned. And let’s look at the 

difficulties, let’s model to each other, let the whole school talk about how we are 

going to teach subtraction in different ways.  Get different teachers to lead staff 

developments and then evaluate what the kids have done better. (149-165, brackets 

added) 

Poised for action? 

In some schools the above are likely to be much easier to achieve if you have an 

enthusiastic and able nucleus of staff such as, 

I have a superb Maths subject leader who gees (i.e. encourages and inspires) us all 

up and makes sure that we do Maths a great service (Janice, 347-348, brackets 

added) 

It would be naive to suggest, however, that all schools are ready to move 

forward even if their head teacher is outstanding. Bob described how, 

...with both schools where I’ve been a Head …there’s been…you know a bell 

curve, you know, you’ve got some at each end and the majority are in the middle 
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and it’s being able to move the majority in the middle in the direction in which you 

want to go is…is the difficult part. (125-128) 

Later he elaborated, 

I think one of the keys to it is actually getting the balance in the staff 

between…shifting the balance, shifting the core dynamic within the staff room 

away from the negative, you know ‘we’ve done that before’ and ‘that hasn’t 

worked’ ... and you start to appoint staff. (Bob, 282-286) 

THE ROLE OF INITIAL TEACHER EDUCATION 

Over the years I hope I have been increasingly successful in preparing newly 

qualified teachers for Bob and his colleagues to appoint. In essence I have found 

much of my role has been similar to that described by the head teachers above. 

At the University of East Anglia we work hard to develop our students’ 

mathematical understanding and confidence. Much of this is done through 

modelling and encouraging a range of techniques. Thus, for example, we 

introduce Haylock’s model (Haylock and Cockburn, 1989) and invite 

prospective teachers to examine their understanding of a concept in terms of real 

objects, pictures, mathematical symbols and mathematical language. We work 

on developing students’ mathematical knowledge, urging them to seek 

generalisations and, on finding them, to hunt for counter examples. Recently the 

work of Milan Hejný and his associates has proved particularly useful (see, for 

example, Hejný and Slezáková, 2007; Hejný, 2008; Littler and Jirotková, 2008) 

in demonstrating how learners can build up their conceptual understanding. This 

process may be summarised thus: 

Individual experiences → generalisation → generic model → abstraction → 

abstract knowledge 

CONCLUDING REMARKS 

Almost without exception young children have a great capacity for learning and 

they generally embark on their earliest years’ of schooling with energy and 

enthusiasm: the potential is all there and our task is to capitalise on it. 

Bob, one of the head teachers I interviewed, said an expert teacher is someone 

who, ‘...is open to new ideas and fresh challenges’ (40). Fortunately there are 

many such individuals in the profession.  We know a considerable amount about 

them as they tend to be the teachers who volunteer to take part in research 

studies. In this paper I have concentrated rather more on their less confident and 

mediocre colleagues for we know far less about them and yet I believe that 

many of them have the potential to be considerably more effective mathematics 

educators than they currently believe. As a research community I would suggest 

that we still have much to learn about such individuals and how best to enhance 

their practice. We cannot ignore them for, as I have illustrated above, their 
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capacity to generalise inappropriately has the potential to create considerable 

damage in the mathematics classroom and beyond. 

So, to return to my original question: to generalise or not to generalise? My 

answer is ‘yes’ but only if you know what you are doing! 
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Generalizations are the engine which forms concepts in all domains and claims 

about almost any subject. It seems that it is possible to claim that 

generalizations are kind of a cognitive drive (if we use Freudian terminology) or 

cognitive need (if we prefer the terminology of Maslow). If we like to use 

evolutionary psychology it will be easy to point at the evolutionary advantage of 

generalizations. Namely, when we were still hunters in the wilderness, 

generalizations helped us to survive.  The talk will point at the thought processes 

which lead to generalizations. All that is true about non-technical situations.  

Things are different in mathematical thinking. Here the ultimate goal is that the 

student will acquire the desirable mathematical behavior. Namely, in 

mathematical contexts we are supposed to train our mind to form concepts by 

relying on formal definitions and to establish claims by relying on proofs. This 

contradicts the spontaneous nature of thinking. Thus, some mathematics 

educators, in order to facilitate the learning of mathematics, offer to the students 

strategies which are supposed to imitate the assumed spontaneous way of 

forming generalizations. They do it by presenting to the students examples which 

will lead them to the correct generalizations. The talk will focus on the role of 

examples in everyday thought processes and in mathematical contexts. 

1. INTRODUCTION 

What I am presenting here is not a research report. It is an essay. In essays it is 

allowed to reflect, to speculate and, hopefully, to stimulate. Also, I consider it a 

mathematics education essay, the way I see mathematics education.   Namely, as 

a discipline which is designed to help mathematics teachers and mathematics 

teacher trainers to understand aspects of learning and teaching mathematics. It is 

not designed, according to the way I conceive it, to come up with innovations in 

cognitive psychology, brain research, philosophy of mathematics or sociology. 

On the other hand, since I came to it from mathematical research, my way of 

looking at things is influenced by my mathematical background. Namely, in the 

back of my mind always sits a deductive theory in which there are concepts (or 

notions if you wish) and claims about these concepts and some inference rules 

by means of which we derive new claims (theorems, if you wish), from claims 

already assumed to be true or to be proven. I am absolutely aware that in 

a domain like mathematics education, as well as in other domains in behavioral 
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sciences, there are different ways to establish various claims.  However, pointing 

at the differences is quite often very helpful. 

2. GENERALIZATIONS 

I am not going to define here the notion of generalization.  I consider it as a 

primary notion in the sense of primary notions in a deductive system (this is 

a reference to deductive systems which I mentioned earlier).  

Before going on I would like to clarify the distinction between a notion and 

a concept the way I use these words. A notion is a lingual entity. It can be 

a word or a combination of words (written or pronounced); it can also be 

a symbol. A concept is the meaning associated in our mind with a notion.  It is 

an idea in our mind. Thus, a notion is a concept name. There might be concepts 

without names and for sure there are meaningless notions, but discussing them 

requires subtleties which are absolutely irrelevant to this context. In many 

discussions people do not bother to distinguish between notions and concepts 

and thus the word "notion" becomes ambiguous. The ambiguity is easily 

resolved by the context.  

So, back to generalizations: If we reflect about people's thought processes we 

realize that there is a tendency there to generalize. Here is a small sample of 

accidental generalizations: 1. Little children are cute. 2. Women are gentle. 

3. Men prefer to watch football on TV than to have a conversation with their 

wives. 4. Trains in my country are always late (when I say my country it is not 

necessarily my country, it can be anybody's country). I am not claiming that 

these generalizations are true.  I present them in order to support my claim about 

the tendency of human beings to generalize.  Instead of the word "tendency" 

I would like to use a technical notion borrowed from the domain of psychology. 

The notion I have chosen is borrowed from the Freudian psychology. Freud 

spoke about drives (Trieb in German).  He spoke about the sex drive and about 

the death drive. However, the notion of drive can be related to many more 

actions in our behavior. We can speak about the drive to protect, a drive to 

discover, aggression drive, competition drive, sadistic or masochistic drives etc.. 

A drive which is relevant to the theme of our conference, is the drive to 

generalize or, in short, the generalization drive
1
. One major outcome of 

generalizations is concepts. Another major outcome of generalizations is 

universal claims of the kind I mentioned earlier.  

Before dealing with these two outcomes in details I would like to say few words 

about the origin of drives. The common approach to drives in evolutionary 

psychology is not to ask about the origin of our different drives or about our 

certain abilities. It is assumed that they were formed accidently during the 

course of evolution. However, these drives gave the creatures that had them 

an evolutionary advantage. For instance, the ability and the drive to generalize 

helped us to survive million years ago, when we were still primitive beings 
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wandering in the wilderness. While wandering in the wilderness, when noticing 

a certain creature coming up against us we were supposed to decide very fast 

whether this creature is an enemy or a friend. In case it was an enemy we were 

supposed to decide immediately whether to fight or to flight. Our ability and 

drive to generalize form in our mind the concept of enemy. The ability to 

identify a specific enemy and to determine what should be the appropriate action 

at a given situation was critical for our survival.  A more detailed discussion of 

this issue can be found in Goleman (1995, Chapter 2). 

3. GENERALIZATIONS AND CONCEPT FORMATION 

I would like to discuss now in a more detailed way the generalizations which are 

related to concept formation. Let us consider little children learning to speak. 

How do we teach them, for instance, the concept of chair? The common practice 

is to point at various chairs in various contexts and to say: ‘chair’. Amazingly 

enough, after some repetitions, the children understand that the word ‘chair’ is 

supposed to be related to chairs, which occur to them in their daily experience, 

and when being asked ‘what is this?’ they understand that they are expected to 

say: ‘chair’. Later on, they will imitate the entire ritual on their own initiative. 

They will point at chairs and say: ‘chair’. I would like to make a theoretical 

claim here by saying that, seemingly, they have constructed in their mind the 

class of all possible chairs. Namely, a concept is formed in their mind, and 

whenever a concrete object is presented to them, they will be able to decide 

whether it is a chair or not. Of course, some mistakes can occur in that concept 

formation process.  It is because in this process two cognitive mechanisms are 

involved. The first mechanism is the one that identifies similarities. The mind 

distinguishes that one particular chair presented to the child is similar to some 

particular chairs presented to her or him in the past. The second mechanism is 

the one which distinguishes differences. The mind distinguishes that a certain 

object is not similar to the chairs which were presented to the child in the past 

and, therefore, the child is not supposed to say ‘chair’ when an object that is not 

a chair is presented to him or her by the adult. Mistakes about the acquired 

concept might occur because of two reasons. An object, which is not a chair (say 

a small table), appears to the child (or even to an adult) like a chair. In this case, 

the object will be considered as an element of the class of all chairs while, in 

fact, it is not an element of this class. The second reason for mistakes is that an 

object that is really a chair will not be identified as a chair because of its weird 

shape. Thus an object which was supposed to be an element of the class is 

excluded from it. More examples of this type are the following: sometimes, 

children consider dogs as cats and vice versa. These are intelligent mistakes 

because there are some similarities between dogs and cats. They are both 

animals; sometimes they even have similar size (in the case of small dogs) and 

so on. 
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The above process which leads, in our mind, to the construction of the set of all 

possible objects to which the concept name can be applied is a kind of 

generalization. Thus, generalizations are involved in the formation of any given 

concept. Therefore concepts can be considered as generalizations. 

The actions by means of which we try to teach children concepts of chair are 

called ostensive definitions. Of course, only narrow class of concepts can be 

acquired by means of ostensive definitions. Other concepts are acquired by 

means of explanations which can be considered at this stage as definitions. 

Among these concepts I can point, for instance, at a forest, a school, work, 

hunger and so on. When I say definitions at this stage I do not mean definitions 

which are similar, or even seemingly similar to rigorous mathematical 

definitions. The only restriction on these definitions is that familiar concepts will 

be used in order to explain a non-familiar concept. Otherwise, the explanation is 

useless. (This restriction, by the way, holds also for mathematical definitions, 

where new concepts are defined by means of previously defined concepts or by 

primary concepts). In definitions which we use in non-technical context in order 

to teach concepts we can use examples. For instance, in order to define furniture 

we can say: A chair is furniture, a bed is furniture, tables, desks, and couches are 

furniture.  

The description I have just given deals with the primary stage of concept 

formation. However, concept formation in ordinary language is by far more 

complicated and very often, contrary to the mathematical language, ends up in 

a vague notion. Take, for instance again, the notion of furniture. The child, when 

facing an object which was not previously introduced to him or to her as 

furniture, should decide whether this object is furniture or not. He or she may 

face difficulties doing it. Also adults might have similar difficulties. I myself 

have difficulties with the notion of recyclable items. Usually, they are defined 

by general notions like glass, plastic, aluminium or paper. In some countries you 

can see pictures of recyclable items which are placed on recycling containers. 

Well, are milk cartons recyclable? Are thin plastic bags recyclable? Are cottage 

cheese cups recyclable?  I keep asking these questions the recycling department 

in my town and I do not get clear answers. 

This is only one example out of many which demonstrates the complexity of 

concept formation in the child's mind as well as in the adult's mind.  I have not 

mentioned yet the concept formations of abstract nouns, adjectives, verbs and 

adverbs. Nevertheless, despite that complexity, the majority of the children 

acquire language at an impressive level by the age of six (an elementary level is 

acquired already at the age of three).  The cognitive processes associated with 

the child's acquisition of language are discussed in details in cognitive 

psychology, linguistics and philosophy of language. One illuminating source 

which is relevant to this issue is Quine's (1964) "Word and object." However, 

a detailed discussion of these processes is not within the scope of this lecture. 
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In addition to the language acquisition the child acquires also broad knowledge 

about the world. He or she knows that when it rains it is cloudy, they know that 

dogs bark and so on and so forth. In short, they know infinitely many other facts 

about their environment. And again, it is obtained in a miraculous way, 

smoothly without any apparent difficulties. Things, however, become awkward 

when it gets to mathematics. 

4. THINKING IN MATHEMATICAL CONTEXTS, SYSTEM I AND 

SYSTEM II. 

One possible reason for things becoming awkward in mathematics is that, in 

many cases, mathematical thinking is essentially different from the natural 

intuitive mode of thinking according to which the child's intellectual 

development takes place. The major problem is that mathematical thinking is 

shaped by rigorous rules and in order to think mathematically children, as well 

as adults, should be aware of these rules while thinking in mathematical 

contexts. This requires awareness. It requires the ability to reflect and to be 

analytical. In short, it requires thought control. Thought control has a negative 

connotation because of George Orwell's 1984, especially in countries which 

were under a communist regime. However, in the context of mathematical 

thinking and also in the broader context of rational thinking it should have 

a positive connotation.  

Psychologists, now a day, speak about two cognitive systems which they call 

System I and system II. It sounds as if there are different parts in our brain 

which produce different kinds of thinking.  However, this interpretation is 

wrong.  The correct way to look at system I and system II is to consider them as 

thinking modes. This is summarized very clearly in Stanovitch (1999, p.145). 

System I is characterized there by the following adjectives: associative, tacit, 

implicit, inflexible, relatively fast, holistic and automatic. System II is 

characterized by: analytical, explicit, rational, controlled and relatively slow. 

Thus, notions that were used by mathematics educators can be related now to 

system I or system II and therefore this terminology is richer than the previously 

suggested notions. Fischbein (1987) spoke about intuition and this can be 

considered as system I. Skemp (1979) spoke about two systems which he called 

delta-one and delta-two which can be considered as intuitive and reflective, or 

using the new terminology, system I and system II, respectively. I myself 

(Vinner, 1997) have used the notions pseudo-analytical and pseudo-conceptual 

which can be considered as system I. 

In mathematical contexts the required thinking mode is that of system II. This 

requirement presents some serious difficulties to many people (children and 

adults) since, most of the time, thought processes are carried out within system I. 

Also, in many people, because of various reasons, system II has not been 
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developed to the extent which is required for mathematical thinking in particular 

and for rational thinking in general. 

5. CONCEPTS AND GENERALIZATIONS; TWO ADDITIONAL 

EXAMPLES AND SOME PROBLEMS 

Consider the formation of notions in different languages. Some actions occurred 

in a given culture. People, let us say, danced. Various dances were formed. At 

a certain stage, the people who were involved identified certain similarities 

between some dances. Identifying similarities is the first stage of 

a generalization. A concept has been formed. Then, somehow, a name was given 

to this concept - the concept name; the notion. Think for instance of the valse 

(waltz, in German). It is quite reasonable to assume that people used this notion 

to describe the occurrences of this dance before a formal definition was given to 

it.  At a certain stage, when the question "what a valse is?" was introduced, an 

explanation (or a definition if you wish) should have been given. If you look for 

such an explanation now a day in various dictionaries you may find something 

which is similar to the following: a ballroom dance in triple time with a strong 

accent on the first beat. Any of a variety of social dances performed by couples 

in a ballroom. The Webster's Ninth New Collegiate Dictionary (1986) claims 

that official use of the verb "waltz" in German started in 1712, but only in 1781 

the official use of "waltz" as a noun was started. This, by the way, supports 

Quine's claim (1964)  that nouns were developed from verbs by a process which 

is called reification. In English, the noun "valse" appeared in 1796. If you listen 

to a valse by Johann Strauss you immediately get the impression that it is 

a ballroom dance in triple time with a strong accent on the first beat. On the 

other hand, if you listen to a valse by Frederic Chopin you can hardly say that it 

is a ballroom dance.  It is not at all similar to the valse by Johann Strauss and 

many other well known valses which are quite similar to the valses by Strauss. 

So, why did Chopin choose the notion of valse as a title for his compositions? 

Well, I do not want to get into musicological discussions here, but by doing this 

Chopin extended the notion of valse to a bigger set of musical compositions.  

The authors of the above Merriam Webster dictionary were aware of that and 

they noted an additional meaning to this notion: a concert waltz. This example 

beautifully illustrates a development of a concept from a narrow set of examples 

to a broader set. We can find similar processes of concept development also in 

mathematics. So, the next example will be a mathematical example. Consider 

the concept of polygon. Again, it is reasonable to assume that already in ancient 

days people (not necessarily mathematicians) were aware of certain polygons.  

They dealt with all kind of triangles, with various sorts of quadrangles, with 

regular and irregular pentagons, hexagons etc. Then, similarities between these 

geometrical shapes were noticed and thus the first stage of generalization took 

place. A concept was formed. In order to discuss it a name was required. The 

word polygon was suggested by Greek mathematicians sometime in the fifth 
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century B.C. When being asked what a polygon was, the answer could be: 

A closed plane figure bounded by straight lines (the above Webster's 

dictionary). It is reasonable to assume (although I cannot point at any historical 

document which can support it) that at the very beginning of the polygon 

concept people thought mainly about convex polygons. However, the above 

definition should accept also concave polygons as members of the polygon club. 

Later on, a refinement of the above polygon definition was formed. It started 

with the notion of a connected sequence of line segments. A polygon is 

a connected sequence of line segments such that the second endpoint of the last 

segment is identical with the first endpoint of the first segment. Note that this 

definition presents higher cognitive demands on the learner than the first one. 

Also, this definition should accept as members of the polygon club polygons 

which intersect themselves. When this was realized some mathematicians 

decided to be concerned only with polygons which do not self-intersect and thus 

the notion of simple polygons was formed. On the other hand, other 

mathematicians decided to study polygons that do self-intersect and thus the 

domain of star-polygons was introduced. According to the Wikipedia, the 

mathematician who started to study the star-polygons in depth was the English 

scholar Thomas Bradwardine (about 1290–1349). The Wikipedia also claims 

that only the regular star-polygon have been studied in any depth and it adds that 

star polygons in general appear not to have been formally defined. So, here is a 

mathematical concept that does not have a definition. It can be illustrated by the 

following picture:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

... 

And here is a picture of some other polygons which was downloaded from 

a Wikipedia page:  

 

http://en.wikipedia.org/wiki/File:Star_polygon_5-2.svg
http://en.wikipedia.org/wiki/File:Star_polygon_7-2.svg
http://en.wikipedia.org/wiki/File:Star_polygon_7-3.svg
http://en.wikipedia.org/wiki/File:Octagram.png
http://en.wikipedia.org/wiki/File:Star_polygon_9-2.svg
http://en.wikipedia.org/wiki/File:Star_polygon_9-4.svg
http://en.wikipedia.org/wiki/File:Decagram_10_3.png
http://upload.wikimedia.org/wikipedia/commons/1/1f/Assorted_polygons.svg
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6. GENERALIZATIONS RELATED TO BELIEFS ABOUT CONCEPTS 

The moment a concept is formed also some beliefs are formed about it. These 

beliefs can be formulated as universal statements. For instance, consider again 

a child who acquired the concept of dog. He or she knows that dog barks. 

Hence, there is an implicit claim here about dogs which is: All dogs bark. Some 

children experience a fearful event with a dog.  This may lead them to the 

implicit belief that all dogs are dangerous. As a consequence of this belief they 

try to stay away from any dog they see. In an early work of mine (Vinner, 1983) 

I suggested to call the set all the concept examples in a certain person's mind 

together with all the beliefs about them the concept image of that person. 

Usually, the beliefs are generalizations formed by the generalization drive. 

Therefore, in most cases, there are products of the above system I. They are 

formed very fast, sometimes, relying only on a sample of a single element.  If 

system II were involved the path from a statement about a single element to 

a universal statement should pass through the following statements: There is at 

least one element about which the predicate P is true. There are some elements 

about which P is true. There are quite many elements about which P is true. 

There are many elements about which P is true. P is true for almost every 

element. P is true for all elements under consideration. Thus, system II is 

supposed to stop at several stations before reaching, if at all, the final 

conclusion: P is true for all elements under consideration. However, the 

spontaneous tendency of our mind is to move fast and to reach a final conclusion 

in relatively short time. Therefore, quite often, we observe generalizations based 

only on a single example. 

Before mentioning some wrong generalizations about mathematical concepts I 

would like to illustrate this point by mentioning generalizations made in 

everyday contexts. "Mathematicians are arrogant", some people claim. Well, 

there is at least one mathematician who is arrogant (I myself met one). Are they 

quite many arrogant mathematicians? Are there many? Are all mathematicians 

arrogant? A careful analysis by system II won't allow us to reach such 

a conclusion. However, there are people who believe that mathematicians are 

arrogant. Among them you will find victims of school mathematics. Their hatred 

to mathematics is a strong motivation for them to adopt negative views about 

mathematicians. 

Another example: "Men are male Chauvinists", claim some feminists. It is true 

that quite many men are male Chauvinists, but is it true that all men are male 

Chauvinists? There are some feminists who believe in it.  Among them you may 

find women who had a terrible experience with one man and as a result they 

developed hatred to all men. The view that all men are male Chauvinists is 

supported by their hatred to all men.  Hence, we see from the last two examples 

that, in some cases, also emotions are involved in shaping concept images.   
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The last example is really a male Chauvinist generalization. The reason I present 

it here is that a wonderful music is associated with it, the famous aria from 

Verdi's Rigoletto. I should emphasize that, to the best of my knowledge, neither 

the libretto author, Francesco Maria Piave, nor the author of the play on which 

the libretto is based, Victor Hugo, can be considered as male Chauvinists. On 

the contrary and my claim is supported by the fact that the man who sings this 

aria, the Duke, is presented in the opera as a morally corrupted disgusting 

person. Here it is: 

Woman is flighty 

Like a feather in the wind, 

She changes her voice — and her mind. 

Always sweet, Pretty face, 

In tears or in laughter, — she is always lying. 

Always miserable 

Is he who trusts her, 

He who confides in her — his unwary heart! 

Yet one never feels 

Fully happy 

Who on that bosom — does not drink love! 

My claim about system I generalizations in everyday thought processes holds 

also for generalizations in mathematical contexts. Therefore, in mathematical 

contexts, quite often, we find concept images which are not coherent with the 

concept definitions. Among them one can mention the following: multiplication 

increases; the altitude in a triangle falls always inside the triangle and it cannot 

be a side of the triangle; the elements of an infinite sequence which has a limit 

can never reach the limit; a function should be given by an algebraic formula. 

If developing system II in our students would be one of the goals of mathematics 

education then discussions about the above misconceptions should be part of the 

mathematics classes. Reflections about contradictions between concept images 

and concept definitions should be integrated in our lesson planning. 

Unfortunately, since almost the only goal of mathematics education now a day is 

to prepare our students for the crucial exams, system II will remain quite 

neglected. 

7. GENERALIZATIONS AND EDUCATIONAL VALUES 

Since I have recommended in various occasions in the past that educational 

values should be integrated in mathematics classes as a by the way habit I would 

like to demonstrate it also in the context of this presentation, the context of 

generalizations.  
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Dealing with educational values starts very often with the Golden Rule. The 

golden rule has many versions in different religions and cultures. For the sake of 

this discussion I have chosen one of the Jewish versions related to Hillel, 

an ancient Jewish scholar (first century, B.C.). 

It says: What you hate – do not do to your friend. One can argue about it by 

saying that the rule should be: Do not do to your friend what he hates. 

A possible answer to this claim can be: How can we know what our friend 

hates? Hillel's suggestion is to generalize from what you hate to other people. 

Thus, here is a generalization based on a single element sample about the entire 

population of human beings. Surely, such a generalization must be wrong. 

However, in this context it is recommended because it tells you how to behave. 

Without it you will never know how to start. 

8. DIFFICULTIES IN OVERCOMING WRONG GENERALIZATIONS 

I mentioned in section 5 that if developing system II in our students were one of 

the goals of mathematics education then discussions about misconceptions 

should be part of the mathematics classes. A necessary condition for doing that 

is the student's capability of reflective thinking. According to Piaget and 

Inhelder (1958) this capability is acquired at the age of formal operations, 

namely, at the age of adolescence. The adolescent's theory construction (it is 

said there, p. 342) shows that he (the adolescent) has become capable of 

reflective thinking. This implies that reflective discussions with our students 

about their misconceptions are pointless before they reach the junior high level. 

Even if we do not accept all the theoretical claims of Piaget, reflective 

discussions are quite problematic at any age. They require from the teacher 

special skills of discussion management. They also require the students' 

cooperation.  Usually, discussion management is not part of teacher training at 

any stage and usually students are not used to listen to each other and to reflect. 

Also, very often reflective thinking leads to cognitive conflicts. Piaget believed 

that cognitive conflicts will end up with appropriate accommodation. However, 

experience shows that this is not always the case. Thus, my recommendation to 

develop system II in mathematics classes is more of a vision than a practical 

advice. Nevertheless, I would like to elaborate a little about the desirable 

mathematical thinking
2
 and the challenges it presents to children and 

mathematics educators. For children who only start studying mathematics at the 

elementary school with thinking habits that they acquired in their early age, 

desirable mathematical thinking is not a simple challenge. For instance, in 

kindergarten, they learned about some geometrical shapes as squares, rectangles, 

triangles and more. They understood that rectangles and squares have different 

shapes (in rectangles the adjacent sides are not congruent). All of a sudden, their 

third grade teacher tells them that a square is also a rectangle. When it happens, 

it is a kind of a cognitive conflict and it requires a conceptual change. 

Unfortunately, quite often, the desired conceptual changes do not occur. The 
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task of the third grade teacher, whose mathematical background, sometimes, is 

not satisfactory, is to explain to the children why they should, from this point on, 

consider squares as rectangles. Later on, or at the same stage, they are required 

to consider rectangles as parallelograms, while their concept images tell them 

that parallelograms do not have right angles. In situations like this children may 

start developing ambivalent attitudes toward mathematics. I am not going to 

point at more situations in which ambivalent attitudes toward mathematics can 

develop. Also, I am not suggesting here cures to the problem. My only 

recommendation to handle conflicts between concept images and concept 

definitions is to borrow some advice from the relatively new social science 

discipline - conflict management. The advice is that while interacting with 

people with whom you have a conflict, try to focus, if possible, on issues about 

which it is relatively easy to achieve an agreement, and try to avoid, as long as 

possible, dealing with issues that are extremely hard to solve. I believe that at 

the school stages of learning mathematics, especially at the elementary level, it 

is quite possible to apply this advice. 

Let us deal now with some conflict situations at the junior high level. At this 

age, in many countries, the students study some chapters in Euclidean geometry. 

In this context, definitions are indispensible since very often new notions are 

introduced to the students, such as median, altitude, perpendicular bisector and 

more. Also, some familiar notions, such as angles or parallel lines, for which the 

students have concept images, require certain clarifications. With new notions, 

there is no potential conflict between concept images and concept definitions. 

However, taking into account the fact that the students’ mind (as well as our 

mind) tends to rely on concept images and not on concept definitions in thought 

processes, we should do our best to form the correct concept images in the 

students’ mind. For instance, if we teach the concept of a median we should 

present it to the students in all kinds of triangle positions and not mainly in 

triangles in which one side is horizontal and the median is drawn to the 

horizontal side. If we use the practice of drawing the median only to the 

horizontal side of the triangle, we may find out that after a while, when the 

concept definition is forgotten or has become inactive, the students will find 

difficulties in identifying or drawing medians in triangles that do not have 

a horizontal side.  

Anyhow, geometry at the junior high level is probably the best context to teach 

the role of definitions in a deductive structure. Here, students are expected to 

understand that the meaning of a concept is determined by its formal definition 

and it does not matter what their previous views about the concept were. They 

are expected to play the game of mathematics as deductive structure according 

to its rules. They are expected to follow the rules of the game. Some students 

may like it, others may dislike it. Here, individual differences play a critical role. 

It is similar to the fact that some people like the basketball game and others 
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prefer football. We should respect individual differences and it is a pedagogical 

mistake to force changes in taste and inclinations. The differences have 

psychological reasons; some of them are structural, while some of them are 

acquired. As long as we are not concerned with moral issues, there is no 

justification for imposing on our students games they do not like to play. We 

should be especially sensitive since mathematics, to a certain extent, is an 

obligatory discipline for all school students. Sometimes, for the sake of 

‘‘mathematical integrity’’, the curriculum includes topics for which the students 

do not have mathematical maturity or solid mathematical background.  For 

instance, the case of irrational numbers Some curriculums insist on introducing 

this concept to the students at the end of the elementary level or in the beginning 

of the junior high level.  Usually the following definition is suggested: an 

irrational number is a number that cannot be expressed as a ratio between two 

integers. A lot of mathematical ideas are required to understand this concept. 

The curriculum does not have the time to elaborate on it. The practice is to 

mention some irrational numbers, and the simplest practice at the junior high 

level is to mention π.  Thus, π becomes part of the concept image of irrational 

numbers.  On the other hand, at an earlier stage, in some countries, the students 

are told that: π ~ 22/7. The symbol "~" means approximately equal. Since, 

system I tends to ignore seemingly small differences the "approximately equal" 

becomes "equal" and "π ~ 22/7" becomes "π = 22/7." At this stage, the equality 

π = 22/7 becomes a part of the concept image of π. At a later stage, surprisingly 

enough, some students and some elementary teachers when asked to give an 

example of an irrational number, point at 22/7. The explanation is quite clear. 

Consulting definitions is a system II project. The definition of irrational numbers 

was, probably, too difficult to understand. Hence, it was forgotten or ignored 

and when being asked about irrational numbers, the students' concept image 

became active and an example, which obviously contradicts the concept of an 

irrational number, was given.  

With regard to algebra and calculus at the senior high level, my advice is to 

maintain an informal way of teaching. This was the way that mathematics was 

taught at the elementary level also at the junior high level. Changing this, all of 

a sudden, causes a discontinuity in the learning process. Generally speaking, 

discontinuities are not desirable since, as I claimed above, they require 

a conceptual change. Such changes may, unnecessarily, cause more students to 

become victims of mathematical difficulties. A partial list of central concepts in 

algebra and calculus at the senior high level may include function, limit, 

derivative, continuity and more. These concepts can be introduced by means of 

examples, which can be followed by general explanations. Indeed, this approach 

may face some difficulties at certain intersections. If you do not introduce the 

Bourbaki definition of a function to the students, then they might not be able to 

deal with all kinds of weird functions presented to them in the curriculum. 

However, there is no need, in my opinion, to present to them all these weird 
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functions. These weird functions will be presented to some students with special 

talent for mathematics at the university, in case they decide to be mathematics 

majors. If you do not present to the students, the ε, n definition for a limit of 

a sequence, they might have some difficulties with the question whether 

a constant sequence an = c has a limit.  Nevertheless, there are ways to smooth 

out this difficulty without presenting to the students the ε, n definition of the 

limit of a sequence.  For example, one can simply say that mathematicians 

decided that the limit of the sequence an = c is c and the reason for that decision 

is usually presented in more advanced mathematics courses.  Similar advice can 

be given about the definition of a limit of a function. It is true that if the ε, δ 

definition were introduced, it will be easier to explain various cases of limits of 

functions. However, as in the case of the sequence, there are ways to smooth out 

the difficulties that can arise. Moreover, it is much easier to cope with these 

difficulties than with the conceptual difficulties caused by the need to 

understand the ε, δ definition of a limit of a function. Last, but not least, the 

continuity of a function can be characterized by its graph (a function is 

continuous if its graph can be drawn without lifting the pen from the paper). 

Although this is not an accurate definition (and there are continuous functions 

the graphs of which cannot be drawn at all), it is better to leave all the weird 

functions to the mathematics majors at the university level. There, they are 

supposed to be exposed to the ultimate rigor of mathematics. This kind of rigor 

is not suitable for high school students, even to those who study mathematics at 

the highest high school level.  We should remember that only few of them will 

choose to be mathematics majors at the university level. Very often when 

rigorous proofs are discussed in mathematical education forums, it is 

recommended that they are not suitable for the majority of high school 

mathematics students. I would like to suggest that rigorous definitions are also 

not recommended for the decisive majority of high school students. 

9. GENERALIZATION SKILLS AS TOPIC IN MATHEMATICS 

CLASSES 

In the beginning of my presentation I spoke about the drive to generalize and 

I claimed that in spontaneous thinking the generalizations are formed by system 

I. Contemporary mathematics education undertook the task of teaching 

mathematics students generalization skills. Now, there is a huge difference 

between everyday situations which spontaneously lead to generalizations and 

artificial situations used as an invitation to generalize. Such situations are 

supposed to activate system II. Technological developments have given us the 

options of doing it elegantly. Thus, it has become a practice in the learning of 

mathematics to use computers as a means to trigger students to form 

generalizations (see for instance Schwartz et al., 1993; Perkins et al., 1995). I do 

not know to what extent this practice is common in my country or in other 

countries. Namely, I do not know the percentage of students who are exposed to 
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this kind of activity. Also, I am not familiar with the particular micro-worlds 

provided by the many softwares used in different places. Therefore, I would like 

to make only a short comment about a potential misconception that might be 

caused by the use of these technologies. Sometimes, the procedure that is used 

by the software is like the following: the students are asked to examine some 

examples of a well-known mathematical theorem (about which they never heard 

in the past). After that, they are asked to make a generalization.  A better notion 

for this context is "conjecture." The conjecture should turn out to be 

a mathematical theorem. The next stage is to ask the students to prove the 

theorem. However, since for many students the proof is only a ritual that occurs 

in the framework of mathematics (Vinner, 2007), but quite dispensable when we 

are out of this framework, then the conclusion about establishing generalizations 

might be the following: it is quite sufficient to examine some particular 

examples. If these examples lead us to a certain generalization then this 

generalization is necessarily true. I myself notice this line of thought in my 

mathematics education courses for elementary mathematics teachers in a master 

program. For instance, I asked my students about the number of all sets which 

are subsets of a set that has n elements. We counted them together for 

n=1,2,3,4,5. The class came to the conclusion that for any n, this number is 2
n
. 

Then I asked my students whether they had any idea how we can prove it. 

I noticed a surprise expression on their faces. The eldest student, a 59 year old 

man who switched to mathematics education from an insurance company said: 

Aren't the examples that we considered enough to establish the generalization. 

Is it possible that this generalization is not true? So, between the two of us, isn't 

the proof an unnecessary formality? I was grateful to this student about his 

comment. His age and his past as an insurance agent gave him a lot of self 

confidence to express these thoughts.  I distinguished some other students who 

nodded their heads in order to indicate that they agree with his view. 

In order to avoid such misconceptions, it is quite desirable to present to the 

students ‘micro-worlds’ in which a set of particular examples supports a certain 

generalization, however, the generalization is false. For instance, in the context 

of quadratic equations, one can lead the students to think that the solutions of 

a quadratic equation of the form x
2
+bx+c=0, where b and c are integers, should 

be divisors of c. There are infinitely many examples which support this 

conjecture. However, it is trivial to point at counterexamples. Thus, if we let 

students form a generalization and then let them realize that the generalization 

they formed is false, then they might understand why it is necessary to establish 

the validity of a generalization in the context of mathematics, as well as in other 

contexts. 

10. A CONCLUDING REMARK 

Since I do not want to end my presentation on generalizations in a pessimistic 

mood I decided to relate in my concluding remark to an old male Chauvinistic 
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generalization from the days of Mozart and Da Ponte. It is the main theme of 

their opera Cosi Fan Tutte (Thus do they all). As a matter of fact, at least the two 

women in the opera, Fiordiligi and Dorabella, are counter examples to Don 

Alfonso's claim: Thus do they all. The two men in the opera, Ferrando and 

Guglielmo, were convinced by Don Alfonso to examine their belief that their 

brides are counter examples to above male Chauvinistic claim. This caused them 

to be involved in extremely unpleasant situations.  Fortunately, there is a happy 

end to the enormous complications and it is summarized by the following lyrics: 

Happy is the man who look 

At everything on the right side 

And through trials and tribulations 

Makes reason his guide 

What always makes another weep 

Will be for him a cause of mirth 

And amid the tempests of this world 

He will find sweet peace.  

Just notice the lines: "Happy is the man who … through trials and Tribulations, 

makes reason his guide". Isn't this a message sent to us by Mozart and Da Ponte, 

from the end of the eighteen century to use system II in the twenty first century, 

and by using it to achieve sweet peace?  

Endnotes 

1. The American psychologist Abraham Maslow (1908-1970) uses the term "need" in his motivation theory. 

Because of his disagreement with Freud's theory he suggested an alternative notion – "need." However, if we try 

to bridge between Freud's theory and Maslow's theory (Maslow, probably, won't approve this) I believe that a 

need and a drive are somehow equivalent.  Here is a quotation from Maslow which is relevant to our discussion 

about generalizations: ‘Curiosity, cognitive impulses, the needs to know and to understand, the desires to 

organize, to analyze, to look for relations and meanings as an essential part of the human nature.’ (Maslow, 

1970). The notions impulses, needs, and desires are clearly related to the notion of drive. 

2. Desirable mathematical thinking includes, among other things, training our mind as well as our student's mind 

to form concepts by relying on formal definitions and to establish claims by relying on proofs.  
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Generalization is one of the most important processes that occurs in the 

construction of mathematical concepts, discovering theorems, and solving math 

problems. This process can be analyzed from two different viewpoints:  

1. the cognitive theory,  

2. the mathematical activity of individuals.  

Both these aspects will be taken into account. In the first part of the paper I will 

present in outline two theoretical issues, namely Dörfler’s theory of 

generalization (Dörfler, 1991) and Krygowska’s types of generalizations of 

theorems (Krygowska, 1979). 

The second part will include an analysis of examples of generalization activity 

disclosed in my research on solving math problems by students at different 

levels of mathematical knowledge and experience (Ciosek, 2005, 2010). 

GENERALIZING FROM EPISTEMOLOGICAL PERSPECTIVE 

1. Dörfler’s theory of generalization 

In the work entitled Forms and means of generalizations (1991) W. Dörfler 

gives the following explanation of generalizing: 

I understand generalizing as a social-cognitive process which leads to something 

general (or more general) and whose product consequently refers to an actual or 

potential manifold (collection, set, variety) in a certain way. (Dörfler, 1991, p. 63) 

The author differentiates two forms of generalization: empirical and theoretical. 

The basic process in empirical generalization is to find a common quality or 

property among several or many objects or situations and to notice and record 

these qualities as being common and general to these objects or situations. The 

common quality is found by comparing the objects and situations, with regard to 

their outward appearance, isolated mentally, and detached from the objects and 

situations. 

In contradistinction to this form Dörfler introduces another one - called 

theoretical generalization – and describes it with the help of a theoretical 

model for processes of abstraction and generalization which can often lead to the 

genuinely mathematical concepts (propositions, proofs, etc.). Here is this model 

(Figure 1).  
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Figure 1. Dörfler’s model of theoretical generalization. 

Let us concentrate now on the upper part of this model – labelled constructive 

abstraction, as an opening stage for the process of generalizing. Dörfler 

characterizes it as follows.  

- The starting point is an action or system of actions (material, imagined or 

symbolic). Elements of this action are certain objects (material or ideal). 

- Course of this action direct one’s attention to some relation between the 

elements of the actions. This relation proves to be steady when the actions 

are repeated. They are called invariant (or schema) of the action. 

- Stating invariants need a symbolic description; one has to introduce 

symbols for the elements of the actions, and then describe invariants 

stated by means of these symbols. This stating of invariants and their 

system of actions in 

the starting situation 

reflection of the 
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symbolic description have the character of a process of abstraction. It is 

constructive abstraction because what is abstracted is constituted by the 

action. 

I will use this model to analyze students’ generalization activity further. 

2. Types of generalization of statements by Krygowska 

Generalization through induction  

A formula f(n) for natural n is to be found. One first finds f(1), f(2), f(3) and 

notices that the results can be obtained when applying a general rule. This rule is 

a conjecture only. Though being naive, it’s often an important step toward the 

solution. 

Generalization through generalizing the reasoning 

One notices that the reasoning carried out in a single case will remain correct in 

a different setting or minor modifications will be needed only to get a more 

general result. This often happens as the result of “variation of constants” or 

spontaneously resulting in the analysis of the proof. 

Generalization through unifying specific cases 

A bunch of statements, each referring to one case of a setting, proves able to be 

replaced by one general statement, the original ones being its special cases. E.g., 

Pythagoras theorem, formulas for acute-angled, obtuse-angled, and “flat” 

triangle can all be generalized to the so called cosine formula.  

Generalization through perceiving recurrence 

As in the case of generalization through induction, a formula f(n) for natural n is 

to be found. But in this case, f(2) is obtained using f(1), f(3) using f(2), and 

a regular way is noticed to pass to the next n: the recurrence rule. Applying it 

backwards one obtains the sought formula.  

Illustrations of the first three types will be shown further while presenting 

examples of students’ activity.  Now I explain the last type of generalization 

with the help of the following problem:  

PROBLEM 1 

How many common points at most can have n lines in the plane?  

(A common point here is meant as an intersection point of two different lines.) 

 

We start from a concretization. Two different lines can have one common point 

at most (Figure 2). 
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Figure 2 

Three different lines have no more than 3 common points (Figure 3). 

 

Figure 3 

We can ask how to draw the fourth line so as the number of common points be 

maximum. Of course, it should cross each of the previous lines but not pass 

through any of their intersections. This is possible as shown in Figure 4. 

 

Figure 4 
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Next we must draw the fifth line so as to cross the four and so on. We become 

aware of the recurrence: to know the number of common points of some number 

of lines we need to know that of the less by one number of lines. 

If L(n) is the required number of common points of n different lines, then  

L(2) = 1, 

L(3) = L(2) + 2,  

L(4) = L(3) + 3, 

.... 

L(n)  =  L(n - 1) + (n – 1). 

Of course, finding the compact formula for L(n) is also possible: 

L(n) = 1 + 2 + 3 + ....+ (n – 1) = n(n-1) / 2. 

EXAMPLES OF STUDENTS’ GENERALIZATION ACTIVITY 

During the last two decades, research on the activity of generalization focused 

on the phenomenon of noticing by the learner regularities in special-type 

contexts (e.g. Garcia-Cruz, Martinon, 1997; Iwasaki, Yamaguchi, 2008; 

Legutko, 2010; Pytlak, 2006, 2007; Stacey, 1989; Zaręba, 2004, 2006).  

The student was shown, for example, a series of pictures drawn according to 

a certain rule. The student's task was to discover that rule. As a help, some tasks 

were given: 

 draw one or a few subsequent pictures conforming to the given series  

 find a number characteristic for the pictures (e.g. find the number of some 

elements) 

 represent algebraically the number characteristic for picture number n. 

A representative of this kind of problems is the following: 

 

PROBLEM 2 (a modification of PISA problem, 2003) 

A farmer plants apple trees in the square garden. In order to protect them 

against the wind he plants coniferous all trees around the orchard. Here is a 

scheme that illustrates the situation. It presents the pattern of apple trees and 

coniferous trees when there is n rows of apple trees. (Figure 5) 
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Figure 5. Problem 2 

Task 1.  

Fill out the table. 

N Nr of apple trees Nr of coniferous trees 

1   

2   

3   

4   

5   

10   

25   

 

Task 2. 

Try to write the numbers of apple trees and coniferous trees for an orchard in 

which there are n rows of apple trees. 

I'll discuss now two approaches to these tasks: by one lower secondary and one 

upper secondary students
4
. The analysis of paths leading to the solution indicates 

clearly the differences in the thought processes toward a generalization required 

in Task 2. 

Example 1 – Reasoning by Adriana (9th grade) 

Adriana fills the first four rows of the table for the apple trees. She counts the 

circles in each picture and puts down the number. Then she similarly fills the 

second column for n 1 to 4. 

                                                 
4
 The observations on solving the task have been made by a student preparing a Master’s thesis under my 

supervision: P. Matras, Generalizing theorems of elementary geometry by secondary school students, IM, 

Pedagogical University of Cracow, 2012. 
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Next, she concentrates on filling the remaining boxes in the apple trees column. 

She says: “For n=5 there will be 10 times 10 or 100, and for n=25 there will be 

25 times 25” (she puts down 625). 

 

Figure 6. Adriana’s work 

She announces to start dealing with the coniferous trees. She points the row for 

n=5 in the right hand side column and, after a while of watching consecutive 

numbers in that column, she says: “then here 40”. Asked why she explains: 

“because 8+8=16, 16+8=24, 24+8 makes 32, and 32+8 is 40.” She continues: 

“And for n=10 we should put down 80 as 80 is 40 times 2; for n=25 it will be 40 

times 5 or 200.” 

After this Adriana passes to Task 2. She is thinking for a while watching the 

pictures, then she writes: in the left column n ∙ n as the number of apple trees 

and n ∙ 8 as the number of coniferous trees. 

Example 2 – Reasoning of Asia (12th grade) 

Asia fills the first four rows like Adriana, i.e. as the result of counting crosses 

and circles on the pictures. She puts down in each row both the number of apple 

trees and the number of coniferous trees. For n=5 she writes 25 as the number of 

apple trees explaining that it's 5 times 5. She fills the right column up to the end. 
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Figure 7. Asia’s work (part 1) 

The student announces the intention of drawing the garden nr. 5 to correctly 

reckon the number of coniferous trees. She begins with putting the circles as 

shown below, then looking at the given pictures she completes her scheme with 

crosses. Pointing at the left hand side of the scheme Asia says: 

There will be 5 coniferous trees adjacent to apple trees (she applies 5 crosses) and 6 

more between the apple trees, and 2 at the corners. There will be 11 altogether or 2 ∙ 

5 + 1. It will be same here (she points the right hand side vertical row on the 

scheme). On one of the remaining sides (pointing a horizontal row) there will be 

less by 2, so 9. The number of all coniferous trees for n = 5 will be 40. 

 

Figure 8. Asia’s work (part 2) 

Asia draws a fragment of the garden's scheme for n=10 writing next to it 

numbers 21, 21, 19, 19, then putting down the number of coniferous trees in the 

10th row. For n=25 she so calculates the number of coniferous trees: 
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25 ∙ 2 + 1 = 51 

25 + 24    = 49 

then adds up the results and multiplies the outcome by 2. In the table she writes 

200. 

As the answer to Task 2 Asia writes 

n ∙ n – the number of apple trees 

n ∙ (2 + 1) ∙ 2 + (n + n – 1) ∙  2 – the number of coniferous trees (Figure 9). 

Figure 9. Asia’s work (part 3) 

Comparison of performances by Adriana and Asia 

Generalization by the lower secondary student Adriana was of the induction 

type. The student was concerned about relations between the numbers that 

quantitatively characterized considered objects, separately for each one 

(numbers of apple trees in relation to n, and numbers of coniferous trees in 

relation to n).  

The upper secondary student Asia was interested in mutual relationships 

between objects of the two kinds. We can say that she discovered the “structure 

of the orchard”, the arrangement of one species of the trees with respect to the 

other one. One example made her aware of the structure of the orchard. She 

reproduced what she noticed in this example in one more picture, for another n. I 

think that her reasoning illustrates the type of generalization called by 

Krygowska generalization through varying a constant. 

In mathematical point of view the problem consists in finding formulas for two 

functions f(n), g(n) when their values for four consecutive natural numbers are 

given. The solution requires some generalization acts. To compare the thinking 

processes of both students Dörfler's model can be applied. To do so, the 

examined subjects' actions should be identified as well as invariants they found. 

Finding the formula for f was easy for both students, but more difficult for g. 

With respect to the function g generalization made by both students was 

essentially different.  

Here are the actions taken by the students and the invariants they had noticed. 
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Adriana's actions 

A1. Counting both kinds of elements in figures 1 to 4 (writing results in the 

tables) 

A2. Finding the relationship "+8" among numbers in subsequent rows and its 

application to find g(5). 

A3. Finding the relation between the object nr. n ("orchard" in the picture) and 

the number of its elements ("coniferous trees" - crosses), that is the formula g(n) 

in terms of n. 

Scheme of the invariant resulting from Adriana's action:  g(n) = n·8. 

Asia's actions 

A1. - same as Adriana's. 

A2. Sketching the considered object (fragment of the orchard for n = 5). 

A3. Finding a way of mutual disposition of two kinds of elements for the object 

nb 5 (for n=5). 

A4. Application of the discovered disposition to objects nb 5, 10, and 25, that is 

calculating g(5), g(10), and g(25). 

A5. Imagining object nr. n. 

A6. Finding the relation between the object's number the number n of its 

elements, that is the formula g(n) in terms of n. 

Scheme of the invariant resulting from Asia's action:   

g(n)= (n·2 + 1) ·2 + (n + n– 1) ·2. 

The question could be asked if Adriana really found the invariant of actions in 

the set of considered objects or rather a "candidate" for such an invariant. Asia 

doubtlessly found such an invariant. So we can say that - differently than 

Ariadna - Asia accomplished a generalization, which in Dörfler's model is called 

intentional generalization as she discovered and described a general structure 

of considered objects. In my opinion none of the two students made the 

extensional generalization because variables are referred by them to one kind of 

objects only. 

I think that the analyzed model of generalization presents first of all the scheme 

of thinking processes that may lead to the formation of a mathematical concept. 

The process of such generalization is long lasting. All elements indicated by the 

model should occur in it. In the process of generalization that a researcher (or 

teacher) initiates with a problem for "finding a regularity" thinking often 

consists in reflective abstraction only. 

Interesting observations concerning elementary school students' attitude with 

respect to Problem 2 are reported in (Pytlak, 2006, 2010). 
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Example 3 – Reasoning of Michał 

Michał - students of the 4th elementary grade were assigned to find the sum of 

all integers form 1 to 100. The teacher suggested the possibility of using the 

following table (Table 1): 

1 2 3 4 5 6 7 8 9 10 

11 12 13 14 15 16 17 18 19 20 

21 22 23 24 25 26 27 28 29 30 

31 32 33 34 35 36 37 38 39 40 

41 42 43 44 45 46 47 48 49 50 

51 52 53 54 55 56 57 58 59 60 

61 62 63 64 65 66 67 68 69 70 

71 72 73 74 75 76 77 78 79 80 

81 82 83 84 85 86 87 88 89 90 

91 92 93 94 95 96 97 98 99 100 

Table 1. Table of numbers 1 - 100 

A student used that table in the following way. He decided to add numbers in 

each row and add up the results. So he added the first row in memory getting 55. 

Then he calculated the sum in the second row using the column algorithm, 

getting 155. Both results he put down in the table. After some reflection he 

wrote, without any calculations, numbers 255, 355,... up to 995 as the remaining 

row sums. Asked why he knew that the other sums would be so he explained: 

Every number in the second row is by 10 greater than the one in the first row above 

it as the units digit is the same and the tens digit in the second one is greater by one. 

So the sum of the numbers in the second row is by 10 times 10 or 100 greater than 

55. The same will be with rows 2 and 3. When we move down one row we add one 

hundred... 

It's worth noticing that in the student's reasoning a generalisation occurred, 

which was not of the induction (empiric) character. Referring to Dörfler's model 

we can say that the student (12 years old), the first two operations having been 

done, recognised the invariant of going one row down: increase of the sum by 

100. He saw that it results from the structure of the table. Though he did not 

formalise it, it was – in my view – an important element of the process of 

reflective abstraction. 

Example 4 – Reasoning of Dominika  

Dominika (aged 15) - 2nd class of the lower secondary solving Problem 3 

PROBLEM 3 
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Examine the truth of the sentence: 

If a natural number n can be presented as the sum of the squares of two natural 

numbers then the number 2n can also be presented as the sum of two natural 

numbers. 

Having read the problem, Dominika wrote: 

n = x
2
 + y

2
 

2n = z
2
 + r

2  
 ?  

Then she made a few sums of the squares of two numbers (Figure 10).  

Figure 10. Dominika’s work (part 1) 

Next to each of the calculated sums she put its double: 

n =1
2
+2

2
=5   2n=10 

n=3
2
+4

2
=25   2n=50 

n=5
2
+6

2
=61   2n=122 

n =7
2
+8

2
=113  2n=226 

She tried to present each of the doubles as the sum of two squares. As to the 

numbers 10 and 50, she said they are the sums of two squares, because 10 is 3
2
 + 

1
2
 while 50 is 7

2
 + 1

2
. She said that 122 is not likely to be so presented, because 

she failed to do it in her memory calculations. In a while she changed her mind 

and wrote 122=11
2
+1

2
=121+1. Then she said: „For a number n which is the sum 

of two consecutive numbers, number 2n will also be the sum of squares. It will 

be so: 



50 MARIANNA CIOSEK 

 

2n = (x+y)
2 
+ 1

2
. 

After this the student checked on an example if the devised way of presenting 

number 2n as the sum of two squares works in examples where n is the sum of 

two non-consecutive numbers. She considered the case of n = 5
2
 + 7

2
. She 

calculated: (5+7)
2 

+ 1
2
 getting 145, and not – as she supposed – 148. She 

decided that number 2(5
2
 + 7

2
) cannot be presented as (5

2
 + 7

2
) + 1

2
 (Figure 11). 

Figure 11. Dominika’s work (part 2) 

After a while she added: “But in this case number 2n can be presented as  

(5
2
 + 7

2
) + 2

2
.” A bit later she noted:  

“I know already how it is going to be.  If n =  x
2 
+ y

2
 then 2n=(x+y)

2 
+ (x-y)

2 
". 

Dominika decided that having uttered the last sentence she finished her work on 

the problem. Only after the observer’s remark:  “Explain please why you think 

that number 2n that you have put down equals 2(x
2
 + y

2
)” caused her to 

transform the sum of squares of (x + y)
 
and (x – y) to the form 2(x

2
 + y

2
). 

Analysis of Dominika’s work 

In the Dominica’s work 3 acts of generalization can be discerned. 

The first begins at the moment when Dominika has checked that the sentence 

being examined is true for four natural numbers chosen for n, each being the 

sum of squares of two consecutive numbers. She is looking at these examples 

seeking their common property. She wants to find a relationship between x, y 

and z, r. She puts down her observation as:  
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2n = (x + y)
2
 + 1.  

She does not treat this representation of 2n as a hypothesis; seemingly she has 

no doubts that it will hold for every n being the sum of two consecutive natural 

numbers. This kind of generalization is called by Krygowska inductive 

generalization. 

The second act begins with Dominika’s questioning herself if the way of 

selecting numbers z and r invented in the previous case cannot be applied to 

a number n, for whom x and y are no longer consecutive numbers. This 

behaviour shows that the girl is treating the relationship found as a hypothesis, 

now concerning an arbitrary number n. She verifies the hypothesis with 

examples and rejects it. She notices another possibility of representing the 

double of n:  

If n = 5
2
 +7

2
 then 2n = (5 + 7)

 2
 + 2

2
. 

She realizes that 2 is the difference of 7 and 5. Probably here the next 

(induction) generalization act is taking place and – worth noticing – based on 

one example only. This time it is related to numbers n such that their difference 

equals 2; Dominika does not express it in words nor in writing, she is just 

thinking. 

The third and last generalization act results from juxtaposing the form of the 

number 2n with the subsequently considered cases: y = x + 1, y = x + 2. Again, 

based on the two examples the student formulates and puts down in the general 

form the way of representing numbers z, r using x, y. Again she makes 

a generalization in the induction way. 

It is worth noticing that Dominika was applying the strategy of considering 

special cases in a – say – model way. The special cases considered were not 

taken at random but from among a special type. It was a systematic choice of 

examples (according to Mason at al., 2005), and this probably helped her to 

guess the relationship which proved to be conclusive for the solution. Yet, she 

did not spontaneously undertake any algebraic verification of the conjecture to 

make sure it always works. 

Example 5 – Reasoning of Beata 

Beata – 3rd year of mathematics for teacher students. Solving Dominika’s 

problem 3. 

The student also starts by considering examples (Figure 12): 

n =13  =     4 + 9 = 22 +32 ;     2 ∙ 13 = 26 = 12 + 52 

     25  =   16 + 9 = 42 + 52 ;                 50 = 12 + 72.  
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Figure 12. Beata’s work (part 1) 

Then she says: “Let’s look at the examples." After a while she adds: 

“Let n = a
2 
+ b

2
. Is it so that 2n = 1

2
 + (a + b)

2
 ?” 

Now she transforms the latter equation to an equivalent form:  

(a – b)
2
 = 1 (Figure 13). 

Figure 13. Beata’s work (part 2) 

The last result can so be conceived: 

We already know that if n is the sum of squares of two consecutive natural numbers 

a, b (a greater than b) then 2n can also be written as the sum of two consecutive 

natural numbers, namely the square of 1 and the square of the difference of numbers 

a and b. 

She carries on:  

What would happen if the difference of a and b were different than 1?   

Let us assume that n = a
2
 + b

2
. May be 2n = (a – b)

2
 + (a + b)

2 
? (Figure 14). 
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Figure 14. Beata’s work (part 3) 

Beata transforms the last equation using the assumption on n and known 

formulas, arriving at the identity 

2a
2
+ 2b

2
 = 2a

2
 + 2b

2
. 

To finish up she concludes:  

The sentence occurring in the problem is true because if a number is the sum of the 

squares of two natural numbers we can sort out two numbers whose sum of squares 

equals the doubled initial number.  

After a short while Beata reflects:  

Of course, it must be verified that those two numbers are natural. … But they are so 

as for natural a, b, a+b and a-b are natural. 

(In the last expression she commits an error; she may have thought that a is 

greater than b which needn’t be so.) 

Analysis of Beata’s work 

In Beata's reasoning two generalization acts take place. The first stage of her 

work on the problem is analogical with Dominika's one. Beata analysed 

examples of the same type. But, otherwise than Dominika, the condition for 

2n resulting from her empiric generalization was treated by her as a hypothesis 

to be verified with algebraic calculus. 

The next generalization act which led to a new hypothesis concerning the 

decomposition of 2n, now without an additional assumption concerning n, she 

most probably formulated as a result of reasoning and also verified with algebra. 

This independent undertaking of verification of hypotheses and the way it was 

carried out differentiates her reasoning from that of the lower secondary student. 

If the two reasonings are referred to the Dörfler's model, we can say that the two 

persons, who undertook similar actions at the initial stage of work, verbalized 

and formulated in the algebraic language the same invariants (Domika's was 

rather a "candidate" for an invariant). If in both cases for the invariant the status 

of theorem for the special class of n such that ... with b=a+1 was acknowledged 
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we could say that both students accomplished the extensional generalization as 

they referred the thesis of the formerly found theorem - with a certain 

modification - to all cases of considered objects. So they accomplished an 

extension of the reference range. 

CONCLUSIONS 

In all the examples analyzed here generalization acts were taking place during 

the solution of the problem, within the short time of observation by the 

researcher. Indeed, it proved that with each of the problems taken into account 

identifying some regularity was associated. 

The differences among the considered problems consist in the following. In 

some of them examples of objects to be analyzed were imposed from above 

(Problem 2), while in the remaining ones the solver was to select them according 

to the problem situation. This choice may essentially influence the 

generalization process. 

There are other situations associated with generalization. I mean processes that 

go on out of the observer's (researcher's, teacher's) reach where generalization 

results from many experiences of the learner, during a long learning period, and 

are false. We can say that those are hidden generalizations, happening in the 

background. They can come out to light unexpectedly or remain undisclosed 

forever. Of this character are false convictions such as "multiplication increases, 

division decreases", "raising to power increases, taking the root decreases" etc. 

Such false convictions result from unjustified extension of the reference range of 

mathematical operations and their results, from the domain of natural numbers 

to a wider domain of integer, rational or real numbers. 

False convictions have also become the object of research in Mathematics 

Education. Interesting reports can be found in (Howe, 1999; Pawlik, 2003, 2004; 

Tirosh, Graeber, 1989; Żeromska, 2010). 
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Nicolina A. Malara 

University of Modena and Reggio Emilia, Italy 

 

We give an overview of the literature on generalization with particular 

reference to the studies about the students’ ways of thinking in the development 

of generalization in algebra. We discuss the teacher’s role in guiding students to 

face algebraic generalizations and we report on our methods and tools to 

improve teachers’competence in teaching this kind of tasks in a socio-

constructive perspective. 

 

To learn mathematics involves learning to think 

mathematically… The essence of thinking 

mathematically is recognition, appreciation, 

expression, and manipulation of generality. … 

The future of Arithmetics and Algebra teaching 

lies in teacher awareness of the fundamental 

mathematical thinking processes, most 

particularly, generalization. (J. Mason, 1996a) 

 

1. THEORETICAL ASPECTS ON GENERALIZATION 

A metacognitive teaching practice is necessary to give mathematics strength and 

meaning as a subject. In this type of teaching practice, the main tasks of the 

teacher are to lead the students to reflect upon how meaningful the procedures 

they choose are in front of the various situations, to make verbally explicit the 

strategies they implement, to compare them, to distinguish what is common and 

essential from what is not, to check the effectiveness of the representations they 

use. The aim of all this is to help the students focus on the unifying elements 

that emerge from the activity, getting to incorporate a variety of cases or 

situations in one single vision, to consider the strength of representations and to 

become aware of the process - object dynamics (Sfard, 1991) which governs the 

reification of mathematical objects.  

Basic elements of this type of teaching are generalization processes. By 

‘generalization process’ we mean, briefly, a sequence of acts of thinking which 

lead a subject to recognize, by analyzing individual cases, the occurrence of 

common peculiar elements; to shift attention from individual cases to the totality 
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of possible cases and extend to that totality the common features previously 

identified.  

Detecting patterns, identifying similarities, linking analogous facts are all at the 

base of generalization processes; the key element in these processes is not the 

detection of similarities between cases, but rather the shift of attention from 

individual cases to all the possible ones, as well as the extension and adaptation 

of the model to any of them.  

Generalization processes are natural: they emerge from our way of looking at 

things, of capturing them and of elaborating the products of our observations 

and experiences. They pervade human activities, although they are peculiar of 

the mathematical activity. Enriques (1942), writing as Giannini, discussing on 

the role of the error in the development of knowledge, writes: 

The path of the human mind is essentially inductive: that is to say, it goes from the 

real to the abstract. The understanding of the general should be conquered as 

a higher degree of something already known and easier, that is to say as 

a ‘generalization’. On the other hand, the example has a clarifying property and, so, 

it is a strong instrument in scientific research and, at the same time, an invaluable 

tool for verifying and correcting theories. …The heuristic value of examples is even 

more evident, because everyone knows that the comparison between two different 

cases in which something in common appears is able to suggest to our mind the 

most beautiful generalizations and to show to us the best positions of problems … 

It is also possible to generalize from the examination of one single case, when, 

regardless of its peculiar features, one sees it as representative of a whole area. 

The case is ‘exemplary’, i.e. it exemplifies the totality of cases. As in Hilbert’s 

renowned aphorism  

The art of doing mathematics is finding that special case that contains all the germs 

of generality.  

Mason (1996a, 1996b) claims that ‘generalization is the heartbeat of 

mathematics’ and that in the teaching of mathematics the students have to be 

brought to gain a double awareness: of ‘seeing the particular in the general’ and 

of ‘seeing the general through the particular’. As to the latter, he states the 

importance of the experience of ‘examplehood’, which brings the students to 

become aware of how a multitude of details can be subsumed under one 

generality. He writes (1996a, p. 21): 

One of the fundamental forms or experiences of a shift in the locus, focus, or 

structure of attention is the sense of ‘examplehood’: suddenly seeing something as 

‘merely’ an example of some greater generality. To experience examplehood, in 

which what was previously disparate are now seen as examples of something more 

general, has an effect like cristallization or condensation (Freudenthal 19781, 

                                                 
1 Freudenthal, H. (1978) Weeding and Sowing: Preface to a Science of Mathematics Education, Reidel, 

Dordrecht. 
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p. 272): it is releases energy and reduces the amount of attention required to deal 

with similar situations.  

Mason underlines that the students’ recognition of a thing as an example 

requires that they grasp the sense of what the example expresses, the 

enhancement of the features which makes it ‘exemplar’ and the shading of the 

features which make it particular. Moreover he says that if the teacher is, at 

present, unaware of what makes exemplary the example, (s)he may not provide 

students with adequate support to appreciate the examplehood being offered. 

Without disclaiming the efficacy of generalization as a didactical instrument, 

with reference to the inference of mathematical facts from the observation of 

few examples, Radford (1996a p. 107-109) poses the problem of the logical 

validity of the assumptions that come from that generalization
2
.  He deplores the 

abuse of generalization in teaching, since the students may get the idea that the 

fact that a regularity occurs in few cases is enough to claim that it is valid as 

a ‘general rule’. It is therefore necessary to spend time working towards the 

recognition of the limitations of generalization, to distinguish between inductive 

and deductive processes and to become aware that the validity of an inductively 

inferred sentence can only be established through a proof.  

However, it should be noticed that generalization processes in mathematics not 

only concern particular mathematical contents; they also involve meta-aspects, 

linked with the organization and structuring of the gradually acquired 

knowledge.  

Harel & Tall (1991) reflect upon the modalities in which students, progressing 

in their studies, link together pieces of knowledge and enlarge their horizons. 

They detect how these moments of reorganization depend on the features of the 

students’ mental constructions and on the type of understanding (relational or 

instrumental) which underlies their knowledge. They distinguish between three 

types of generalization: 1) expansive generalization in which one extends his or 

her scheme without reconstructing it; 2) reconstructive generalization when 

a subject reconstructs an existing schema in order to widen its applicability 

range; 3) disjunctive generalization when, on moving from a familiar context to 

a new one, the subject constructs a new, disjoint, schema to deal with the new 

context and adds it to the array of schemas available. 

They underline that expansive generalization is more frequent and easy to apply 

than reconstructive generalization, that the latter is delicate and subjective but 

also more effective, that disjunctive generalization is cognitively poor and turns 

                                                 
2 Radford introduces the issue by making reference to a renowned scene of ‘La cantatrice chauve’ (usually 

translated as The Bald Soprano) by Ionesco: at the Smiths’ they ring at the door, Mrs Smith opens but she 

doesn’t find anyone; the same happens at the second and third doorbell, at the fourth one she blurts with her 

husband, making a nonsensical inference, generalization of the previous cases “Do not send me to open the door! 

You have seen that it is useless! Experience has shown us that when we hear the doorbell, it implies that no one 

is here”. 
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out to be a real ‘recipe for failure’ for weak students: they are not able to see 

linking schemes and are helplessly submerged by the amount of notions. 

Dörfler (1989, 1991) is interested in the modalities of construction of knowledge 

in the students, and he theorizes on the processes of generalization. He sees the 

generalization as a combination of cognitive processes at a double level: the 

subjective-psychological one, related to the individual-reflective dimension and 

the objective-epistemological one, related to the social dimension (sharing, 

communication and use of language). He considers knowledge as the result of 

the structuring and the organization of one’s own experience and he views it as 

stemming from appropriate actions on certain objects through reflection upon 

both actions and transformations produced in the objects. In order to consolidate 

knowledge, he considers crucial the representation of a process ‘by the use of 

perceiveable objects, like written signs, of the characteristic and stages, steps 

and outcomes of the actions’. In this way a protocol of actions is generated 

which allows for a cognitive reconstruction and conceptualization of the process 

itself.  

On these premises he develops a “model of the processes of abstraction and 

generalization” (Dörfler 1991). This model has its roots in Piaget’s construct of 

‘reflective abstraction’, a process where the actions are seen as genetic source of 

the (mathematical) concepts, but Dörfler enlarges the meaning of ‘action’ 

including also the symbolic actions. Two phases can be distinguished in the 

model: the first one, which leads to the emerging of invariants as well as the 

birth of representations for them; the second one, more meaningful from the 

mathematical point of view, where the focus is on the representations: through 

a reflection on them, the way of viewing them evolves and this leads to the 

reification of new mathematical objects.  

More in details, the starting point of this model is an action or a system of 

actions (which are material, imagined or symbolic) upon certain (material or 

ideal) objects. In these actions one’s attention is directed to some relations and 

connections between elements of actions. In many cases the actions combine the 

original elements in a certain and invariant way; when, repeating the actions (as 

often as one likes), the relations prove to be steady, these combinations and 

basic transformations emerge as “invariants of actions”, defining the “schema” 

(of actions). Dörfler underlines: “the emergence of the invariants needs a certain 

symbolic description”. This is a key point for the model. Symbols are used for 

the elements of actions or for quantities relevant for them, and for 

transformations or combinations on the objects induced by the actions. This 

representation of the invariants may include variable elements related to objects 

on which actions are carried out. The symbols (of verbal, iconic, geometric or 

algebraic nature) initially play a purely descriptive role: they represent either 

actions or transformations. This first phase can be summarized as one moment 

of constructive abstraction, where the original elements are substituted by 
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prototypes, which better highlight properties or relationships we want to focus 

on (they gain meaning and ‘existence’ via the actions). The second phase 

develops through other two important moments: 

One moment of extensional generalizations, when the use of prototypes leads to 

determine the domain of variability of the patterns, which enhances the 

interchangeability of the objects with respect to the actions upon them. At this 

point the symbols lose their initial meaning of generic representatives and they 

acquire that of variables with properties of substitution.   

One moment of intensional generalization, when by reflecting upon the 

symbolic representations of the invariants, the used symbols lose their meaning 

of representatives  (of variable elements of the actions), and they become 

elements of the action themselves and ‘carriers’ of the invariants: at this point 

symbols are detached from their range of reference and acquire a new meaning, 

intrinsically connected to the invariants, of variables with the feature of objects: 

so, a new mathematical object is born.  

Dörfler claims that once a generality of this type is constructed, it becomes the 

basis for further generalization. He stresses that his model is a ‘theoretical 

generalization’ model, juxtaposed to ‘empirical generalization’ (EG), that is the 

Aristotelian basic process of finding a common quality or property among 

several objects or situations from sense perceptions. He states that EG does not 

contribute to the construction of the meaning of the concepts because it is 

mainly a recognition process, he criticises the use of EG in mathematics 

teaching and the fact that usually the ability to recognize the generality is 

postulated.
3
 

Dörfler offers also an interesting sequence of examples of his model from both 

elementary and advanced mathematics. In these examples, however, the focus is 

uniquely on the mathematical contents, without specific reference to either the 

students or the teacher. 

On the contrary, Dörfler explicitly does not take into account the problem of 

what the appropriate starting situations for the students may be, and he devolves 

their choice to the teacher, since, he says, “it is only she who knows the students 

and their interests”.  

Later, Hejny (2003) proposes a model of construction and structuring of 

knowledge organized in six stages (see the table below) where generalization is 

viewed as a basic element, but still at a lower level than abstraction and 

functional to this. Hejny, referring to what Sierpinska
4
 thought about the 

development of mathematical understanding, considers her vision as reductive, 

                                                 
3 As to this Dörfler considers the derivative concept and the ‘examples’, such as velocity, gradient, density, 

usually used to show the derivative as their common structure but- he stresses- this structure is not developed by 

the students themselves. 

4 Sierpinska, A. 1994, Understanding in mathematics, London & NewYork: The Falmer press  



62  NICOLINA A. MALARA 

 

and he claims to agree with her, only if abstraction
5
 is juxtaposed to 

generalization. An original element in Hejny’s model is the fact that the 

student’s motivation is seen as the first step of the process. 

Comparing Hejny’s model to Dörfler’s one a first important difference can be 

noticed: Dörfler does not make a distinction between generalization and 

abstraction, he rather describes processes of generalization with moments of 

abstraction; on the contrary Hejny states that generalization is prior to 

abstraction.  

The stages of development and structuring of knowledge in Hejny’s model 
1. Motivation. By motivation we mean a tension, which appears in a student's mind as 

a consequence of the contradiction between I do not know and I would like to know. 

This tension steers the student's interest towards a particular mathematical problem, 

situation, idea, concept, fact, scheme,... 

2. Stage of isolated (mental) models. The acquisition of an initial set of experiences. At 

first, these experiences are stored as isolated events, or images. Later on, it might be 

expected that some linkage between them occurs. 

3. Stage of generalisation. The obtained isolated models are mutually compared, 

organised, and put into hierarchies to create a structure. A possibility of a transfer 

between the models appears and a scheme that generalizes all these models is 

discovered. The process of generalisation does not change the level of the abstraction 

of thinking. 

4. Stage of universal (mental) model(s). A general overview of the already existing 

isolated models develops. It gives the first insight into the community of models. At 

the same time, it is a tool for dealing with new, more demanding isolated models. If 

stage 2 is the collecting of new experiences, stages 3 and 4 mean organising this set 

into a structure. The role of such a generalising scheme is frequently played by one of 

the isolated models. 

5. Stage of abstraction. The construction of a new, deeper and more abstract concept, 

process or scheme which brings a new insight into the piece of knowledge. 

6. Stage of abstract knowledge. The new piece of knowledge is housed in the already 

existing cognitive network, thus giving rise to new connections. Sometimes it ends up  

in the reorganisation of either the mathematical structure or a  part of it. 

A second difference concerns the role of representations. In Hejny’s model the 

representation issue does not even appear, while for Dörfler it is essential, since 

the role played by symbols in the representation of invariants and the 

progressive change of meanings associated with them allows for the reification 

of mathematical objects. Another element of difference in the work of the two 

authors concerns the nature of the examples given for their model. While 

Dörfler presents examples focused on the mathematical content, with no 

reference to the subjects involved in the process, Hejny analytically shows the 

                                                 
5 Hejny (2003) writes: “In her analysis of the act of understanding, Sierpinska considers four basic mental 

operations: identification, discrimination, generalisation and synthesis. ‘All four operations are important in any 

process of understanding. But in understanding mathematics, generalisation has a particular role to play. Isn’t 

mathematics, above all, an art of generalisation? L’art de donner le même nom à des choses différentes, as 

Poincare used to say?’ Sierpinska (1994, p. 59). We agree with this statement provided that ‘donner’ covers both 

our terms generalisation and abstraction”.  
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ongoing process of construction of knowledge through excerpts from the 

students’ activities and dialogues which testify the moments when 

generalizations and abstractions are generated.  In this sense, drawing on Sfard’s 

(2005) classification on the time periods that mark the evolution of mathematics 

education research, Dörfler’s study can be placed in the ‘content’s era’ whereas 

Hejny’s research is fully placed in the student’s era. 

Regarding students, a broad and interesting piece of research is due to Ellis 

(2007), a teacher-researcher. The research object is the identification of 

students’ key behaviours in the generation of generalizations. Ellis starts from 

the analysis of studies in mathematics education dealing with students’ 

processes of generalization and she identifies three categories of actions that are 

typical of generalization: (a) the development of a rule that serves as a statement 

about relations or properties; 

THINKING ACTIONS  IN THE PRODUCTION OF GENERALIZATIONS (Ellis  2007) 

ACTIONS OF GENERALIZATION  
I RELATING   
 relating situations: the formation of an association  between two or more problems or 

situations. a) connecting back (the formation of a connection between a current situation 
and a previously-encountered situation); b) creating new (the invention of a new situation 
viewed as similar to an existing situation);  

 relating objects: the formation of an association  of similarity between two or more 
present objects. a) property (the association of objects by focusing on a similar property 
they share); b) form (the association of objects by focusing on their similar form) 

 II SEARCHING  
 searching for one same relationship: the performance of a repeatead action in order to 

detect a stable relationship between two or more objects 
 searching for one same procedure: the repeatead performance of a procedure in order to 

test whether it remains valid for all cases 
 searching for one same pattern: the repeatead action to check whether a detected pattern 

remains stable across the cases 
 searching for the same solution or result: the performance of a repeatead action in order to 

determine if the outcome of the action is identical every time 
III EXTENDING  
 Expand the range of applicability: the application of a phenomenon to a larger range of 

cases than that from which it originated 
 Removing details: ther removal of some contextual details in order to develop a global case 
 Operating: the act of operating upon an object in order to generate new cases 
 Continuing: the act of repeating an existing pattern in order to generate new cases 

FORMULATION OF GENERALIZATION 
IV. IDENTIFICATION OR STATEMENT  
 continuing phenomenon: the identification of a dynamic property extending beyond 

a specific instance;  
 sameness: a). common property: the identification of a property that is common  to 

objects or  situations; b) objects or representations: the identification of objects as similar 
or identical; c) situations: the identification of situations as similar or identical);  

 general principle: a statement of a general phenomenon. a) rule: the description of 
a general formula or fact; b) pattern: the description of a general pattern; c) strategy or 
procedure:  the description of a method that can be extended beyond a specific case; 
d) global rule: the statement of the meaning of an object or idea).  

V. DEFINITION: the definition of a class of objects all satisfying a given relationship, pattern, 
or other phenomenon.  
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VI. INFLUENCE: a) prior idea or strategy: the implementation of a previous generalization); 
c) modified idea or strategy (the adaptation of a existing generalization to be applied to 
a new problem or situation). 

 (b) the extension or expansion of one’s range of reasoning beyond the case or 

cases considered, and (c) the identification of commonalities across cases.  

The scholar regrets that these studies essentially address the students’ difficulties 

regarding the production of a law which is predetermined by the researchers, 

and that, consequently, the latter neglect to consider possible generalizations that 

are partial or not fitting with what is expected from the students
6
. She puts 

herself in a wider perspective and, in her observation of the students, she 

considers processes of generalizations as well as processes of transfer through 

which the students autonomously transfer and adapt their knowledge to new 

contexts, acting under different conditions.  

Ellis investigates how students extend their reasoning, examines the sense given 

by students to their general claims, and explores which types of common 

characters the students might perceive throughout the cases. The activities 

proposed to the students are various and very diversified and allow for the 

analysis of processes and outcomes. The wide range of the collected data 

(students’ protocols, interviews, video transcripts of the class processes) allows 

her to develop a taxonomy on two macro levels: that of the generalizing actions 

and that of the reflection generalizations (see the previous table).  

Several other studies concern the processes of generalization in algebra which 

we refer to in the next section. 

What matters is how our eyes combine the images  that have chosen to assent to be 

captured, how we are able to associate them playing back and forth, how we follow 

intuitions, alternative paths, possibilities […] (Davide Enia, Palermo-India, 2010). 

2. GENERALIZATION AND THE TEACHING OF ALGEBRA 

Processes of generalization are dominant in a teaching of algebra which gives 

room to generational and meta-activities in the sense of Kieran (1996). At the 

international level few studies address processes of generalization at an 

advanced level, on non standard problem solving activities (Papadopulos & 

Iatridou, 2010, Zazkis & Liljedal 2002). The majority of the studies concern 

processes of generalization in generational activities and are intertwined with the 

introduction of letters to encode the observed regularities in general terms. 

Kaput (1995) writes: 

                                                 
6 Ellis writes: “studies examining students’generalizations often report students’difficulties in recognizing, using 

and creating general statement. Because work on generalization predetermines what types of knowledge counts 

as general, it may fail to capture instances in which students may perceive a common element across cases, 

extend an idea to incorporate a larger range of phenomena, or produce a general description of a phenomenon, 

regardeless of its correctness. … Focusing on correct mathematical strategies, mental acts that cut across 

strategies may be overlooked and generalizing processes that result in incomplete or incorrect generalizations 

may be omitted.” 
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both the means and the goal of generalising is to establish some formal symbolic 

objects that are intended to represent what is generalized and render the 

generalization subject to further reasoning. 

[…] acts of generalization and gradual formalization of the constructed generality 

must precede work formalism – otherwise the formalism have not source in student 

experience.  

Kaput is recognized as one of the fathers of early algebra, a disciplinary area 

which is now well established, which proposes the early use of letters 

intertwined with a relational teaching of elementary number theory as well as 

a valorization of algebraic language as an instrument to represent relations and 

properties, to carry out reasoning patterns and produce justifications. His studies 

gave birth to interesting experiments in the US which invested both the 

curriculum, by making students get closer to the generalization of facts, 

procedures and reasoning patterns, and teacher training  (Kaput & Blanton 2001, 

Blanton & Kaput 2001, Carpenter & Levi 2001, Carpenter et al. 2003, Carraher 

et al. 2000, 2001, Schliemann et al. 2001). Influences of these studies can be 

found in the NCTM’s proposals for the curriculum, where there is a strong 

emphasis on students’ learning to make generalizations about patterns. 

Regarding this topic, the anticipatory studies carried out by Stacey (1989), Lee 

(1996), Orton & Orton (PME 1994, 1996) and the books by Mason et al. (1985) 

and by Orton (1999) must be mentioned.  

As a rule, international studies about the approach to algebra that involves the 

processes of generalization concern the study of: patterns, algebraically 

representable functional correspondences between pairs of variables, equations, 

structural aspects of arithmetic operations, simple numerical theorems 

(formulation of conjectures and their justification). However the study of 

patterns is the more practiced one, as it is also documented by the ZDM special 

issue “From Patterns to generalization: development of algebraic thinking” 

(2008).  

Dörfler, in his comment to this issue, makes a few remarks we agree with (see 

Dörfler 2008). First of all, he claims that the knowledge and mastery of 

algebraic notations do not develop simply by generalizing patterns of various 

kinds. In particular, he observes that it is not enough for pupils to be able to 

translate expressions from the verbal to the algebraic register, if they are to grasp 

the meaning of formal expressions; he points out the importance of  the 

“negotiation of the intended meaning of the algebraic terms, specially of their 

ascribed generality”, because it is “the habit of usage of, of operating with, of 

talking about, etc, the marks/letters on paper” which makes the students aware 

of the meanings they bring. About the figural sequences he stresses the 

importance that the students become aware that a given visual cue can be seen in 

different ways and then look for its different views. Moreover, both to give 

room to the students’ creativity and not to determine in them the stereotype of 
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the existence of one ‘unique law’, given a series of figures, he suggests that it 

should be asked “how can you continue?” or  “what can you change and vary in 

the given figures?” 

Similarly, about the activities of modeling of functional relationships he states 

that “verbal or quasi-variable generalizations
7
 will not easily permit one to even 

think of those properties of a functionl relationship. They describe the respective 

generality but they are not amenable to operate in it or with it”. He also stresses 

that what makes productive the use of letters that allow to transfer the reasoning 

on the facts at stake into the calculations, is the chance to operate with the letters 

according to the common rules of arithmetic (condensed in the notions of ring or 

field); yet if the students are not aware of the possibility of actions, such as 

“adding” or “multiplying”, on the letters, the sentence “n stands for an arbitrary 

number” remains void and difficult to be accepted.  

Moreover, he claims that the papers presented in the ZDM issue do not clarify 

the relationship between this kind of activity and the mastery of algebraic 

calculations, which the students need to practice in order to become able to 

develop reasoning and produce proofs through algebraic language. Last but not 

least, he stresses that many papers are only focused on the difficulties met by the 

students, but that is reductive: the students’ behaviours and cognition can be 

influenced by the teacher’s methods and ways of posing problems. On these 

aspects we shall come back later. 

As to the literature, due to space reasons, we only take into account some among 

the most wide-ranging and consolidated studies, precisely those by: Cooper & 

Warren, Rivera & Rossi Becker and above all by Radford. Before dealing with 

them, we would like to mention a particular study by Ferrari (2006) about the 

generalization and formalization of solution processes for numerical problems in 

a primary school; here children are guided to make a distinction between data 

and numerical value of the data and are faced with the task to express the 

procedure followed to solve the problem in general terms. In this process the 

letters are adopted by the pupils as short names for a voluntarily not defined 

quantity of data to emphasize the expression of arithmetic relations among them; 

each expression is made according to the operational acts needed to solve the 

problem, getting to represent the solution procedure in an algebraic expression. 

The results not only show the effectiveness of the approach: they also prove 

a strong involvement of the pupils which generates motivation to study the 

discipline.  

2.1 Cooper and Warren studies 

The studies by Cooper & Warren (2008, 2011) concern the devlopment of an 

Early Algebra Thinking Project (EATP) aimed at placing early algebra activities 

in the Queesland Years 1-10 syllabus. They consider three main topics: 
                                                 
7 This construct is defined later. 
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a) patterns and functions; b) equivalence and equations; c) arithmetic 

generalization. The scholars, in the line of Radford, do not see algebra as the 

manipulation of letters but rather as a system charaterized by: indeterminacy of 

objects, analytic nature of thinking; symbolic ways of designating objects. Their 

obiective is the development of students’ mental models based on relationships 

between real world instances, symbols, language, growth phenomena and 

graphs, particularly those that enable the modelling of real situations that contain 

unknowns and variables. In EATP they have studied the students’ acts of 

generalization, in particular, pattern rules with growing patterns, change and 

inverse change rules with function machines and tables of values, balance 

principle in equivalence and equations, compensation principles in 

computations, abstract representation of change (e.g. tables, arrow diagrams, 

graphs) and relationship (equations), particularly looking at the relationships 

between representations and growth of algebraic thinking. These studies have 

reinforced their convinction that generalization is a major determiner of growth 

in algebraic thinking and preparation for later learning of studies. (Cooper & 

Warren, 2011). These authors, in analogy with the ‘quasi variable’ notion (Fuji 

& Stephens, 2001) - which espresses the students’ recognition that a number 

sentence or group of number sentences can indicate an underlying mathematical 

relationship - introduce the  quasi-generalization (QG) notion to indicate ‘a step 

very near towards full generalization’, i.e. the state where the students are able 

to express the generalisation in terms of specific numbers and can apply 

a generalisation to many numbers, and even to an example of ‘any number’, 

before they can provide a generalization in natural language and in algebraic 

notation. They have found that QG appears to be a needed precursor to the 

expression of the generalization in verbal or symbolic terms.  

From the points of view of the classroom activities and of the students’ side 

these studies are in tune with ours (see Cusi & Malara 2008, Cusi, Malara & 

Navarra 2011 and related references). But, as we shall show later, we take into 

account both the teachers’ role in the class and, more in general, the issue of the 

development of their competence in leading the students to face algebraic 

generalization tasks. 

2.2. Rivera and Rossi Becker’s studies 

The studies by Rivera (2010) and Rivera & Rossi Becker (2007, 2008, 2011) 

focus on the mental processes enacted by junior high school students to grasp 

and express linear (or quadratic) rules generated by the analysis of (figural 

stages of) non elementary patterns. The authors are interested in the students’ 

construction and justification processes of their own generalizations. They focus 

their attention on the ‘visual perception’ as the result of sensory perception 

combined with cognitive perception, meaning, as far as the latter is concerned, 

the capacity of the individual to recognize a fact or a property as related to an 

object. They claim, like Radford, that the processes of exploration of a pattern 
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Abduction 

(forming Hypothesis)  
Induction 

(Testing Hypothesis) 

Pattern generalization 

are abductive-inductive, but differently from Radford
8
, they incorporate in their 

model trial and error processes, accepting that cycles of abduction-induction 

may be repeated to refine the initial hypotheses, up to the definition of a rule 

which is suitable to generalization. The model produced for this process is the 

triangle indicated below. 

 

 

 

 

 

 

 

In particular, Rivera (2010) investigates in an analytical way the evolution of 

students’ cognitive visualization, at the basis of the produced algebraic 

modeling. Concerning this latter point he refers to: Giaquinto (2007)
9
 who 

maintains that the detection of the structure of a pattern arises from the 

association due to the natural ‘visual power’ of each one and from the use of 

a ‘visual or perceptible template’ which directs the exploration aimed at the 

recognition of either constant or redundant parts of a pattern; Davis (1993)
10

 

who conceives the “eye” as a “legitimate organ of discovery and inference” and 

who considers the discovery not only as the result of a logical reasoning path but 

also of noticing; Arcavi (2003)
11

  who sees a visual template as a strategy to 

allow the students to see the unseen of an abstract world, dominated by 

relationships and conceptual structures not always evident; Metzger (2006)
12

  for 

the “law of good gestalt” or “gestalt effect” concerning one’s ability to 

perceive, discern and organize a figure. The author uses the expressions 

“patterns high (or low) in gestalt goodness” to express their high or low 

effectiveness to highlight the structure of a sequence. He shows the existence 

and effectiveness of visual templates in dealing with patterns which have linear 

or simple quadratic structures but he states that further research is needed in 

order to ascertain the possibility of visual templates in all figural patterns which 

have a not linear structure
13

.  

In Rivera & Rossi Becker (2011) the authors classify the procedures used by the 

pupils to reach an algebraic model of the sequence in three categories: 1) 

Constructive standard generalizations (CSGs); 2) Constructive non standard 

                                                 
8 We present later the Radford model. 

9 Giaquinto, M., 2003, Visual thinking in mathematics, Oxford University press. 

10 Davis, R., 1003, Visual theorems, Educational Studies in Mathematics, 24, 333-344. 

11 Arcavi, a. (2003), The role of visual representation in learning of mathematics, Educational Studies in 

Mathematics, 52, 215-241. 

12 Metzger, W. (2006). Laws of seeing, Cambridge, MIT press. 

13 Rivera realizes also a refinement of the previous model considering the starting triangle <abduction, 

induction, generalization> as a common base of two opposite tetrahedrons, where the top vertex represents ‘the 

gestalt effect’ and the bottom vertex ‘the knowledge/action effect’. He considers a new research question, i.e.  

how this new model can be used in other algebra tasks involving generalization. 

Known stage 

 

Managing the unknown 
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generalizations (CNGs); 3) Deconstructive generalizations (DGs). The 

constructive generalizations refer to those polynomial formulas that learners 

directly construct from the known stages of a figural pattern as a result of 

cognitively perceiving figures that structurally consist of non-overlapping 

constituent gestalt or parts. The Deconstructive generalizations refer to those 

polynomial formulas that learners construct from the known stages as a result of 

cognitively perceiving figures that structurally consist of overlapping parts (in 

some cases also embedding the pattern in a larger configuration that has a well 

known or easier structure).  

The deconstructive ways of seeing a pattern imply that some elements (sides or 

vertices) of a figure can be counted two or more times and therefore the 

correspondent formulas involve a combined addition-subtraction process where 

overlapping elements have to be subtracted from the total. The terms “standard” 

and “non standard” refer to the algebraic expression of the rule: applying 

respectively if it is already simplified or not. From their studies CSGs appear to 

be dominant with respect to the DGs ones. The authors, even if they identify in 

the students’ work the ‘factual’, ‘contextual’ and ‘symbolic’ Radford steps (see 

later), focus their analysis on the evolution of the students’work from figurally 

to numerically-driven (de)constructions. They document four types of 

justifications to support the formulas produced: extension generation; generic 

example use, formula projection, formula appareance match. They link the 

student’s success with the classroom socio-cultural mediation which allows 

them to engage in multiplicative thinking and, in some cases, to simplify their 

justifications.  

From these results the students’ difficulty to produce CNGs is hardly 

understandable: since CNGs  reflect faithfully the students’cognitive visions, in 

our opinion they should precede GSGs. Probably this behaviour shown by the 

students, depends on a clause of the didactical contract.  

2.3. Radford studies  

Radford develops a very refined set of studies (Radford 2003, 2006, 2008, 2009, 

2010, 2011) where the ways in which 12-14 years old students immersed in 

a socio-constructive teaching, generalize linear patterns, are analyzed and 

theorized. We recall here some key points of Radford’s theory.  

The author claims that generalization implies two main processes which involve 

phenomenological and semiotic aspects: grasping a generality, 

a phenomenological act enacted through noticing how a local commonality 

holds across the given terms
14

; and expressing a generality, a semiotic act 

enacted through gestures, language and algebraic symbols.  

                                                 
14 Dorfler (2008) critically reflects on the conception of ‘grasping a commonality’ as based only on an 

empiricist understanding. He considers the notion of circle and he underlines that it does not fit in with this 

vision because “nothing observable have (exactly) the form of circle … in many situations the empirical 
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Grasping is seen as the enactment of an abduction from noticing some cases, i.e. 

the identification of a commonality meant as ‘general prediction’ in the sense of 

Peirce. The abdution becomes a hypothesis through which, if positively verified, 

a new object emerges: a ‘genus’, i.e. a general concept arising by generalisation 

of the noticed commonality to all the terms of the sequence. An algebraic 

generalization occurs when the genus crystallizes itself into a schema, i.e. a rule 

providing one with an expression of whatever term of the sequence. This is 

Radford's model of this process (Radford, 2008, p. 85)  

  

  

Later he argues that “the identification of the genus cannot be considered the 

result of an algebraic process” (Radford, 2011). He claims that thinking 

development occurs both at the mental and the social plane, generated by 

material (gestures, language, and perception) and immaterial (imagery, inner 

speech…) components, which altogether constitute its ‘semiotic texture’. He 

considers that algebraic thinking is characterized by indeterminacy and 

analyticity which can be distinguished by the signs on which the student draw. 

As to the emergence of algebraic thinking he claims: a) that expressing 

generality algebrically does not imply necessarily the use of the letters (they can 

be used without any general meaning), instead of the way of reasoning which is 

made explicit in grasping and expressing vagueness in some way; b) the 

emergence of the algebraic thinking occurs when the students succeed to shift 

their attention from calculating a number of certain elements to the “way of 

calculating” such number.  

Noticing students’ behavior he distinguishes three levels of approach to 

generality. A first level, which he defines as ‘naive induction’, where there is no 

actual, aware generalization. It is characterized by pupils’ trial and error 

processes, by the possible occasional discovery of generalities, by germs of 

abduction which are falsified in the checking stage. At this level, even though 

a rule may be expressed in the alphanumeric system the generalization is not 

algebraic. A second level that he calls arithmetic generalization, where 

generalization is seen locally, in a recursive way, and expressed in the different 

cases through the addition of a constant term. A third level, which he defines as 

algebraic generalization, is a very mazy and complex one, marked by gradually 

more and more advanced phases. Regarding this latter level the author talks 

about a whole working area called zone of the emergence of algebraic 

generalization, which develops through ‘layers of generality’. The first layer, 
                                                                                                                                                         
generalization or abstractions need a complementary support by epistemic processes like idealization and 

hypostatization”. 

Deducing pn  from C 

Particulars 

P1, p2, …, pk 

 
Noticing commonality C 

 
Making C a hypotesis 

 

Producing the expression of  pn  

 

abduction Trasforming the abduction 



Generalization processes in the teaching/learning of algebra 71 

 

defined ‘factual’, is the one where the generalization appears by means of 

concrete actions on the examined cases, but it is not coagulated in a statement. 

The second layer, defined contextual, is reached when indetermination enters the 

discourse, pupils talk about the 'number of a figure' but they make space-time 

remarks on it, in a general perspective and a rule is expressed in various ways 

drawing on words, gestures, rhythms and signs. The level of the algebraic 

generalization is reached when pupils detach themselves from the figural context 

and shift towards the relations between constant and variable elements (numbers 

and letters). Important elements which intervene in this last process are 

iconicity, i.e. a manner of noticing similar traits in previous procedures, the 

shifting from a particular unspecified number to the level of variables 

summarizing of all the local mathematical experiences, the contraction of 

expressions which testifies a deeper level of consciousness. This is a synthetic 

representation of the processes (Radford, 2006, p.15)  

Radford’s model of the students’ strategies in dealing with pattern activities  

Naïve Induction Generalization 

Guessing Arithmetic Algebraic 

(Trial and Error) (local 

recursion) 

Factual Contextual Symbolic 

 

In the most recent works by Radford (2010, 2011) the author adresses his 

attention to very young students (7-8 years old) and he studies in details the 

relationship teacher-pupils in classroom processes where the pupils are brought 

to detect and express generalizations in the exploration of figural sequences. In 

(Radford, 2010) the scholar claims that “learning can be theorized as those 

processes through which students gradually become acquainted with historically 

constituted cultural meanings and forms of reasoning and action”. In particular 

he focuses on the ‘way of seeing’ and states that “the mathematicians’ eyes have 

undergone a lengthy process of domestication” in the course of which people 

come to see and recognize things according to “efficient” cultural means.  

Radford considers “seeing” not a simply physiological act but as a fruit of the 

cultural milieu where one is imbedded; he stresses that “generalization rests on 

synthesizing resemblances between different things and also differences between 

resembling things”, and that this game of visions has to be conveniently 

educated by the teacher. He highlights the social character of the teaching-

learning processes, the role assumed by the teachers in it and focuses on “the 

way in which teachers create the possibility for students to perceive things in 

certain ways and encounter a cultural mode of generalizing”; he claims that 

“perceiving sequences in certain efficient cultural ways entails a transformation 

of the eye into a sophisticated theoretician organ”.  
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In the analysis of classroom transcripts he highlights the teacher’s behaviours 

(questions, guided reflections, gestures, tone of the voice, silences, looks) 

through which she succeeds to address her little students to become aware by 

themselves of the incorrectness of their visions and to autonomously correct 

them. As to this, he writes: 

…Poësis is a creative moment of disclosure – the event of the thing in 

consciousness … The poetic moment of disclosure of the general structure behind 

the sequence discussed in this paper was the result of a joint student-teacher 

interaction. This moment – the event of the thing in consciousness – was much 

more than a negotiation of meanings and an exchange. It was rather a Bakhtinian 

heteroglossic merging of voices, pointing gestures, perceptions, and perspectives … 

(Radford, 2010, p. 3) 

From the examination of the studies we have considered, clear common 

elements appear about the articulation of the phases through which 

generalizations emerge, but there are also some elements of difference, for 

instance the different position of the trials in the models by Radford and Rivera 

about the students’ behaviours in front of the exploration of figural sequences. 

Radford’s studies stand out for the sharp intertwining between aspects of 

practice and theoretical aspects, and moreover for the consideration of the socio-

cultural and epistemological dimension of both mathematics and its teaching. 

The experimental studies do not give esplicit indications about factors which 

contribute to the students’construction of the semantic basis for generalization. 

A study devoted to this aspect and carried out by my collaborators Cusi & 

Navarra, is presented in this conference.   

In most of the studies we know, the teacher’s role remains in the shadow. 

Warren (2006) states that more research needs to individuate teachers’ actions 

and ways to pose questions which can facilitate the students’ generalizations and 

Radford (2010, 2011) highlights the teacher’s actions in guiding the students to 

‘see’ analogies and differences among various stages of a pattern, but they do 

not mention that the majority of the teachers meet big difficulties to manage this 

type of teaching even when (s)he is convinced that it is appropriate to practice it. 

This problem has been an object of our studies and it is discussed in the next 

section.  

3. OUR STUDIES ON THE SIDE OF THE TEACHERS’ EDUCATION 

FOR A SOCIO-CONSTRUCTIVE APPROACH TO EARLY ALGEBRA 

Since the nineties we have addressed questions of the teaching-learning of 

algebra and we have set up several experimentations of didactical innovation in 

collaborations with expert teachers -researchers. Our aims were to individuate 

the conditions of real applicability in the schools of didactical innovations in 

algebra, centered on algebraic problem solving, generalization, modeling and 

proof in the frame of a socio-constructive teaching. Our several studies have 

given birth to ArAl Project: arithmetic pathways to favour pre-algebraic 
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thinking
15

 (Malara & Navarra, 2003) which proposes a revision of the arithmetic 

teaching in a relational key and an approach to early algebra of a linguistic-

constructive type. The project involves students and teachers from kindergarten 

to the first biennium of upper secondary school but it is mainly devoted to 

primary and lower secondary school in a perspective of continuity between the 

two school levels.   

The ArAl project is based on the hypothesis that there is a strong analogy 

between modalities in which natural language and algebraic language are 

learned.  As we know, a child learns natural language through a large variety of 

situations which he experiences with an experimental attitude, gradually 

mastering the meanings and supporting rules of the language, up to the school 

age, when (s)he will learn to read and reflect on grammatical and syntactic 

aspects of the language. Similarly, the mental models of algebraic thinking and 

language should already be constructed in an arithmetical environment, even 

from the very first years of primary school, bringing a child to face pre-algebraic 

experiences in the arithmetical realm (grasping regularities, generalizing and 

expressing relationships, giving and comparing representations, extending 

properties by analogy...). In this way (s)he can progressively develop algebraic 

thinking, in a strict intertwining with arithmetic, exerting a continual reflection 

on the meanings of the introduced symbols and of the implemented processes in 

classroom work.  

As reported in Cusi & Al. (2011), our perspective of work in the classes is based 

on the following principles:  

The anticipation of generational pre-algebraic activities at the beginning of 

primary school, and even before that, at kindergarten, to favour the genesis of 

the algebraic language, viewed as a generalizing language. From these activities 

the pupil is guided to reflect upon natural language; it is from the analogy 

between the modalities of development of the two languages that the theoretical 

construct of algebraic babbling comes out16. 

The social construction of knowledge, i.e. the shared construction of new 

meanings, negotiated on the basis of the shared cultural instruments available at 

the moment to both pupils and teacher. Arithmetic and algebraic knowing are 

both central, but they need to emerge and strengthen themselves through the 

                                                 
15 ArAl is an acronym for “Arithmetic and Algebra”. The ArAl Project is led in collaboration with Giancarlo 

Navarra, a teacher-researcher who co-ordinates the organizational aspects of the Project and contributes to its 

scientific program. 

16 We call algebraic babbling the experimental and continuously redefined mastering of a new language, in 

which the rules may find their place just as gradually, within a teaching situation which is tolerant of initial, 

syntactically “shaky” moments, and which stimulates a sensitive awareness of formal aspects of the 

mathematical language. We employ the “babbling” image because when a child learns a language, (s)he masters 

the meanings of words and their supporting rules little by little, developing her/his knowledge gradually by 

imitation and self-correction or with the adults’ support. 
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coordinated set of individual competencies, which are the main resource on 

which they are constructed.  

The central role of natural language as the main didactical mediator for the slow 

construction of syntactic and semantic aspects of algebraic language. 

Verbalization, argumentation, discussion, exchange, favour both the 

understanding and the critical review of ideas. At the same time, through the 

enactment of processes of translation, natural language sets up the bases for both 

producing and interpreting representations written in algebraic language. From 

this centre, attention is then extended to the plurality of languages used by 

mathematics (iconic, graphical, arrow-like, set-theory language, and so on). 

Identifying and making explicit algebraic thinking, often ‘hidden’ in concepts 

and representations in arithmetic. The genesis of the generalizing language can 

be located at this  ‘unveiling’, when the pupil starts to describe a sentence like 

4 2+1=9 no longer (not only) as the result of a procedural reading ‘I multiply 4 

times 2, add 1 and get 9’, but rather as the result of a relational reading such as 

‘The sum between the product of 4 times 2 and 1 equals 9’; i.e. when he/she 

talks about mathematical language through natural language and does not focus 

on numbers, but rather on relations, that is on the structure of the sentence. 

In an approach of this type the teacher has a key role. In fact (s)he needs to set 

up a teaching strategy that allows for the implementation of an authentic socially 

shared mathematical activity, where space is given to linguistic aspects, to the 

representation of information and processes, as well as to meta-cognitive 

aspects. The latter are important to monitor the appropriateness and suitability of 

representations, to recognize and identify equivalent ones and select the best 

ones. All this requires a deep restructuring of the teachers’ conceptions about 

both the contents to be taught and the teaching methodology in the classroom: 

a real ‘culture of change’ is entailed.  

For reshaping teachers’ professionalism several scholars stress the importance of 

a critical reflection by teachers on their own activity in the classroom (Mason, 

1998, 2002, 2008; Jaworski, 1998, 2003; Lerman, 2001; Shoenfeld, 1998). 

Mason, in particular, proposes the study of the discipline of noticing. He claims 

that the skill of consciously grasping things comes from constant practice, going 

beyond what happens in the classroom, and recommends the creation of suitable 

social practices in which teachers might talk-about and share their experience. 

Also Jaworski stresses the effectiveness of communities of inquiry, constituted 

by teachers and researchers, emphasizing how teachers’ participation in these 

groups helps them develop their individual identity through reflective inquiry. 

Our teacher education model follows these conceptions and modalities. But it 

represents the outcome of research and training practices developed in Italian 

universities since the 1970’s.  
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Instruments, methods and activities outlined and tuned in the ArAl project, work 

as a support for teachers to propose early algebra activities in the classroom, 

using a socio-constructive methodology, and, at the same time, as a training to 

become metacognitive teachers through a reflection upon their own action in the 

classroom. Follow-ups of the basic activities are twofold: 

 on the pupils’ side: the aim is to analyze the conditions under which 

pupils, since grades 4-6 manage, at a first level, to generalize, formulate 

properties and produce formal representations and, at a second level, to 

appropriate the meaning of algebraic expressions and become aware of 

their expressive strength; 

 on the teachers’ side: the aims are on two levels as well. One aim is to 

refine their ability to guide the class in the approach to early algebra 

following these ArAl modalities; a second aim is to foster their 

professional development through stimuli deriving from participation in at 

least two-year collaboration projects, characterized by the immersion in 

a community of enquiry on one’s own practice, in a continuous interplay 

of reflection, exchange, sharing. 

Our hypothesis for the promotion of the teachers’ professional development is to 

bring them to be embedded in an ‘environment’ where they can acquire a new 

way to operate in and for the class, work actively and reshape their 

professionalism  through frequent exchanges of studies, experiences and 

reflections. Our modalities of work in teachers’ education are aimed at both 

bringing the teachers to analyze their didactical processes to assess their results 

and guiding them to reflect on these processes according to three different points 

of view: the development of the mathematical construction; the teacher’s 

actions; the participation of each individual in the collective construction of the 

knowledge.  

We believe that by observing and critically reflecting on socio-constructive 

teaching/learning processes, the teachers are led to become aware of the 

different roles they are supposed to play in the classroom, of the best ways to 

interpret them and can also get useful suggestions about how to behave in the 

classroom. Moreover, we believe it is crucial for teachers to be familiar with 

research results that can be useful for practice and to become aware of the 

importance of studying them for their own professional development.  

The teachers who choose to participate in ArAl teaching experiments are mainly 

motivated by their ‘first encounter’ with the project through publications, 

congresses or events in the schools. Often these teachers have already studied 

the project and in particular its units17 and the glossary that can be found in the 

                                                 
17 The units can be viewed as models of sequences of didactical projects, open to the teacher’s choices and 

focused on a specific strand of activities. They provide information on the mathematical meaning and the 

objectives of the single activities presented, report excerpts that exemplify class discussions, as well as 
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project’s website18. When they actually face the teaching experiment, they 

nevertheless show uncertainty towards class discussions, felt as open and 

unpredictable situations, difficult to be managed.  

Through our studies we became aware of the difficulties that the teachers meet 

both in planning and in guiding classroom mathematical discussions. Our 

studies highlighted how during a classroom discussion often the teachers assume 

not adequate behaviours or fall back to a trasmissive teaching model. Therefore 

often they do not share with the students the goals of a problem exploration, 

they do not give room to some potentially productive interventions, they tend to 

ratify immediately the validity of some meaningful contribution without giving 

the class any opportunity to validate them. An example of a discussion where 

the teacher has this kind of behaviour is reported in appendix with a comment.  

As a support to teachers and an answer to their needs, a mentor-researcher is 

associated with each group of teachers involved in the same teaching 

experiment: teachers and mentor share some moments of work face to face 

together with a dialogical relationship via e-mail. There are also regular working 

sessions of small groups with their mentor and the researcher in charge of the 

group, but also collective sessions, involving all the researchers and teachers 

experimenters, all held in schools or at the university. 

Believing that observation and critical-reflective study of classroom-based 

processes help teachers become aware of the processes involved in every 

discussion and of the variables that determine those processes, our objective is 

to lead the involved teachers: a) to become increasingly able to interpret the 

complexity of class processes through the analysis of the inner micro-situations, 

to reflect upon the effectiveness of their own role and become aware of the 

effects of their own micro-decisions; b) to be in a better and finer control of both 

behaviours and communication styles they use; c) to notice, during classroom 

activity, the impact of the critical-reflective study undertaken on pupils’ 

behaviour and learning.  

In order to achieve this objective, we involve teachers in a complex activity of 

critical analysis of the transcripts concerning class processes and of reflection 

upon them, aimed at highlighting the interrelations between knowledge 

constructed by the students and behaviour of the teacher in guiding the students 

in those constructions. The analysis is carried out by building up what we call 

‘Multi-commented transcripts (MT), or ‘the diaries’. They are realized after 

                                                                                                                                                         
comments on both pupils’ behaviours (meaningful constructions, frequent attitudes, difficulties) and on teachers’ 

behaviour (appropriate interventions, ways of introducing and managing issues, attitudes etc.). 

18 The units are supported by the theoretical framework and, most of all, by the glossary, available online on the 

project’s website <www.aralweb.unimore.it>, where teachers can find clarifications and further material on 

mathematical, linguistic, psychological, socio-pedagogical and methodological-didactical issues and also find 

prototype didactical sequences, aimed at giving them a stimulus for their-own elaboration of the highlighted 

teaching processes. 



Generalization processes in the teaching/learning of algebra 77 

 

transcribing in a digitally formatted text the audio recordings
19

 of lessons on 

topics that were previously agreed with the researchers. They are completed by 

the teachers-experimenters who send them, together with their own comments 

and reflections, to mentors-researchers, who make their own comments and send 

them back to the authors, to other teachers involved in similar activities, and 

sometimes to other researchers. Often the authors make further interventions in 

this cycle, making comments upon comments or inserting new ones. This 

methodology is characterized by a sort of web choral participation, due to the 

intensive exchanges via e-mail which contribute to the construction of the MTs, 

and to the fruitfulness of the reflections emerging from the different comments. 

Here we only propose a short excerpt from an MT, trying to show how this 

instrument enables one to highlight the behaviours enacted by teachers, the 

difficulties they meet and the awareness they achieve after the work of analysis 

and reflection has been carried out on the basis of the received comments. We 

are well aware that this excerpt cannot fully express the richness and the variety 

of the questions which arise from the classroom transcripts, the type of 

interactions with the teachers that the comments allow and how these can help 

them to refine their actions in the class, so we refer to other examples which can 

be found in Malara (2008), Malara & Navarra (2011), Cusi et al. (2011), Cusi & 

Malara (in press). In order to preserve the discussion flow, analytical comments 

are reported in the same order in which they were made.  Authors of comments 

are labelled as: T: teacher; M: mentor; R1-R2: team researchers. 

A short example of MCT 

The teacher proposes a topic concerning the exploration of a sequence, given the 

first three terms (it is the arithmetic progression with initial element 4 and step 

7). The activity is aimed at determining a general representation of the sequence. 

In the following excerpt, the class (grade 6) had already identified the 

sequence’s recursive generating law. The teacher writes the following table on 

the blackboard and opens up a discussion to introduce the class to the study of 

a representation for the general correspondence law (T represents the teacher; S, 

J and A represent the students involved in this part of the discussion). 

 

 

 

 

                                                 
19 We chose to analyze audio-recordings instead of videos of classroom processes because we believe (Malara 

& Zan, 2008) that, while watching the video may not enable teachers to completely capture the details of the 

verbal interaction, analyzing transcripts, instead, fosters the crystallization of interactive processes and highlights 

gaps, crucial decision making moments and also omissions, oversights, carelessness.  
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Sequence ranking 

number 

Sequence number Operations made to jump 

from the place number  
‘Mathematical recipe

20
’ to 

construct the number  

1 4 4  

2 11 4 +…  

3 18 4 + … + …  

4 25   

5 32   

 
1 T: How do we get to 11? 

2 S: + 7. 

3 T: We make 4 + 7. What about the third place, S? We make…? 

4 S: 4 + 7 + 7. 

5 J: Wouldn’t it be better to make 4  2? (1) 

6 T: What about the fourth place? 

7 S: 4 + 7 + 7 + 7. 

8 T: What about the fifth? 

9 S: 4 + 7 + 7 + 7 + 7. 

10 T:What if we had a sixth place? 

11 S: 4 + 7 + 7 + 7 + 7 + 7.  

12 T: Correct. So, now we find… 

13 A: I didn’t get it. What do I put in the first place? 

14 T: Well, there is 4 in the first place. 

15 A: I put 4  1. (2) 

16 T: Well, but there is no ‘ ’ there. The first place is 4  (3) 

 

Comments 

(1)  M. Why doesn’t T comment upon J’s intervention? 

      R2. I agree. Probably J grasps a regularity but doesn’t express it correctly, 
instead of saying 4 + 7  2 he packs everything in 4  2. T should 
have clarified this. 

(2) R1. Also this intervention might have been investigated. Why does A think 
about the product of 4 and 1?  

      R2. Again we are in front of a badly expressed intuition. The student probably 
wants to ‘fill the gap’ he sees in the representation of the first term 
as compared to the others. Here T misses the chance to change the 
representation of the first term, 4, into one that fits with the situation, 
for example writing 4 as 4+0 and getting back to the class posing the 
problem to find a representation for the first term, similar to the 
other ones. 

                                                 
20 The expression “mathematical recipe” is a metaphor used by the teacher to convey the idea that pupils should 

use a representation of the sequence’s number in function of the place number. 
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(3) R2. This intervention by T suggests that she excludes the possibility of 
representing 4 in another way, thus showing little algebraic 
farsightedness. It would be extremely appropriate to encourage these 
intuitions, although imprecise, trying to redirect them. 

      T. All these remarks make me think I am really close-minded and I didn’t 
realise it before. I don’t know whether this is a matter of attention, of 
being used to seeing things in different ways, of fearing to get out of 
the scheme to be followed (or the one I thought I should follow).   

Analysis of the excerpt  

This excerpt documents a number of rigid behaviours by the teacher in her 

action. She does not manage to productively value the intuitions of some pupils, 

blocking their emerging mathematical explorations (lines 5, 13, 15) and to direct 

pupils towards a relational reading of the correspondence, which implies the use 

of the multiplicative representation (line 16). If we look at the comments she 

proposes, we notice that she only makes remarks about her action in the class 

after reading both mentor’s and researchers’ remarks. Her a posteriori comment 

shows awareness of her own rigidity and of her tacit fears to leave usual 

schemes to approach innovative activities (note 3-T). 

Comments made in this excerpt reflect some of the categories we already 

highlighted (Malara, 2008) and that seem to be strictly interconnected here: (1) 

conceptions linked to cultural and/or general educational issues (note 3-R2); (2) 

methodological issues concerning mathematical aspects (notes 1-R2; 2-R2; 3-

R2); (3) management of discussions in the classroom (notes 1-M; 2-R1). Further 

categories strongly emerged in MCTs- not documented here for space reasons- 

refer to the distance between theory and practice (difficulty in drawing on 

elements of the theoretical framework) and to a wide range of linguistic issues. 

The example we presented shows the role of MCTs in the training program in 

which teachers are involved, reminding that this analytical work is carried out 

on the transcripts of all the episodes that constitute the teaching-experiment. It is 

through the comments that teachers: (1) actually realize how the development of 

pupils’ mathematical constructions is strongly affected by the teacher’s 

language, choices, attitudes and actions; (2) reflect upon their difficulties in 

managing a discussion and receive suggestions about how to face micro-

situations of interaction; (3) express their own difficulties, doubts, awareness.  

The collectively-written critical analysis is a particularly important 

methodological tool for the development of the teacher’s awareness: divergent 

comments to a micro-situation lead to grasp a range of possible interpretations 

of both behaviours and interventions enacted; converging comments enable one 

to amplify the critical points of the management of the activity, on which it is 

necessary to (re)construct competences and refine one’s sensitiveness.  

We wish to underline the determinant conditions for the effectiveness of our MT 

approach. One first condition is the non-episodic nature of the situations for 
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reflection and exchange: by progressively accumulating these moments of 

autonomous and interactive reflection, characteristic of our methodology, the 

teacher becomes more receptive and, in the long term, is led to develop new 

conceptions, attitudes and ways of acting. Another fundamental condition, 

crucial for the teacher’s development process, is the enactment of a relationship 

between the members of a team, based on mutual trust, and the construction of 

a sense of belonging to a group that shares common values.   

Moreover, the analysis of several MTs related to the implementation of a path 

designed with the teachers and aimed at the development of students’ proving 

ability through algebraic language, allowed us to identify the specific characters 

which constitutes the profile of an ‘effective teacher’, who poses him/herself as 

a model of aware and effective attitudes and behaviours for students (Cusi & 

Malara, 2009). The defining elements of this model, are as follows: the teacher 

must (a) be able to assume the role of “investigating subject”, stimulating an 

attitude of research on the problem being studied, and of an integral element of 

the class group in the research being activated; (b) be able to assume the role of 

operational/strategic leader, through an attitude towards sharing (as opposed to 

transmission) of knowledge, and as a thoughtfulness leader in identifying 

efficient operational/strategic models during class activities; (c) be aware of his 

or her responsibility in maintaining a harmonized balance between semantic and 

syntactic aspects during the collective production of thought through algebraic 

language; (d) seek to stimulate and provoke the building of key skills in the 

production of thought through algebraic language (be able to generalize, 

translate, interpret, anticipate, manipulate), acting as an “activator” of algebraic 

processes (generalization, traslation, manipulation, interpretation, anticipation); 

(e) also have the aim to stimulate and provoke meta-level attitudes, acting as an 

“activator” of thoughtful attitudes and “activator” of meta-cognitive acts, with 

particular reference to the control of the global sense of the processes.  

The work developed with trainees teachers (Cusi & Malara, 2011), suggested us 

to conceive this construct as a possible theoretical lens for the analysis of 

classroom discussions to be used in specific workshops for/with in-service 

teachers. In the future we wish to verify the effectiveness of this construct also 

as a tool for the teachers’ self analysis. 

4. CONCLUDING REMARKS 

In this paper we presented a brief overview of the literature and we sketched out 

some research results which offer meaningful indications about recent points of 

views on generalization processes. Then we focused our attention on some 

recent studies about generalization activities in early algebra teaching describing 

the position of some scholars.  

In this frame we have considered the issue of the role played by the teacher in 

leading the students to engage in this kind of activities and through some short 
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excerpts of classroom work we have shown the sharp relationship between the 

teacher’s actions and the students’ behaviours. We have also sketched a profile 

of a teacher who acts as an effective guide for the students to promote the 

development of a meaningful and aware approach to algebraic thinking.  

To conclude we stress the importance of the teacher’s awareness at different 

levels to gain consciousness and control about the effective ways of posing 

him(her)self in the class and, above all, we underline the need of a refined 

teacher’s education on this delicate aspect of teaching which requires a deep 

study of classroom episodes and above all a systematic careful self-analysis of 

the teacher’s own practice.  

APPENDIX 

 

A problem situation presented in primary school (grade IV)  

In the great reef life is very intense. You can possibly meet several types of animals: 

sponges, jellyfishes, octopuses, multicolour fishes. In the far eastern part of the reef a very 

numerous family of sea stars lives, each of them attached to a coral: 

 
Alessia                 Angela                 Elena 

               Loretta                 Patrizia                … 

     1          2            3          4          5          6           7         8 

 
                                           

 
When the new moon arises the sea stars shift and change the coral following a very old 

rule. Try to discover the rule looking at how the sea stars in the first positions move: 

Alessia goes to n° 3; Loretta goes to n° 5; Angela goes to n° 7; Patrizia goes to n° 9 Elena 

goes  to n° 11 

1) On the n. 78 coral the little star Valeria lives: which will be the number of the coral on 

which it will move? 2) Which will be  the number of the coral where the sea star living at 

the 459th place will move?  

Justify your answers. 

 

The discussion (the teacher’s interventions are in italic) 

At the beginning some pupils give numerical answers without any justifications 

or by chance.  

1. Teacher  I asked you to justify your answers.  

    Alex  the stars move: from 1 to 3, from 3 to 5, then ‘plus 2’, from 5 to 7 
‘plus 2’… 

    Alessia  I have added the number that says how much all the stars move: 2, 3, 
4, 5… because from 1 to 3, it is +2; from 2 to 5, it is +3, then it 
moves from 3 to 7, it is +4; and then from 4 to 9, it is +5, from 5 to 
11: +6 and adding 2+3+4+5 we obtain 15 

    Beatrice  I have done in this way. (She goes to the blackboard and clearly 
describes her reasoning representing all the various cases with 
arrows)  The star Alessia has to move from place 1 to place 3 and 
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then it is +2; Loretta has to move from n. 2 to n. 5, it makes +3; 
Angelica moves from n. 3 to n. 7, it makes +4; Patrizia moves from 
n. 4 to n. 9, it makes +5; Elena moves from n. 5 to n. 11, it makes 
+6. Then, in my opinion, [the answer for the coral n. 78] is 78+79, 
that is 157, because I have added to the number of the place of the 
star in the initial position, the number which follows it. 

n.1 

      +2 

                          
           3 

n.2 

      +3 

 
           5 

n.3 

      +4 

 
           7 

n.4 

      +5 

 
           9 

n.5 

      +6 

 
           11 

   

2. Teacher  Really good! What do you think about this? One of you said that 
Valeria arrives at n.80, another one said at n. 93, another one at 84, 
another one at 157. 

    Nicola  I have not understood well Beatrice’s reasoning. 

3. Teacher  Beatrice, you have to help Nicola (and addresses the class), whether 
you do not understand, you ask. 

   Beatrice Yes. The star Alessia stayed at n.1 and she moved to n.3 …  (Beatrice 
starts from the first sea star and she retraces the arrow oriented from 
1 to 3, she continues analogously with the other stars, indicating 
them while she is speaking). 

4. Teacher  What has Beatrice done with respect to the classmates who have 
spoken before her? 

    some pupils: She has represented … . Others: She has outlined a scheme…  

The teacher suggests Beatrice to write in red the value of the arrow operators. 

While Beatrice colours she explains. 

    Beatrice … then for getting to 5 the star 2 makes +3; then from 3 for getting to 
7, I have added 4; from 4 for getting to 9 I have added 5, from 5 for 
getting to 11 I have added 6 

    Nicola  She has to put 6 because it is 5+1; she has to put the [number of] the 
star’s address plus 1. She has to add “the address number plus 1” to 
“the address number”  

5. Teacher Good! Translate it into mathematical language  

    Nicola  +5+5+1 
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Nicola, Beatrice and some others enrich the blackboard with a new 

representation: each arrow of the previous representation is splitted in two, the 

first arrow appears to be a variable operator depending on the place number and 

the second arrow appears to be the invariant operator ‘+1’.  

6. Teacher  Then if the star starts from 78, what will be its new place? 

    Beatrice:  78+78+1=157  

7. Teacher:  (shaking hands with Beatrice. Then, addressing the class) Have you 
understood?  

    Giulio  Then it  has to go to number  157… I have written only the process: 
78+78+1 

 8. Teacher:   Would it be possible to write the same thing in different ways? 

     Alex, Enrico, Nicola e Giulio give these writings. 

     78+78+1=157;      78+79=157;      78×2+1;     78+(78+1) 

9. Teacher  Very good. There is a new challenge for you: The star Filippa is at 
place n. 100; where does it move to? 

     Alessia  100×2+1=201 

10. Teacher  Ok. The star Maria is at n. 300; where does it move to? 

     Alex  300+300 is 600, plus 1 that equals 601 

     Beatrice   Or rather you can multiply its value times 2 and then plus 1  

11. Teacher  You have been very smart! We have not got to the generalization 
yet, but we are near  

 Some days after the class restarts the activity.   

12. Teacher Go back to where we had stopped: which rule does the star Valeria 
follow to move to the new coral? 

Some pupils: 78+78+1=157. One of them rewrites this expression on the 
blackboard 

13. Teacher Someone has said 78×2+1=157, do you remember? Now tell me: if a 
little star starts from n. 15 where is it when it arrives? 

      Pupils  15×2+1! 

14. Teacher  Ok. And if it starts from 103? 

      chorus  103×2+1! 

The teacher picks other starting numbers: 598; 3654; 92045; she writes in 

column the pupils’ sentences, purposely leaving a space between the number of 

the starting coral and the chain of the operators acting on it:  78  ×2+1;  15  

×2+1; 103  ×2+1;  598   ×2+1;  3674   ×2+1;  92045  ×2+1 

      Chorus  Times 2 plus 1, it remains the same!!! 

15. Teacher Excellent! ‘×2+1’remains constant. Now try to express in Italian the 
rule of this moving. We have to write the “Regulation of the sea 
stars movings”. Imagine that the star Carlotta arrives at the colony 
for the first time. When there is the new moon it notices that all the 
sea stars move and change their place, she does not understand 
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anything and she asksher neighbour star what she has to do. In your 
opinion which help can the neighbour star give her? 

      Alex  She has to do the number of its coral times 2 plus 1. 

16. Teacher  How can you say it in another way? 

      Costanza  From the number of her house you have to go forward times 2 plus 1 

      Piero  I shall say: if you are in the coral house number 50, you have to 
move to… you have to go… yet 50 house more and plus another 

17. Teacher  Meanwhile the little star starved … .Listen to me, we need to assign 
some names; how do we call these numbers? (she indicates the first 
term of each sentence) 

     Costanza Number of the house  

18. Teacher  Both of them are numbers of house  

      Lucia  Number of the coral  

     Chorus   Starting number 

19. Teacher  How do we call these in a competition? 

     Chorus   Start! Arrival! 

(The teacher writes on the blackboard, respectively on the left-hand side and on 

the right-hand side of the sentences: “number of the starting coral”; “number of 

the arrival coral”)  

20. Teacher  I suggest you to begin from the number that is  after the equal sign. 
(She says) “The number of the arrival coral is equal …  

      Enrico  … to the starting number times 2 plus 1  

      Alessia  the number of the arrival coral is equal to twice the starting number 
plus 1 

21. Teacher  We can take away “of the coral”. Dictate it to me  

      pupils:  The arrival number is twice the starting number plus 1 

(The teacher writes the rule on the blackboard and reads it.) 

22. Teacher  Do you know how to translate it for Brioshi?21 

      Matteo  Times 2 

23. Teacher  Only so? In your opinion Does Brioshi understand? 

      Mattia  78...  

24. Teacher  Then does it hold true only for 78? 

      Enrico  It holds true for any starting number  

25. Teacher  The idea is excellent, but in mathematics, after several studies, it has 
been decided to call ‘any number’ only with a letter  

     Mattia  I had said it!  

                                                 
21

  Brioshi is a virtual Japanese student who exchanges messages in mathematical language with 
pupils. His acknowledged skill in this area, encourages pupils to check the correctness of the 
mathematical expressions to be sent out to him.  
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26 Teacher What do we choose as starting number? 

     Chorus  s 

27. Teacher And as arrival number? 

     Chorus  a 

Anna gives the rule in formal terms: s×2+1=a. The class writes the relationship 

to be sent to Brioshi: s×2+1=a 

Comment 

At a first reading of this discussion, the teacher’s behaviour can appear good. 

But in actual fact she does not act well. She speaks only with few pupils, she 

does not promote any interaction in the class, and above all she does not 

relaunch the validation of the pupils’ proposals to the classmates. She does not 

take into account pupils’ contributions which offer elements of discussion and of 

comparison (see Alex’s proposal and Alessia’s proposal). She expresses 

judgments through exclamations or emphatic gestures (intervention 2, 

intervention 7). She immediately directs the class towards the solution she had 

foreseen, as soon as it appears (intervention 5-7)22. She disregards to enhance 

important contributions, even expressed in general terms, as the one by Nicola, 

which facilitates the emergence of the link between the initial and final coral-

house of a sea star. Yet, she does not re-examine with the class the reasonings 

developed for sharing, pinpointing and consolidating them, but she limits herself 

to ask “did you understand?”. She does not pose herself in a reflective way in 

front of the pupils, trying to help them overcome the procedural vision induced 

by the arrows representation, for instance discussing with the class about which 

coral-house they have to speak, the ‘regulations’ they have to write, so that the 

pupils can understand they have to write a verbal sentence related to the number 

of the final coral-house. She disregards the opportunity offered by Alex’s 

intervention to clarify that a rule cannot be a simple procedure but it has to be a 

sentence with a complete meaning, forcing in this way a verbal representation of 

the sought rule. Trying to solve the question of the verbal representation of the 

relationship at stake, she poses a vague question (intervention 16) which does 

not allow pupils to face this delicate step, impossible to be done without a 

careful mediation of the teacher, where they have to shift from the number of the 

starting coral-house to the number of the final one. Yet, she does not bring the 

pupils to make explicit in the various numerical cases what the starting and final 

numbers represent, fact that prevents the pupils from formulating verbally a rule 

                                                 
22

  After the first intervention by Beatrice the teacher should have relaunched to the class the 
validation of  the girl’s reasoning,  or at least she should have asked Beatrice to better explain why 
in her opinion 79 had to be added to 78, helping the class focus their attention on the extension of 
the regularity detected by the girl and trying to force her to express the relationship between the 
two numbers at stake (the number to be added to the number of the first coral-house is its 
successive), fact which allows to easily identify the relationship between the numbers of the two 
coral-houses of the sea stars. 
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through the interpretation of the arithmetical sentences,  rule in fact suggested 

by her (intervention 20).  Moreover she does not face in a constructive way the 

question of how to introduce the letters as representation of the variables 

“number of the starting coral-house”, “number of the final coral-house”, but 

only suggests their possible use. So, even if the algebraic representation of the 

rule is made in the class, this discussion does not allow the pupils to consciously 

understand the meaning of the algebraic expression.  

Globally the discussion shows a bigger tension of the teacher for the attainment 

of her goal in a short time than for the care to appropriately address the pupils, 

educating their ways of seeing and facilitating the interaction among them; such 

a tension brings her to assume a procedural behaviour and to give scarce 

attention to the meanings associated with the actions in the various steps of a 

generalization process. 
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PROBLEMS 
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This paper describes a study to analyse how 4-6-year-olds (N=45) children 

solve different types of additive reasoning problems. Individual interviews were 

conducted on kindergarten children when solving the problems. Their 

performance as well as their explanations were analysed when solving additive 

reasoning problems. The additive reasoning problems comprised simple, inverse 

and comparative problems. Results suggested that Portuguese kindergarten 

children have some informal knowledge that allowed them to solve additive 

structure problems with understanding. Children performed better in the simple 

additive problems and found the comparative problems more difficult. 

 

INTRODUCTION 

In mathematics children are expected to be able to attribute a number to 

a quantity, which is measuring (Nunes & Bryant, 2010a), but they also are 

expected to be able to quantify relations. When quantities are measured, they 

have a numerical value, but it is possible to reason about the quantities without 

measure them. In agreement with Nunes, Bryant and Watson (2010), it is crucial 

for children to learn to make both connections and distinctions between number 

and quantity. Quantitative reasoning results from a quantifying relations and 

manipulate them (Nunes & Bryant, 2010a), making relationships between 

quantities valuable (Thompson, 1994). For Nunes and Bryant (2010a), 

quantifying relations can be done by additive or multiplicative reasoning. 

Quoting the authors “[…] Additive reasoning tells us about the difference 

between quantities; multiplicative reasoning tells us about the ratio between 

quantities.” (p.8). In the literature additive reasoning is associated to addition 

and subtraction (see Vergnaud, 1983) and multiplicative reasoning is associated 

to multiplication and division problems (see Steffe, 1994; Vergnaud, 1983). 

Children can use their informal knowledge to analyse and solve simple addition 

and subtraction problems before they receive any formal instruction on addition 

and subtraction operations (Nunes & Bryant, 1996). 

ABOUT THE ADDITVE REASONING 

Piaget (1952) argued that children’s understanding of arithmetical operations 

arises from their schema. A ‘schema’ is a representation of an action in which 

only the essential aspects of the action are evident. He identified three schemas 
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related to additive reasoning: joint, separate and one-to-one correspondence. The 

author pointed out that children are able to master addition and subtraction only 

when they understand the inverse relation between these operations, which is 

achieved by the 7-year-olds. More recently, Nunes and Bryant (1996) referred 

that kindergarten children of 5-6-year-olds can relate their understanding of 

number as a measure of set size to their conception of addition / subtraction as 

an increase / decrease in quantities. This can help children to begin to 

understand that one operation is the inverse of the other. The schema from 

which children begin to understand addition and subtraction are representations 

of the act of joint and separate, respectively (Nunes, Campos, Magina & Bryant, 

2005). These schemas allow 5-year-olds children to solve a problem such as: 

”Anna has 3 candies. Her mother gave her 2 more candies. How many candies 

does Anna have now?”.  

Additive reasoning problems involve one variable and they tell us about the 

difference between quantities. The part-whole relation is the invariant of the 

additive reasoning. The whole equals the sum of the parts. Nunes, Bryant and 

Watson (2010) argue that additive relations are used in one variable problems 

when quantities of the same kind are put together, separated or compared.  

Carpenter and Moser (1982, 1984) presented a classification of addition and 

subtraction problem that does not characterize all the types of word problems 

involving additive reasoning, but those who are appropriate for primary age 

children. They distinguished four categories of addition and subtraction 

problems: change, combine, compare and equalize (see Carpenter & Moser, 

1982, 1984). 

Carpenter and Moser (1984) conducted a research on primary school children to 

analyse their solution strategies according to the type of problem presented. The 

authors argue that the processes that children use to solve addition and 

subtraction problems are intrinsically related to the structure of the problem. 

This idea that addition and subtraction word problems differ both in semantic 

relations used to describe a particular problem situation and in the identity of the 

quantity that is left unknown is also supported by other researchers (see De 

Corte & Verschaffel, 1987; Carpenter & Moser, 1982; Riley, Greeno & Heller, 

1983; Fuson & Willis, 1986), who argue that addition and subtraction problem 

types are related to fairly systematic differences in children’s performance at 

various grade levels. 

According to Nunes et al. (2005), children’s ability to solve problems involving 

an additive structure develops in three phases: first children can solve simple 

problems; then they can solve the inverse problems; and finally they can solve 

static problems. The addition and subtractions simple problems are those in 

which children are asked to transform one quantity by adding to it or subtracting 

from it (e.g., Joe had 5 marbles. Then he gave 3 to Tom. How many marbles 

does he have now?). These types of problems involve relations between the 
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whole and its parts. The inverse problems are those in which the situation 

presented in the problem relates to a schema, but the correct resolution demands 

the inverse schema. For example, in the problem “Joe had some marbles. Then 

he won 2 more marbles in a game. Now Joe has 6 marbles. How many marbles 

did Joe have in the beginning?” (Nunes & Bryant, 2010a), subtraction appears as 

the inverse of addition; the quantity increased and the final one are given, and 

the initial quantity is unknown. The addition and subtraction static problems are 

those in which children are asked to quantify comparisons. For example, “Joe 

has 8 marbles and Tom has 5. Who has more marbles? (an easy question) How 

many more marbles does Joe have than Tom?” (a difficult question) (Nunes & 

Bryant, 1996; Nunes et al., 2005). 

For Nunes and Bryant (1996) the difficulty of the problem is determined not 

only by the situation but also by the invariants of addition and subtraction that 

have to be understood by the children in order to solve a particular problem, and 

these invariants change according to the unknown parts of the problem. Nunes 

and Bryant (1996) also point out that the success in addition and subtraction 

tasks for young children is also determined by the resources that children are 

using to implement computational procedures, the system of signs. For the 

authors problems that involve relations are more difficult than those that involve 

quantities. The literature about additive reasoning has been giving evidence that 

compare problems, which involve relations between quantities, are more 

difficult than those that involve combining sets or transformations. Carpenter 

and Moser (1984) refer that many children do not seem to know what to do 

when asked to solve a compare problem. 

Nunes et al. (2005) conducted a research with primary school Brazilian children, 

from grades 1 to 4, to analyse their performance when solving problems of 

additive reasoning. Their results indicate levels of success above 70% for the 

children of all grades when solving simple problems of part-whole relations 

involving addition and subtraction. When children were asked to solve inverse 

problems only 60% of the first graders and more than 80% of the 4
th
-graders 

succeeded in a problem such as: ”Kate had some candies. She won 2 more in a 

game. Now she has 12 candies. How many candies did Kate have in the 

beginning?”. Their study also analysed comparative problems, such as: “In a 

classroom there are 9 pupils and 6 chairs. Are there more chairs or pupils? How 

many pupils are there more?”. The authors reported around 50% of success for 

the second question, and almost 90% among the 4
th

-graders. These results 

support the idea that the development of children’s additive reasoning is 

progressive, but also suggest that children are able to solve many of these 

problems before they receive any formal instruction on addition and subtraction. 

Literature gives evidence that kindergarten children are able to solve some 

addition and subtraction problems (see Fuson, 1992; Nunes & Bryant, 1996), but 

that does not mean that they understand all the relations in the context of 
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additive reasoning problems. The children’s understanding of addition 

a subtraction is progressive and develops over a long period of time. 

To understand more about the children’s additive reasoning, it becomes relevant 

to analyze younger children’s ideas of addition and subtraction. Following 

previous research of Nunes et al. (2005), it was conducted a study with young 

children, from 4 to 6 years of age, concerning these issues. The study was 

developed to examine children’s understanding of additive reasoning problems. 

For that two questions were addressed: a) how do children perform when 

solving additive reasoning problems?;  and b) what explanations do they present 

when solving these problems? 

METHODS 

Individual interviews were conducted to 45 kindergarten children (4- to 6-year-

olds), from Viseu, Portugal. There were 15 children from each age level. In 

these interviews children were challenged to solve 12 additive reasoning 

problems (4 direct problems, 4 inverse problems, 4 comparative problems). The 

interviews were conducted always by the same researcher.  

The problems presented to the children were an adaptation of the problems 

previously documented in the literature by Nunes et al. (2005). Table 1 gives 

some examples of additive problems presented to children. 

 

Type of problem Example 

Direct Kate’s mum gave her 4 pencils. Later she gave her 2 

more. How many pencils does she have now? 

Ben had 7 candies and he gave 5 to his sister. How 

many candies does he have now? 

Inverse Anna had some candies. She gave 3 to her sister. Anna 

has 2 candies now. How many candies did she have in 

the beginning? 

Mark had 5 chocolate candies, he ate some and now he 

has 3 candies. How many chocolate drops did he eat? 

Comparative In a classroom there are 6 pupils and 4 chairs. Are there 

more pupils or chairs? How many more? 

Mary has 3 flowers. She has 2 more flowers than Betty. 

How many flowers does Betty have? 

Table 1: Examples of additive reasoning problems. 
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All the problems were presented to the children by the means of a story problem 

and material was available to represent the problems. 

No feedback was given to any child when solving the problems. All the children 

were asked “Why do you think so?” after his/her resolution in order to know 

children’s arguments. In the comparative problems, it was expected that some 

children could requested help to understand the problem. In some cases the 

interviewer had to repeat the problem to the child or to put a second question, 

transforming a static question into a dynamic one, in order to facilitate their 

understanding of the problem. For example, instead of “how many cars are there 

more than planes?” – a static question – the child would then be asked “How 

many planes should we give to Mark for him to have as many toys has Ben?” – 

a dynamic question. 

For all these problems, the assessment of children’s performance was 0 for an 

incorrect response, and 1 for a correct one. 

Data collection took place by means of video record and interviewer’s field 

notes. 

Results 

A descriptive analysis of children’s performance when solving additive 

reasoning problems was conducted. Table 2 summarizes this information for 

each type of additive structure problem according to the age level. 

 

Additive reasoning problems 

 Mean (s.d.) 

Type of problem 4-year-olds 

(n=15) 

5-year-olds 

(n=15) 

6-year-olds 

(n=15) 

Direct 2.13 (1.25) 3.75 (1.36) 3.53 (0.83) 

Inverse 1.47 (1.30) 1.80 (1.27) 2.53 (1.25) 

Comparative 0.80 (0.78) 2.33 (1.23) 2.33 (1.29) 

Table 2: Mean and (standard deviation) of correct responses when solving the additive 

structure problems by age level. 

It is remarkable the children’s success levels when solving additive reasoning 

problems. Even the 4-year-olds were able to solve successfully some of these 

problems. The inverse problems and the comparative problems seemed to be 

more difficult for children than the direct ones, but even in those 5- and 6-year-

olds children presented a correct resolution. The comparative problems were the 

most difficult for the children. Very often the interviewer had to repeat the 

problem to the child or to ask a second question in the same problem in order to 
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facilitate children’s understanding of the problem, moving from a static question 

to a dynamic one, as referred before. Thus, the number of cases in which the 

interviewer had to transform a static problem into a dynamic one was registered 

producing two categories: without transformation, in which the child solved the 

problem with no changes; and with transformation in which the child need the 

interviewer to transform the problem. In any of these cases, the assessment was 

0/1 for incorrect/correct responses. 

Table 3 summarizes the number of correct responses given by the children when 

solving the comparative problems according to the need of changes in the 

presentation of the problem. As each child solved 4 comparative problems, 60 

resolutions for each age group were produced. 

 Correct responses in comparative problems 

 

Difficulty level 

4-year-olds 

(n=15) 

5-year-olds 

(n=15) 

6-year-olds 

(n=15) 

Without Transformation 2 14 19 

With Transformation 10 21 16 

Total correct responses 12 35 35 

Table 3: Number of correct resolutions in the comparative problems, with the 

transformation and without it, according to the age. 

 

Figures 1 to 3 present the distributions of the total of correct responses for the 

three types of additive reasoning problems, according to the age level. 

 

Figure 1: Number of correct responses for direct problems by age level. 
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Figure 2: Number of correct responses for inverse problems by age level. 

 

 

Figure 3: Number of correct responses for comparative problems by age level. 

 

In order to analyse the effect of the age on children’s performance solving the 

different types of additive problems a one-way Analysis of Variance (ANOVA)  

was conducted with performance in the type of problem (direct, inverse, 

comparative) as dependent list and age (4-, 5- and 6-year-olds) as a factor. There 

were no significant effects of the age on the direct problems neither on the 

inverse problems, but there is a significant effect of age on comparative 

problems (F(2,42)=9.3, p< .001) indicating that older children performed on this 

problems than the 4-year-olds. Bonferroni post-hoc tests indicate that children of 

5- and 6-year-olds performed better than the 4-year-olds, but no significant 

differences were found on children’s performance of 5- and 6-year-olds. Thus, 

in direct and inverse type of problems there was no age effect; the comparative 

problems were easier for older children than for the younger ones.  
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To know more about children’s reasoning when solving these problems, their 

arguments were analysed for each type of problem. Four categories of children’s 

arguments were considered in this analysis. The valid arguments comprise the 

justifications in which children consider all the quantities involved in the 

problem correctly; the incomplete category comprises children’s arguments that 

refers only to one part of the quantities involved in the problem; the invalid 

arguments are those in which children do not articulate the quantities involved in 

the problems; and the no argument category that comprises all the cases of 

absence of argument.  

Table 4 presents the number of arguments of each type that were used by 

children when solving additive reasoning problems correctly, according to the 

age. 

Additive reasoning problems 

 Type of problem 

 direct inverse comparative 

Type of argument 4yrs 5yrs 6yrs 4 yrs 5yrs 6yrs 4 yrs 5yrs 6yrs 

Valid 17 19 38 12 17 28 8 22 22 

Incomplete 1 9 - - 2 1 - - 6 

Invalid 3 8 4 7 2 7 3 9 4 

No argument 11 9 11 3 6 2 1 4 3 

Total correct resp. 32 45 53 22 27 38 12 35 35 

Table 4: Number of arguments of each type given when solving the additive structure 

problems by age level. 

Four categories of children’s arguments were considered in this analysis. The 

valid arguments comprise the justifications in which children consider all the 

quantities involved in the problem correctly; the incomplete category comprises 

children’s arguments that refers only to one part of the quantities involved in the 

problem; the invalid arguments are those in which children do not articulate the 

quantities involved in the problems; and the no argument category that 

comprises all the cases of absence of argument. Table 4 presents the number of 

arguments of each type that were used by children when solving additive 

reasoning problems correctly, according to the age. 

Children of all age levels presented valid arguments were associated to correct 

resolutions. This suggests that the results obtained from children’s performance 

are associated to an understanding of the problems presented to them. Around 

53% of the 4-year-olds could solve correctly the simple problems presenting 

valid justifications; these percentage increases to almost 72% for the group of 6-

year-olds children. Valid arguments were also presented in 54.5% of the correct 
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answers given by the 4-year-olds children when solving the inverse problems, 

and in 66.7% of the correct resolutions of the comparative problems. In all type 

of problems there were children who were able to solve them correctly, but were 

unable to present a valid argument.  

The use of an incomplete argument can be understood as child difficulty to 

articulate verbally a logic explanation that was carried on. Also children who 

solved correctly the problems presented no argument, as it happen with 34.4% 

of the 4-year-olds that solved correctly the simple problems. 

DISCUSSION AND CONCLUSION 

Children’s informal knowledge is supposed to be the starting point for the 

formal instruction. Thus, it makes sense to know better what do children can and 

cannot do before being taught about arithmetic operations in primary school. 

The results presented here suggest that Portuguese kindergarten children are able 

to solve some problems involving additive structures with understanding, in 

particular conditions. 

These results converge with those presented by Nunes et al. (2005) who 

analysed 5-8-year-olds children’s performance when solving additive reasoning 

problems. These authors also reported that additive comparative problems were 

more difficult to young children than the direct and inverse ones. Our study 

extended these findings about children’s additive reasoning as it gives evidence 

that 4-year-olds children can succeed in solving direct, inverse and also 

comparative problems. Their procedures do not vary from those used by the 5- 

and 6-year-olds relying on the schema of the act of join and separate for the 

direct and inverse problems previously identified in the literature (see Nunes & 

Bryant, 1996; Nunes et al., 2005).  

The children’s arguments were also analysed in order to get an insight on their 

reasoning when solving the additive structure problems. These arguments give 

evidence that children as young as 4 years of age can establish a correct 

reasoning and solve this type of problems. This suggests that their correct 

answers were not achieved by chance. If there are children of 4-year-olds able to 

solve some additive structure problems with understanding, relying in their 

informal knowledge, perhaps kindergarten could stimulate their early ideas 

about addition and subtraction. More research is needed to analyse these issues 

and to find out what sort of problems, if there are any, should be presented to 

kindergarten children in order to help them to develop their reasoning. 
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We present a design study to introduce multiplicative thinking at Kindergarten 

level with an algebraic perspective. Starting from some theoretical assumptions 

about the psychological roots of multiplication and about the use of narration in 

Math Education, we build a suitable narrative context in order to promote 

children’s actions consistent with such roots. We analyze the development of this 

path and its management, emphasizing the special role played by the dialectics 

between actions upon objects and graphic representations. 

INTRODUCTION 

The discovery in human beings of very early, if not innate, mathematical 

competencies, achieved by recent neuroscientific studies, induce to deepen the 

study of cognitive strategies recognisable as roots of mathematical structures 

and procedures, and to design learning environments to drive their evolution. 

This enterprise is not new, as it can be traced back to Piaget’s studies about 

action schemata, from which a wide literature, in particular about the origins of 

arithmetical structures, has been produced. The common starting point is that 

action is at the root of any abstract thinking and in particular of the 

comprehension of arithmetical structures. This idea has been developed within 

different perspectives, also due to the increasing information we are gaining in 

these last years about our brain functioning (see e. g. Gallese & Lakoff, 2005).  

In this field, our research group has been working for several years at the design 

and development of prototypes of long-term paths for primary schools aimed to 

promote in pupils arithmetical competencies as well as linguistic ones, in order 

to express and communicate their achievements. We are aware of the basic 

difference between actions upon objects and mathematical operations, but also 

of the neurophysiology discovery that the same neural circuits are deputed both 

to actions and to abstract thinking, therefore we think that to carefully identify 

the action schemata is fundamental in order to exploit them as roots: since these 

actions and the related mathematical operations will constitute the true base for 

the whole disciplinary structure. 

In this paper we present a design study realized by our team in collaboration 

with an expert teacher: where a path is developed to introduce multiplicative 
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thinking at a Kindergarten level with an algebraic perspective. A suitable 

narrative context was created in order to induce actions consistent with the 

theoretical roots of multiplication, identified according with some theoretical 

assumptions. We present these references in the next section, after which we 

briefly clarify the methodological equipment that has informed our 

experimentation; then, in the widest section we describe and analyze the main 

parts of the experimental path, and finally we draw some conclusive remarks 

from our research experience.  

THEORETICAL BACKGROUND 

In the last decades many studies have been developed about the cognitive roots 

of arithmetical structures. Without pretending to be exhaustive, we can 

distinguish two trends: to look for a correspondence between a given 

arithmetical operation (or arithmetical structure, i.e. the operation with its 

inverse) and an action scheme, as in Piaget or in (Davydov, 1992); or to classify 

the different situations in which the use of the operations is needed (e.g. 

Vergnaud 1983, Greer 1992, Steffe & Cobb 1998). The second kind of studies 

seems very useful especially for detecting cognitive problems that might underly 

a given recurrent mistake, whereas the first approach is more fruitful for 

planning class activities, particularly when arithmetic is addressed since the very 

beginning in an algebraic perspective, as in our approach (Iannece et al., 2010).  

In particular, we refer to Davydov’s suggestion (1992) that rather than viewing 

different correspondences between each mathematical operation and an action 

schema, links the whole multiplicative structure to a specific 

psychological need. In his vision, indeed, the psychological 

root of multiplication is identified in the change of measure 

unit, when some magnitude has to be measured:  

If the magnitude of an object is depicted by A, the small unit of 

count by a, the large unit by b, then the system of operation, 

carried out by determining the numerical value of A indirectly 

through a, can be expressed by the following formula: 

   

b

a
×

A

b
=

A

a
 

(Davydov 1992, p. 11, see fig. 1).  

According to Davydov’s studies, we think that children can explore since 

kindergarten the arithmetical structures in an algebraic perspective by exploiting 

their cognitive strategies and using their languages. In this direction the graphic 

representation plays a special role since it can be viewed both as a perceptive 

metaphor of paradigmatic/structural aspects and as a cognitive support for 

generalization (Stetsenko, 1995). In Vygotsky’s sociocultural vision of learning, 

in graphic representations sign and meaning arise together, then the integrated 

use of graphic, verbal and symbolic representations lets the concepts as well as 

the expressive tools develop. The functional role of drawing in children’s 

Figure 1 
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cognitive and emotional development and its intertwinement with other 

communication tools have been explored in the sociocultural perspective. In 

particular it has been observed that 

young children do not radically differentiate between drawings and writing. At least 

part of this confusion must be due to the fact that children view both drawing and 

writing primarily as ways of communicating with others. (Stetsenko, 1995, p. 50) 

In other words the intertwined development of drawing and of written and oral 

language in early childhood can be related to children’s need to gradually grasp 

adults’ means of communication. In this study we will show how this knot can 

be exploited and driven toward “paradigmatic” aspects of language, in particular 

by promoting the array as an effective representation of the multiplicative 

structure.   

Our theoretical background includes also design-oriented studies about the role 

of tales to build mathematical meanings, in this case multiplicative ones. In the 

1970s Donaldson has already observed how the child is particular sensitive to 

contexts where human intentionality can be recognized and how he uses this key 

to interpret and give meaning (Donaldson, 1978). To understand people’s 

stories, reasons and feelings is linked to what Bruner calls “narrative” thought, 

juxtaposed to “paradigmatic” or “logic-scientific” thought. The complementarity 

of the two kinds of thoughts is put in evidence in several contexts of Math 

Education, as in problem solving activities (see e. g. Mellone & Grasso, 2008). 

About this, Zan (2011) observes how a word problem is both perceived as 

description of a ‘human’ situation, and analyzed for its paradigmatic features 

with the goal of solving a question. For this reason the mathematical information 

in a word problem has to be consistent with the narrated story and viceversa, in 

order to get resonance between the narrative thought and the paradigmatic one. 

Othewise the risk is to produce a  

‘narrative rupture’ in the text of the problem, i.e. the question and the information 

needed for the solution are not consistent from the point of view of the narrated 

story. (Zan, 2011, p. 341) 

As we will show in the sequel, we have tried to take this need into account in 

building the tale for our educational path, by describing characters who are 

moved by understandable feelings and goals, and by linking feelings and goals 

with the mathematical questions. Also the teacher’s management of the activity 

has been careful in connecting and balancing the human and paradigmatic 

aspects of the story.  

METHODOLOGY 

The experience we are going to analyze comes from a wider research project 

carried out for several years in Naples by some researchers in Math Education 

and a group of Kindergarten, Primary School and Lower Secondary School 

teachers. This group has been working at building and validating prototypes of 
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long-term paths for the teaching/learning of arithmetical structures in an 

algebraic frame. Common feature of these activities is the assumption of 

a Vygotskian perspective about learning, in particular on the role of signs in the 

semiotic mediation process. The research group has been working for several 

years about the use of the array as support for multiplicative thinking; in this 

study we explore the possibility of using such representation with 5-6 year-old 

children. To introduce multiplicative thinking in an algebraic perspective, we 

have built, in collaboration with a kindergarten teacher-researcher, a path that 

starts with the telling of a story. However, our goal was not just to validate in a 

class activity a path packed in advance, but rather to be able, starting from an 

initial plan, to repeatedly modify the path itself, according to classroom events 

and interactions, following in this a typical design study methodology (Cobb et 

al., 2003). Consequently, the theoretical issues listed in the above section have 

not been transferred into action along a rigid sequence, but have been 

intertwined, in order to obtain effective outcomes for children. 

In the next section we will illustrate the main parts of the design and of its three 

months development. Our collection of data includes children’s drawings, 

transcripts from class discussions, photos, audio and video recording. 

THE TALE OF THE GLUTTONOUS KING AND THE DIDACTICAL 

PATH 

The story that opens the path has been invented in order to merge a change of 

measure unit in a narrative context. The story tells the adventures of a king’s 

servant who has to do several trips through a tangled wood in order to reach a 

bakery and to buy cakes for the royal family, composed by four members. The 

cakes are carried ‘two at a time’ (first change of the measure unit) since the oven 

takes out only two cakes, one chocolate and one strawberry cake, each time, and 

each royal member wants to taste both. At the end of the story the teacher asks 

children to help the servant to pay the bill, knowing the total amount of the 

cakes bought (here, notice the care for consistency between narrative and 

paradigmatic aspects). As usual for the teacher, the story is enriched by every 

sort of details, concerning the different characters and the sequence of events; 

moreover the verbal language is accompanied by the mimic-gestural one, the 

exigence of a mime show and a dramatization naturally arise. In the first phase 

the tale is used to reflect upon the words meaning: for this purpose the children 

are invited to repeat the story and to discuss about the situation and the 

characters. The teacher suggests also to make a sort of proto-analysis of the text. 

Afterwards the teacher asks children to represent the story with a drawing. In 

this way she wants to analyse which things have impressed more the children, in 

order to orient the didactic mediation toward the children’s needs and her goals. 

In this phase the children draw only the passages of the story that turn out to be 

more meaningful or simpler to be represented. The “paradigmatic” aspects are 
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left apart, certainly also because the previous work about the characters has 

favoured the narrative thought (see e. g. fig. 2). 

 

Figure 2 

 

Figure 3 

 

Figure 4 

 

 

 

Figure 5 

The teacher decides for a bodily work, as a premise for reflecting on actions, and 

also for reaching more paradigmatic representations useful for catching the 

mathematical meanings of the story. After all, if we recognize action schemata 

at the roots of comprehension, then we have to make actions. A motoric activity 

is organized to reproduce the path covered by the servant from castle to bakery: 

six traffic cones and a cloth tunnel represent the wood, so a gymkhana has to be 

made to reach the bakery (the class kitchenette), that contains two tiles as the 

cakes (fig. 3-5). Each child performs his/her own servant’s path in order to 

interiorize the trip as a meaningful experience. This means to carry a plate, to 

reach the bakery and to buy two cakes, one chocolate and one strawberry cake, 

as many times as needed to satisfy all family members. 

Finally, the children are invited to represent the trips made and the cakes taken 

each time. This time, all the children try to answer the numerical question: 

nobody feels inadequate, everybody is involved. This guarantees children’s self-

esteem and confirms the effectiveness of the teaching methodology employed, 

which includes a careful balance between the exigencies that all the pupils live 

successful experiences and that nontrivial disciplinary contents are addressed. 

In children’s drawings a major attention to the paradigmatic aspects of the story 

arises, maybe supported by the motory activity and, in particular, by the iteration 

of trips. In all the drawings we can “see” the multiplicative structure expressed 

by the grouping: the cakes are linked to the trips and drawn as rhythms of 

repeated plates (fig. 7), some children represent the trips as lines, (perhaps 

recalling the feature of the path, see fig. 6) or, in most cases, as half-circles, that 

recall the cloth tunnel. Only two children (one less than 5 years old) use 

a person-marker (fig. 9), while only Maria Giovanna outlines a sort of array (fig. 

8). Ivana traces also the numerals 2 and 4, although as simple drawing 

ornaments (fig. 9). We have already observed in the theoretical section how 

fuzzy is the boundary between drawing and writing at this age, both abilities 

being linked to children’s attempts to appropriate adults’ means of 

communication. 
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Figure 6 

 

Figure 7 

 

Figure 8 

 

Figure 9 

The day after the teacher orchestrates a mathematical discussion about the 

different representations. This is a crucial part of the teaching mediation based 

on children’s reflections upon their own and their fellows’ behaviour. After the 

drawings of the previous day are distributed to the pupils, their comments 

rapidly focus on the effectiveness of the representations in order to share the 

best symbols used. Everyone illustrates the way he/she has represented trips and 

quantities, then everyone is invited to redraw his/her symbols on the blackboard. 

In this way all symbols are under the eyes of everybody, and thus, after an 

analysis and a comparison of their features, the children choose the most 

effective among them (fig. 10). The half-circle is selected as the best 

representative of a trip, against teacher’s expectation, who hoped children would 

have chosen, since this phase, the array as a powerful sign to represent trips and 

quantities of cakes at the same time. 

The next meeting between the teacher and the research group 

is devoted to understand why the children have not chosen the 

array, even though it appears in one of the initial 

representations (fig. 8), and why the collective discussion and 

the teacher’s guide didn’t induce this choice: maybe the two 

dimensions “trips” and “cakes at a trip” are not so meaningful 

till that moment, to deserve a special attention and a form of distinction. 

Therefore, and according to a Vygotskian approach, we decide to introduce an 

artefact, as a semiotic mediator for the two dimensions of the multiplicative 

structure: a rectangular tray divided in two-times-four boxes, into which the 

children can arrange the cakes during the dramatization. The teacher tells 

a further part of the tale of the Gluttonous King, in which the number of cakes 

for each trip is inverted with the number of trips, in order to suggest a two-

dimensional representation, as well as to evoke a new change of measure unit 

(from “two at a time” to “four at a time”):
1
 

The Gluttonous King wants to organize a party for his family, where everybody will 

get a chocolate cake and a strawberry cake. Knowing that the baker has now 

a larger oven where four cakes at a time can be cooked, what has the servant to do?  

Maria Giovanna: He must cut the cakes into small pieces. 

                                                 
1
 Some fragments of this activity have been already presented and discussed in (De Blasio, Grasso & Spadea, 

2008). 

Figure 10 
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Teacher: But the King doesn’t like small pieces since he is gluttonous!  

Martina: Otherwise they need a still larger oven. 

Mattia: No, the servant must do several trips, carrying two cakes for every trip. 

Teacher:: Look, I have prepared a tray for arranging the cakes. So, what has the 
servant to do?  

Sara: He must go to the bakery, buy the cakes, and put them on the tray.  

The above transcript shows how the teacher mediation tends to justify the resort 

to the artifact-tray. It is also interesting to notice how she refrains from directly 

intervening on Mattia’s difficulty, who has not caught the change of measure 

unit from the first part of the story. Instead, she prefers to address the whole 

class, using a different strategy. Thus she encourages the children to a new 

dramatization, making the same path but using this time the special tray to carry 

the cakes. And when Mattia, at the end of his path, arranges the cakes grouping 

them by two, as in fig. 11, the teacher stops the play and lets all the children 

look at the tray.  

Ciro: In this way it looks like the servant is gone twice and has got two cakes each 
time. 

Mattia [resentful]: No, I went only once [Mattia changes the cakes arrangement on 
the tray, putting them in a unique row].  

   

 Figure 11 Figure 12 Figure 13 

Obviously, what is really crucial is not the artifact-tray as itself, but the teacher’s 

mediation that, by promoting a shared action schema, helps children to catch, 

from the collective discussion, the analogies and the differences between the two 

parts of the story. The social interaction works very well at this moment: Ciro’s 

remark, which is in better accordance with the use of the tray, immediately 

produces Mattia’s reaction. Teacher’s suggestion to reason upon his actions and 

not only upon the narrated story turns out effective, indeed if Mattia gets angry 

for doing something different from what he thought (or for being 

misunderstood), from the other side he is ready to conform himself to the rules 

of the game. Finally the teacher invites a child to figure the cakes on the 

blackboard, promoting in this way another step from the representation of the 

experience through the object-tray toward a representation through signs on the 

blackboard. Martina goes to the blackboard and draws a first row with four 

circles, then she begins a second row, as in fig. 12. So, Martina’s way of 

reporting the ‘mathematical story’ is a sort of rhythm, already implicit in some 

previous drawings, where the circles displayed in two rows clearly prefigure 

a typical array. 
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Teacher: Let’s look at Martina’s drawing. What does it suggest to you? 

Mattia (and others): That he’s gone two times… and has got four cakes.  

Teacher: Do you agree that now we understand what the servant has done? [She 
takes two equal ‘two times four’ trays and puts them close to each 
other, but differently oriented, see fig. 13] What has changed?  

Antonio: Now the oven is larger and cooks four cakes at a time.  

Teacher: But is the number of cakes the only thing that’s changed? How many 
times the servant comes from the bakery with his full tray to satisfy 
everybody?  

M. Giovanna: Twice. 

Chiara [pointing at the columns of the array]: One and two, one and two. 

Mattia: I don’t see any change! 

Teacher: Are you sure? I see a difference…. 

Chiara [her hand traces a turning in the air]: They become equal just if we turn 
them. 

Martina: Of course, since in this case the cakes are four and the times are two, 
while in the other case the trips were four and the cakes were two.  

Ivana: But they are eight, anyway.  

The use of the tray in the action simulation has well oriented Martina to 

appreciate the value of the array in representing the performed action. However, 

the teacher prefers to go back to the material representation via the tray, to 

promote an effective sinergy between syntactital and semantical aspects of the 

story. This helps the children to focus on what stays and what changes between 

the two situations, in order to discover the commutativity of multiplication. 

Moreover, teacher’s pressing requests of precision stimulates a refinement of 

children’s linguistic expressions, supported by reference to the concrete 

experience or, as well, by representation tools like the arrays. For example, for 

Martina it is important to drive attention to the concrete meaning of what they 

did, while Ivana’s statement goes exactly in the direction of the multiplicative 

operation, overlooking the details of the two situations: anyway, they both 

obtain the same result of 8 cakes
2
.  

In the rest of the year the teacher has proposed many variants of the story, in 

which the numbers of trips and cakes varied, but with the usual care for the 

above discussed consistency between narrative and paradigmatic aspects. We 

have observed that not all the children used the array to represent the different 

situations. Our goal wasn’t clearly to impose the array, that is to train them to 

adopt a mechanical automatism, rather our goal was, in Vygotskian words, to 

                                                 
2
 Similar behaviors have been observed in grade 3 children (see Mellone & Pezzia, 2008).  

 



Designing tales for introducing the multiplicative structure 111 

promote a “cultural” imitation, that is to drive children to repeat by their own 

a strategy after having experienced its effectiveness. 

For this purpose, at a certain point the teacher decided to change the experience 

context and to work with rhythms of sounds. The children were invited to record 

the sound patterns, by recognising a group of notes repeated many times. As 

usual, they worked sharing, representing, and discussing. But this time the 

children naturally chose to represent each pattern of symbols, corresponding to 

a sequence of repeated sounds, one under the other instead of sideways, as in 

Martina’s ingenious drawing (fig. 12). In this way the children build an array, 

putting in evidence the role of multiplication and favouring an exploration of its 

properties. The possibility to experience the efficacy of the array in a new 

context allows children to recognize the structural analogy between two 

different situations. Finally, we can report that, during some further variations 

on the theme, children did make autonomous use of the array.  

SOME CONCLUSIVE REMARKS 

The design study presented above shows how the action schemata, evoked by 

telling a story in which the consistency between narrative and paradigmatic 

aspects is cared, can create resonance (in the sense of Iannece & Tortora, 2008) 

between children’s strategies and formal mathematical stuctures. In our opinion 

our study also confirms Davydov’s suggestion (1992) about the essential role 

played by the change of measure unit in giving sense to the multiplicative 

structure. Indeed, the story context allows to explore two semantical dimensions 

(trips and cakes for trip) and, at the same time, the peculiar syntactic properties 

of multiplication (as the commutative property). The dramatization lets the 

paradigmatical aspects arise and, on the other hand, the use of the array as 

a semiotic mediator leads the children to start using a genuine mathematical 

language to ‘put things in order’ (note the emerging of refined multiplicative 

expressions in Martina’s words “in this case the cakes are four and the times are 

two, while in the other case the trips were four and the cakes were two”). 

Finally, the analysis of the path shows a great difference between working with 

a representation proposed by others (the array at the beginning of the 

experience) and managing the same ‘linguistic’ tool autonomously (Chiara’s 

action on the array to recognize the commutative property). In this sense the 

adults’ cultural mediation in providing the array has to be very careful, due to 

the foreseeable children’s difficulties of interiorization. 
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This paper focuses on a study with 4- and 5-year-olds children understanding of 

partitive division when discrete quantities are involved. The study analyse how 

young children understand the inverse divisor-quotient relationship when the 

dividend is the same. The participants were 30 kindergarten children from 

Braga, Portugal. Individual interviews were conducted when solving tasks 

involving the division of 12 and 24 discrete quantities by 2, 3 and 4 recipients. 

Results showed that 4- and 5-year-olds children have some ideas of division, 

can estimate for the quotient when the divisor varies and the dividend is 

constant, and can justify their answers. Educational implications of these results 

are discussed for kindergarten activities. 

FRAMEWORK 

Children learn a considerable amount about mathematical reasoning outside 

school known as informal knowledge. Literature refers that kindergarten 

children possess an informal knowledge relevant for many mathematical 

concepts (see Nunes, 1992; Nunes & Bryant, 1997). This informal knowledge 

should provide the building of formal mathematical concepts. Concerning the 

division, several authors suggest that young children can divide discrete 

quantities successfully (see Frydman & Bryant, 1998; Pepper & Hunting, 1998; 

Kornilaki & Nunes, 2005; Squire & Bryant, 2002), arguing that these children 

possess some type of informal knowledge related to the division of quantities, 

understanding the inverse relation between the divisor and the quotient when the 

dividend is the same. 

Correa, Nunes and Bryant (1998) argue that sharing activities can be relevant in 

the understating of the inverse relation between the divisor and the quotient. 

Also Kornilaki and Nunes (2005) argue that understanding the sharing activity 

helps children to understand the logical relations involved in the division of 

quantities, i.e., the relation between the dividend, the divisor and the quotient. 

When considering the division of discrete quantities it becomes relevant to 

distinguish the partitive and the quotitive division. In partitive division problem 

a set of objects is given to be divided among recipients, and the share that each 

recipient has received is the unknown part. (e.g., there is a set of 10 candies to 

be shared among 5 children. How many candies does each child get?). In 

a partitive division problem, the divisor is the number of recipients and the 

quotient is the share they receive. In quotitive division, there is an initial 
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quantity to be share into a known number of parts. The size of the parts is the 

unknown (e.g., Mary has 12 candies and wants to give 3 candies to each of her 

friends. How many friends are receiving the candies?). In quotitive division 

problems, the divisor is the share to be given to each recipient and the quotient is 

the number of recipients. Concerning these types of divisions Kornilaki and 

Nunes (2005) argued that children understand more easily the partitive division 

than the quotitive division. 

Research presents several results of young children procedures when solving 

division tasks involving discrete quantities (see Piaget & Szieminska, 1971; 

Desforges & Desforges, 1980; Frydman & Bryant, 1998; Squire & Bryant, 

2002). Particularly, Correa, Nunes and Bryant (1998) when investigating the 

development of the concept of division in young children, examined whether 

children who could share would be able to understand the inverse divisor-

quotient relationship in partitive division tasks when asked to judge the relative 

size of 2 shared sets. The participants were 20 children of 5-year-olds, 20 of 6-

year-olds and 21 of 7-year-olds from Oxford, England. The authors investigated 

the children’s understanding of the three-term quantity relationship in division 

when the dividend was constant and the divisor varies. In their experiment the 

experimenter shared a given amount (12 in some trials, 24 in others) of red and 

blue sweets between two groups of rabbits, one red and one blue, putting the 

sweets in the boxes attached to the rabbits’ backs; the experimenter pointed to 

one blue rabbit and one red rabbit and each child was asked whether they had 

the same quantity of sweets or whether one of them received more sweets, and 

why did the child think so. The authors  argued that “if the children succeed in 

tasks where the dividend is constant and the quotient is inversely related to the 

divisor, we can be confident that their success indicates some understanding of 

core relations in a division situations.“ (p. 322). Results showed that 9 of the 20 

5-year-olds performed significantly above chance and about 30% were able to 

verbalize this inverse relation in their justifications and 11 out of 20 of the 6-

year-olds scored above chance and verbalized the inverse relation between the 

divisor and the quotient in the partitive tasks. The authors also report age 

improvements between 5 and 7 years. Correa, Nunes and Bryant (1998) also 

analysed children’s justifications according to children’s age. Most of the 5-

year-olds were not able to give a mathematical justification for their choices and 

did not mention facts relevant to the solution of the task. The 6-year-olds 

presented justifications that revealed a progress from some comprehension of 

sharing and numerical equivalence to the understanding of the inverse divisor-

quotient relationship. The majority of the justifications presented by the 7-year-

olds showed a logicomathematical approach, referring the inverse divisor-

quotient relationship. 

More recently, Kornilaki and Nunes (2005) investigated whether the children 

could transfer their understanding of logical relations from discrete to 



Exploring partitive division with young children  115 

continuous quantities. Among other things, the authors analysed 32 five-year-

olds, 32 six-year-olds and 32 seven-year-olds solving partitive division tasks 

involving discrete quantities. In this type of problems the number of recipients 

varied to produce two conditions: 1) in the same divisors condition, the size of 

the divisor was the same; 2) in the different divisors condition, the number of 

recipients varied. The results showed that the different divisors condition was 

clearly more difficult than the same divisors condition. Thus, the authors argued 

that the inverse relation between the divisor and the quotient is understood later 

than the equivalence principle of division. The authors also pointed out that in 

partitive division tasks, one-third of the 5- and 6-year-olds justified their 

responses as “the more recipients, the more they get”, but this response 

decreased markedly with age as only slightly more 10% of the 7-year-olds used 

this incorrect reasoning. 

The studies of Correa, Nunes and Bryant (1998) and Kornilaki and Nunes 

(2005) give evidence that, at age of 6 and 7, children have an insight into 

relations between the division terms, long before they are introduced to this 

operation at school. If previous research reports some success with 5-year-olds 

children, how would children of 4-year-olds would perform? Besides, it 

becomes relevant to get a better insight on young Portuguese children’s informal 

knowledge of division.  

This paper focuses on young Portuguese children understanding of division of 

discrete quantities, when solving partitive division problems. For that we tried to 

address three questions: 1) How do children estimate the quotient in a partitive 

division in which the divisor varies and the dividend is kept constant? 2) How 

do children perform the partitive division tasks involving discrete quantities? 

3) What procedures do they use in this process? 

METHODS 

A study focused on young children’s ideas of partitive division was conducted to 

address these questions. The participants were 15 four-year-olds (11 boys and 4 

girls, mean age 4 years and 6 months) and 15 five-year-olds (7 boys and 8 girls, 

mean age 5 years and 6 months) from Braga, Portugal.  

The participants were interviewed individually by one of the researchers when 

solving the problems. Each problem was presented to each child using a story 

and manipulatives representing the items involved in each story were available. 

Each child was presented to 6 problems: 3 involving the division of 12 units 

(carrots) by 2, 3 and 4 recipients (rabbits), respectively; and 3 problems 

involving the division of 24 units (cabbage) by 2, 3 and 4 recipients (rabbits).  

In the interview, first children were invited to estimate the effects on the 

quotient of increasing the divisor keeping the dividend constant. Then they were 

asked why they thought so. The idea was to have an insight on children’s 
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understanding of the inverse divisor-quotient relationship when the dividend is 

constant. Then children were asked to carry out the division. In this process, 

their ability to perform the division was assessed as well as the procedures used 

by them. 

The story presented to the children involved a context in which a white little 

rabbit had 12 carrots. Then he had to share them fairly with his friend, the brown 

rabbit. At this moment the child was asked: “Do you think that the white rabbit 

would be with more or less carrots? Why?”. Them the child was invited to 

accomplish the division between the two rabbits. Them the child was asked: ”Do 

you think that both rabbits are happy with this division of the carrots? Why?”, 

“How many carrots did each received?”. Then a little grey rabbit came around 

and they had to put all the carrots together again and share them among the three 

rabbits. “Do you think that each rabbit is going to have more or fewer carrots 

now?”; “Can you help the rabbits to share the carrots?”; “Do you think that all 

the rabbits are happy with this division? Why?”. The story continues to include 

the black rabbit. The same questions were asked. In the very end, when the last 

rabbit came, the children were asked: “Do you think that all the rabbits are 

happy with this division? Why? Do you want to check it by counting?”. 

When the 24 units were involved, an analogous story was presented to them but 

now involving the 2, 3 and 4 rabbits and 24 cabbages. 

Each child took approximately 20 minutes to solve all the problems, in spite of 

having no limit for it. 

RESULTS 

In order to understand children’s ability to estimate the quotient in a partitive 

division in which the divisor varies and the dividend is kept constant, their 

correct responses and justifications were analysed. Table 1 resumes the 

percentage of correct estimates and valid justifications for the division of 12 and 

24 units, according to the age. A valid justification is an argument in which 

a child expresses some ideas of the inverse divisor-quotient relationship, such as 

“because there are more rabbits and each one get fewer carrots.” or “they will 

have fewer carrots because now there is the X rabbit”. 

 4-year-olds 5-year-olds 

     Correct resp. Valid argum.     Correct resp. Valid argum. 

12 units     67% 43%    72% 67% 

24 units     71% 52%    78% 83% 

Table 1: Percentage of correct responses and valid arguments when estimating for the 

quotient with the dividends of 12 and 24 units, respectively. 
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It is interesting to note that children’s performance in the estimating tasks 

improved from the first part of the problems (involving 12 units) to the second 

one (involving 24 units), in spite of the sizes of the initial sets. Perhaps this is 

due to the fact that when the problems involving the 24 units were presented to 

the children, they were not a novelty anymore. 

Another remarkable point is the success observed among the 4-year-olds when 

asked to estimate and justify their judgement. Almost half of the children 

presented a valid justification for their correct answer when dividing the 12 

units; when they were asked to divide the 24 units, their valid justifications 

increased slightly above 50%. These results suggest that children of 4-year-olds 

may have some ideas about the inverse divisor-quotient relationship presented in 

these conditions. 

Children performance was analysed solving division tasks involving 12 and 24 

units by 2, 3 and 4 recipients, respectively. Tables 2 and 3 resume the 

percentage of children’s correct responses by age level, in these problems. 

 12 units  

 4-year-olds (n=15) 5-year-olds (n=15) 

Division by 2 87% 87% 

Division by 3 67% 80% 

Division by 4 67% 80% 

Table 2: Percentage of correct responses by age level when solving the division of 12 

units by 2, 3 and 4 recipients. 

 

 24 units  

 4-year-olds (n=15) 5-year-olds (n=15) 

Division by 2 60% 80% 

Division by 3 86% 74% 

Division by 4 67% 80% 

Table 3: Percentage of correct responses by age level when solving the division of 24 

units by 2, 3 and 4 recipients. 

 

The results suggest that for young children it becomes more difficult to 

accomplish the division of 24 units than the division of the 12 units set, possibly 

due to the magnitude of the set. 
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As the children’s performance was not normally distributed a Mann-Whitney U 

Test was conducted in order to analyse children’s performance dividing 12 and 

24 units according to the age level. The results show no significant differences 

on children’s performance when dividing 12 units according to the age levels 

(age 4, Mdn=3, age 5, Mdn=2, U=149, n.s.) and when dividing 24 units 

according to the age levels (age 4, Mdn=3, age 5, Mdn=3, U=128, n.s.). Thus, 

results give evidence that there is no difference of 4- and 5-year-old children’s 

performance in this division tasks.  

Trying to explain these results, children’s procedures were analysed when 

dividing 12 and 24 units by 2, 3 and 4 recipients, respectively. The same 

procedures were observed when children were dividing 12 and 24 units. The 

procedure I comprises the sharing procedures relying on the correspondence 

one-to-one by the recipients; the procedure II comprises the counting 

procedures; procedure III comprises sharing activity based on perceptual 

influence ignoring the size of the shares; and procedure IV comprises sharing 

activity combined with counting to produce equal shares.  

Tables 4 and 5 resume the observed procedures used by the children of both age 

groups when solving the division problems of 12 and 24 units, respectively.  

 12 units 

 4-year-olds (n=15) 5-year-olds (n=15) 

Type of procedure  I II III IV I II III IV 

Division by 2 10 0 3 2 8 2 1 4 

Division by 3 9 0 5 1 8 2 3 2 

Division by 4 9 1 3 2 8 2 4 1 

Total (Max.=45) 28 1 11 5 24 6 8 7 

Table 4: Children’s procedures solving the division of 12 units, by age level. 

 

 24 units 

 4-year-olds (n=15) 5-year-olds (n=15) 

Type of procedure  I II III IV I II III IV 

Division by 2 7 0 6 2 9 2 4 0 

Division by 3 9 0 5 1 6 2 4 3 

Division by 4 9 1 4 1 6 3 4 2 

Total (Max.=45) 25 1 15 4 21 7 12 5 

Table 5: Children’s procedures solving the division of 24 units, by age level. 
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The procedures used by children did not change much according to the 

magnitude of the set to divide. Tables 4 and 5 suggest that sharing assumes an 

important role on children’s performance when solving division problems, with 

discrete quantities. The sharing activity developed by each child and the type of 

shares produced give us an insight of children’s ideas of fare share. Many 4-

year-olds children used sharing activity without recognizing the need of 

producing fare shares, either when 12 or 24 units were involved (24% and 33%, 

respectively). This phenomenon was also observed in some 5-years-old children 

when 12 and 24 units were involved (17.8% and 26.7%, respectively). 

Nevertheless, the majority of the children of both age groups involved in this 

study recognized the importance of producing fare shares in the division tasks 

presented to them. 

The procedure mostly used by both age groups of children was correspondence 

one-to-one. This procedure conducted children to correct resolutions, producing 

fare shares. The procedures using sharing activity based on perceptual influence 

ignoring the size of the shares were also popular among children of both age 

groups. 

After carry out the division of the items by the recipients, the children were 

asked if they were happy with the division made through the question “Do you 

think that all of the rabbits are happy with this division? Why?”. They were also 

challenged to verify their results by counting - “Do you want to check it by 

counting?” - to deepen the understanding of children’s ideas of fare sharing by 

giving them an opportunity to correct themselves. Their reactions were analysed 

and allowed us to distinguished the following categories: CcE comprises 

children’s verifications in which it was observed Correct counting of the items 

in each recipient when there are already equal shares; CcNon-NE comprises 

children’s verifications in which it was observed Correct counting of the items 

in each recipient, but without equal shares; NnC comprises children’s reactions 

in which they refuse to verify because they are sure about it and it is correct; 

NvNE comprise their reactions in which they do not recognise the need to verify 

and equal shares were not produced; NC comprise children’s reaction in which 

the correct counting of the items was not accomplished.  

Tables 6 and 7 resume children’s reactions, by age group, when solving the 

division tasks of 12 and 24 units, respectively. The majority of the children of 

both age groups used the opportunity to verify their shares, correcting their 

distributions when necessary. This was observed by 60% of the 4-year-olds and 

73.3% of the 5-year-olds when 12 units were involved; and by 51.1% and 62.2% 

of the 4- and 5-year-olds, respectively, for the 24 units. These results suggest 

that equal share is a concept understood by young children of 4-year-olds. In 

most of the problems presented to them, these young children recognised the 

importance of fair shares when accomplishing a sharing activity in a division of 

discrete quantities. 



120 EMA MAMEDE, AMALIA SILVA 

 12 units 

 4-year-olds (n=15) 5-year-olds (n=15) 

  Division    Division  

 by 2 by 3 by 4 Total by 2 by 3 by 4 Total 

CcE 9 10 8 27 11 12 11 33 

CcNon-NE 2 3 4 9 3 1 3 6 

NnC 0 0 0 0 1 1 1 3 

NvNE 2 1 1 4 2 1 0 3 

NC 2 1 2 5 0 0 0 0 

Table 6: Children’s reactions to the produced shares after dividing 12 units, by age 

level. 

 24 units 

 4-year-olds (n=15) 5-year-olds (n=15) 

  Division    Division  

 by 2 by 3 by 4 Total by 2 by 3 by 4 Total 

CcE 9 10 8 27 11 12 11 33 

CcNon-NE 2 3 4 9 3 1 3 6 

NnC 0 0 0 0 1 1 1 3 

NvNE 2 1 1 4 2 1 0 3 

NC 2 1 2 5 0 0 0 0 

Table 7: Children’s reactions to the produced shares after dividing 24 units, by age 

level. 

It was also possible to observe a few children who did not need to verify their 

resolutions that were correct, being sure about their procedures and solutions 

obtained. A groups of children of both ages did not recognised the need of 

produce equal shares, in spite of using counting properly when verifying their 

results (20% and 13.3% of the 4- and 5-year-olds, respectively, when dividing 

12 units; and 20% and 35.5% of the 4- and 5-year-olds, respectively, when 

dividing 24 units).  

DISCUSSION AND CONCLUSIONS 

The results presented here give some insights of young children ideas of division 

of discrete quantities but also their ideas of fair sharing. The findings of the 

study reported here suggest that young children of 4- and 5-year-olds possess 

some ideas related to the division of quantities, understanding the inverse 
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relation between the divisor and the quotient when the dividend is the same. The 

analysis conducted here give evidence that children of 4-year-olds reveal some 

understanding of the effect of increasing the number of recipients when the 

amount to share is constant. These children were able to estimate the result of 

division. This suggests that children also have some ideas of the inverse divisor-

quotient relationship in partitive division tasks, when asked to judge the relative 

size of shared sets. This idea is in agreement with Frydman and Bryant (1998), 

Correa, Nunes and Bryant (1998) and Kornilaki and Nunes (2005).  

The study reported here has some similarities with some presented previously in 

the literature (see Correa, Nunes & Bryant, 1998; Kornilaki & Nunes, 2005) but 

also offers some original contributions. Correa, Nunes and Bryant (1998) 

investigated 5- to 7-year-olds children’s understanding of inverse divisor-

quotient relationship, when partitive division was involved. Their findings give 

evidence that 5-year-olds children can succeed in these tasks. Also Kornilaki 

and Nunes (2005) give evidence of 5-year-olds children success when solving 

this type of tasks. In our study we analysed how children of 4- and 5-year-olds 

behave when dealing with this type of problems. Some positive signs arise from 

this investigation. Four-year-olds children are also able to understand some 

ideas of divisor-quotient relations in particular conditions. 

The procedures used by the children of this study suggest that correspondence 

can play an important role on children’s sharing activity and on their 

accomplishment of division. Some authors argue that sharing activities can be 

relevant in the understating of the inverse relation between the divisor and the 

quotient (see Correa, Nunes & Bryant, 1998) and that understanding the sharing 

activity helps children to understand the relation between the dividend, the 

divisor and the quotient (see Kornilaki & Nunes, 2005). In agreement with these 

ideas, one-to-one correspondence sustaining the sharing activity seems to allow 

young children to understand the logical relations involved in the division of 

quantities. This study also shows that equal share is a concept understood by 

some 4-yaer-olds children and recognized by them as an important issue of the 

division of discrete quantities. Nevertheless, fair sharing does not seem to be 

only concept for understanding the division of these quantities, as many young 

children were able to estimate the effects of increasing the divisor in the 

quotient, for the same dividend, before carry out the division. 

These findings suggest that kindergarten activities could stimulate children’s 

early ideas of division, relying of their informal knowledge. These activities 

could comprise the use of share and the production of equal shares, but also 

activities to promote the understanding of the logic relations involved in the 

division, when the dividend is kept constant. These ideas are crucial to 

understand some complex mathematical concepts such as fractions, later on in 

the formal traditional school. 
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THE APPEARANCE OF EARLY GENERALIZATION 

IN A PLAY3 

 

Paola Vighi 

Mathematics Department of University of Parma, Italy 

 

The paper shows the appearance of generalization and its fundamental role in 

a didactical activity based on a play with rules, proposed to pupils 5-7 years 

old. Every play requires and promotes different competences, in particular 

logical and mathematical. The study of pupils’ behaviours in front of the task 

furnishes some examples that prove the possibility of an early mathematical 

activity of generalization. 

THEORETICAL FRAMEWORK 

Usually the word ‘generalization’ is related to algebraic procedures and 

reasoning, but it is possible to observe the use of generalizations also in other 

mathematical activities. Generalization is often cited as typical form of 

mathematical thinking, but without using a definition or specify its meaning. 

Moreover generalization is often associated with abstraction, since the boundary 

between them is very thin. 

In an Italian book for teachers, we can read this definition of ‘generalization’: 

the capability to free oneself from particular, to find solutions more amply valid to 

achieve a given aim. … capability that allows to distinguish the essential from the 

particular, “what it needs make in given situations” from the various “way in which 

it can be made”. (Altieri Biagi & Speranza, 1981, p. 178) 

In her analysis of the act of understanding, Sierpinska considers four basic 

mental operations: identification, discrimination, generalization and synthesis. 

Her definition of generalization is the following that completes the previous: 

Generalization is understood here as that operation of the mind in which a given 

situation (which is the object of understanding) is thought as a particular case of 

another situation. The term ‘situation’ is used here in a broad sense, from a class of 

objects (material or mental) to a class of events (phenomena) to problems, theorems 

or statements and theories. (Sierpinska, 1994, p. 58) 

In his theory of ‘universal model’ Hejny (2004) distinguishes six different 

stages: motivation, isolated (mental) models, generalisation, universal (mental) 

model(s), abstraction, abstract knowledge. In particular, concerning the ‘Stage 

of generalisation’ he writes: 

                                                 
3
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into Mathematics Education, Parma University, Italy. 
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The obtained isolated models are mutually compared, organised, and put into 

hierarchies to create a structure. A possibility of a transfer between the models 

appears and a scheme generalising all these models is discovered. The stage of 

generalisation does not change the level of the abstraction of thinking. (Hejny, 

2004, p.2) 

Hejny (2004) writes also: 

The generalisation of isolated models (experiences and pieces of knowledge) is 

determined by finding connections between some of isolated models. This web is 

the most important product of the stage of the isolated models. (Hejny, 2004, p.5) 

In this paper the author presents and studies an example of generalization that 

appears during a play. It is well known that the play can promote logical and 

mathematical competences. Schuler (2011, p. 1912) highlights that: 

[…] play and relationship of playing and learning have to be explored more closely 

when talking about mathematics for the early years.  

Starting from the consideration of emotional, social and cognitive role of the 

play, she writes: 

[…] play in early childhood is the motor of development and hence associated with 

learning. Consequently the underlying question seems not to be “Can children learn 

while playing?” but rather “How can learning while playing be modeled?” and “Can 

children learn mathematics while playing? (Schuler, 2011, p. 1913) 

After an analysis of some theoretical models, she emphases “the central role of 

the educator and the quality of materials, games and activities”. In fact, 

sometimes it is difficult to adopt a good equilibrium between a free and 

spontaneous play and a guided play. In other words, “Play is not enough. […] 

children need adult guidance to reach their full potential” (Balfanz et al., 2003), 

but when the teacher proposes a play finalised to promote particular abilities, he 

risks to force in some way the child and to impose directions of work connected 

with the play finality. In particular, Schuler (2011) studied situational conditions 

of learning while playing and she highlights three main blocks: affordance, 

liability and conversational management: 

[…] rules can offer mathematical activities beyond a material’s intuitive affordance 

and thus create liability. Intuitive affordance of materials is replaced in games by 

(the affordance of) keeping the rules and winning the game. (Schuler, 2011, p. 

1919) 

In the play utilised in the present research, an important role is done to row-

column arrangements. Rożek & Urbanska (1999) studied in depth this topic: 

The children have a different awareness of the rows and columns arrangement. 

Some of them prefer rows, some of them columns. It appears that it was difficult to 

see both rows and columns, especially for young children. 
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In particular, Rożek in her researches about SCFL (Series-Columns Figures 

Layout) Rożek (1997, 1998) analyses children’s behaviours, in terms of two 

activities constructing and drawing SCFL. She studies also verbal descriptions 

of SCFL and she organises the protocols in base of three different features: 

following the features of structures, following visual perception, using language. 

In the first, she observes the distinction between geometrical aspects as rows and 

columns or numerical aspects. In the second, she classifies the vision as global 

or analytical. In the third, the focus is on the language that can be referred to real 

world or in comparison with mathematical language. In our research, there is 

a part related to ‘construction’ and a second part based on ‘lecture’ of villages 

(2D) or palaces (3D), that can be analysed and organized following Rożek 

theory. 

RESEARCH QUESTIONS 

The present research is placed in the theoretical framework of early 

mathematical education by play, in particular it deals with children’s 

development of reasoning in playing with rules. The initial hypothesis is that 

a suitable play can promote an early and spontaneous use of generalization.  Our 

aim is to give answers to the following questions: 

1. Is it possible to develop in children the construction of metacognitive 

instrument of generalization in the context of a guided play? 

2. Under what conditions we can obtain learning of generalization, using 

a game that can promote it? 

THE EXPERIMENT AND ITS METHODOLOGY 

In this paper we present a research focused on a part of a wider study based on 

a play with rules, the ‘Play of coloured houses’, showed and analysed in 

a working seminar presented from the author in a CME conference (Vighi, 

2010b). The main research aims were to study spontaneous reasoning made 

from children, playing with ‘the play of coloured houses’, to analyse their 

behaviors in front of row-column arrangements tasks and the possible recourse 

to metacognitive processes of symbolization and formalization. In this paper we 

refer only the part related to the appearance of generalization during the play 

and its crucial role. The experiment took place in the last year of kindergarten in 

which pupils (5-6 years old) worked in groups of seven or eight and in the first 

year of primary school (pupils 6-7 years old) with work in pairs. Pupils involved 

were 20 in kindergarten and 26 in primary school. The activities took place in 

every day context. In kindergarten they were conducted from the teacher
4
 in 

presence of a researcher (the author of the present paper). Teacher presented the 

play and she conducted the works, promoting and fostering the viewpoints of 
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children, without force their thinking, but waiting to listen their ideas and 

observing their behaviours. Researcher observed, recording on video, later she 

analyzed and transcribed dialogues, making also written observations. In 

primary school the activities were conducted in part from the teacher
5
 and in part 

from the author who worked with children in pairs.  

THE “PLAY OF COLOURED HOUSES” 

The “Play of coloured houses” is a play without winner, based on a  disposition 

of houses with three different colours (red, yellow, green) in a grid 3x3, 

respecting the following rule: in each row and in each column it needs to have 

houses of three different colours. We report here some examples: 

The play remembers Sudoku, in fact it can be seen as a simplified version of 

Sudoku with a grid 3x3 (instead of 9x9) and only three ‘symbols’ (it is possible 

to use digits 1, 2, 3 in place of colours). From the mathematical point of view, it 

is a ‘Latin Square’, i. e. a square in which “each element appears only one time 

in each column and only one time in each row” (Quattrocchi, Pellegrino, 1980). 

The play requires the contemporaneous management of rows, columns and 

colours. It can be executed by means of ‘method of attempts and errors’ or using 

rules discovered during the play: “It is impossible to have a red house here”, or 

“Here it must be a yellow house” etc. When a pupil plays, he makes 

argumentations, and also hypothetic-deductive reasoning: “If I put here a green 

house, then …” and so on. 

Figure 1: Examples of villages 

 

THE ‘SCALETTA THEOREM’ 

In scholastic year 2009/10 the “Play of coloured houses” was presented in 

kindergarten in a context of motor activity, after pupils played with coloured 

tiles and a support for tiles organized in three rows and three columns (Fig. 2). 

We drew a house on each tile with the aim to give an orientation that allows to 

distinguish clearly the built villages (in this way it is possible to have 12 

different villages). 

                                                 
5
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Figure 2 

In scholastic year 2011/12 we presented the same activity in Primary School 

(pupils 6-7 years old). Here we refer only on comparison of villages constructed 

from pupils, suggested from the teacher. It is well known that the activity of 

comparison is fundamental in mathematics, to construct concepts: thinking 

about analogies and differences can promote the formation of a concept. It is 

also documented that comparison it is not spontaneous in young children; they 

start using intuition, but it is insufficient, so it compels the use of the language. 

After a lot of activities based on the play, teacher submitted couples of villages 

and she solicited their comparison starting from a couple of ‘equal villages’, and 

continuing with couples of villages with ‘the same structure’ etc. An important 

observation is about the different ways of seeing the SCFL (Rożek, 1997) that 

children showed: use of a local way of seeing, observing only some couples of 

tiles with the same colours, placed in the same places (“In the first village there 

is a green house here, in the second also”); observation of the disposition of all 

the tiles with the same colour and use of a words of natural language to describe 

their disposition (“It seems letter C”); recognition of rhythms or cycles (“red, 

yellow, green, red, yellow, green, …”); individuation of symmetric villages (for 

instance, villages a and c in Fig. 1); only observation of rows (or columns) and 

their exchanges (in Fig. 1, “The second row in village b is equal to third row in 

village c and vice versa”); observation of different orientations of diagonals (in 

Fig. 1, referring to a and c villages: “ … but one go down, the other go up”); 

description of features of diagonals (“In one diagonal there is the same colour” 

and “in the other diagonal there are three different colours”). 

Figure 3 

This last aspect suggested to the author of the present paper to put attention and 

to focus this topic: the visual perception of colour leads some pupils to move 

their attention from rows and columns, explicitly mentioned from the rules of 
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the play, to diagonals that present a particularity, all tiles have the same colour. 

Our hypothesis is that it could be a starting point to investigate if children use or 

not ‘diagonal rule’ to make generalizations. 

In the first experimentation, pupils of kindergarten school used the name 

‘scaletta’ (in Italian language it means “little ladder”) to indicate this 

monochromatic diagonal; in fact, the disposition of tiles suggested the steps of 

a small ladder. The observation of ‘scaletta’ was developed in the following 

context: firstly each pupil constructed his village, gluing tiles on a sheet of paper 

expressly prepared for the use (Fig. 2); in a second moment teacher put some 

villages on a wall of the classroom and she asked observations from the pupils. 

In particular, they told: “The yellows are in single line” and “They are in angle”, 

“They are in little ladder”, “In a bandy row” (diagonal), “In a bandy row there 

are three equal colors, in the other bandy row there are three different colors”. It 

happens since teacher promoted the passage from micro-space to meso-space 

(Brousseau, 1983): micro-space is near to the subject and accessible to 

manipulation and vision, meso-space is accessible to a global and simultaneous 

vision (macro-space is accessible only for local visions). In fact, the first work 

proposed to the pupils took place in the space of the desk (micro-space), the 

second in the space of the classroom (meso-space). It changed the point of view 

in village’s observation: from rows and columns to diagonals. So, the 

“connection between some of isolated models” (Hejny, 2004) creates a web that 

produced generalization. 

So, we observed an unexpected fact: pupils found and formulated a theorem that 

is a consequence of the play’s rule. We call it, the “Theorem of little ladder”: “In 

all villages there is a little ladder with only one colour”. It is an example of 

generalization in the meaning of Altieri Biagi & Speranza (1981): from 

particular to the essential. 

Sometimes pupils used this theorem in their following constructions of villages 

that started from a diagonal monochromatic. In this way they adopted a strategy 

of village’s construction that involved new rules, different from these suggested 

from the play. It is a generalization as ‘capability to find solutions more amply 

valid’ (Altieri Biagi & Speranza, 1981), and also in sense of ‘a given situation is 

thought as a particular case of another situation’ (Sierpinska, 1994), but also in 

which the structure appears as generalizing isolated models in sense of Hejny 

(2004). But … the use of the theorem doesn’t guarantee success. It is evident in 

Chiara strategy (Fig. 4). 

Figure 4 
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Chiara started with a yellow diagonal, she continued with two correct passages, 

after she makes an error that leads to have at the end a ‘wrong village’. 

PASSAGE FROM 2D TO 3D PLAY 

In the present school year, we decided to submit to the pupils of kindergarten 

(5-6 years old) a new version of the play, in three dimensions: it consists in the 

construction of a ‘palace’ of three floors (a cube 3x3x3), with similar rules: “In 

each wall face it needs to have three different colours in each row and in each 

column”
6
. The play can be considered a three-dimensional (3D) version of the 

two-dimensional (2D) play of coloured houses. Sometimes in mathematics we 

observe the use of the locution ‘generalization’ also for the passage from 2D to 

3D. 

Pupils worked in groups following the indications suggested from the teacher. 

She arrived in classroom with two big boxes and she created a condition of 

waiting about their contents. After, slowly she opened the boxes extracting 

cubes (27 wooden coloured cubes, 9 red, 9 yellow, 9 blue), their wooden support 

(Fig. 5), named from children “palace” or “house with a lot of floors”, and 

a wooden rotating disk to facilitate gestures and the observation. 

Figure 5 

Firstly teacher suggested different free plays with cubes, after she invited each 

child to put a coloured cube on the support, promoting the construction of 

a building respecting rules; in a second time, she removed the support and she 

putted the cubes one near to the other (Fig. 6). 

This choice promoted an important breakthrough, since, as Rożek (1997) write, 

in a row-column arrangement of figures the distance between objects influence 

in depth the observation. We choose to report here the development of the work 

in a group, named G2, but we could observe similar behaviours in other groups, 

of course not in all. In G2, a child observed the yellow diagonal present in the 

“roof of the palace” (Fig. 6), suggested from the colour and also from idea of 

“straight line” and he said that there was a mistake in the constructed palace.  

                                                 
6
 A similar problem was studied from M. Gardner (1980) that found only one solution for 

the final cube (excluding rotations, reflections or permutations of colour).  
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Figure 6 

Teacher suggested that in fact all rows and columns respected rules and the child 

replies that “Yellow cubes are in point, as point of knife”. Immediately pupils 

find ‘points’ (‘scalette’ in the previous experience) in the other faces of the 

cube: “There are three points blue and three points red”. In fact, after the 

construction it is possible verify that the rule is respected also in the ‘horizontal 

floors’: in a floor there is a diagonal red, in another blue, in another yellow. So, 

they conclude that “This cube is magic!”. 

Another breakthrough happens when a child observed that the other diagonal on 

the roof presented three different colours: he indicates it with his hand 

accompanying with gesture and sound: “here, blue, red, yellow, pum, pum, 

pum” and he repeated it for each face visible of the cube. He added: “A ‘point’ 

entirely yellow, another of three colours, it is an X”. We name it the “Theorem 

of two diagonals”. In other words, the disposition of diagonals in each face of 

the cube suggested the mental image of letter X, that produced a passage from 

isolated models to a general model in the meaning of Hejny (2004): children 

changed their cube construction way, they started from a face, putting cubes 

following the ‘X disposition’ (Fig. 7) and completing the remaining parts. Using 

the two diagonal’s theorem, the play becomes easier: the construction of 

a coloured village changes a lot, since starting from diagonals, the placement of 

the other houses is obliged. 

Figure 7 

In other words, the finding of two diagonal’s theorem caused the passage from 

‘the various way to make something to what it needs make’ in sense of Altieri 

Biagi & Speranza (1981) and also it produced the discovery of a common 

structure in the villages (Hejny, 2004). 
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Afterwards pupils found also that on the lateral surface of the cube there are 

three points (blue or red) that make a continuous and close paths. This was the 

input for another play, named ‘Cricket play’ (we prefer do not present it here), 

that conduced to find a ‘new’ theorem: “In the cube there is an “internal 

diagonal” with only one colour and the other diagonals of cube are of three 

different colours” (Fig. 8). In this way the analogy with the 2D play in the 

village emerged and the “small ladder’s theorem” reappears… Is it 

generalization? 

Figure 8: ‘Internal’ diagonal of cube. 

CONCLUSIONS 

We think that our experiment realized a good equilibrium between playing and 

learning, in particular we understood that play furnishes the opportunity to 

observe mathematical reasoning’s development in young pupils.  

In reference to our first research question, we can reply affirmatively, 

concluding that in some kindergarten groups we observed the spontaneous 

appearance of the metacognitive instrument of generalization, motivated by play 

and also by context. So, that confirms our initial hypothesis about the early use 

of generalization. In literature we haven’t found similar researches and results 

with so young pupils. 

In fact, in relation to the use of generalisation, we had better results in 

kindergarten than in primary school. We pose a possible explanation: in 

kindergarten the play was entirely conducted from the teacher with the presence 

of researcher as observer, whereas in primary school the work was conducted 

from both, teacher and researcher. In the first case, the observer had the 

possibility to “peek and catch” some observations made from children, while the 

teacher was involved in the action. That allowed to take advantage of these 

suggestions and to use them in the following activities and conversational 

managements. In primary school, may be that working with a researcher, an 

unfamiliar person, influenced negatively the performances of pupils. So, the 

answers to the second research question, according to Schuler (2011), could be: 

“Potentially suitable materials and games need a competent educator with regard 
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to didactical and conversational aspects”. In other words, the role of the teacher 

and a conversational management appeared determinant. 
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This paper shows a proposal research that tries to describe how five-year-old 

children can learn the measurement process. The focus is on how everyday life 

experience can help children build mathematical concepts, especially the 

process of measuring, and how children learn to use a special scientific 

language. 

INTRODUCTION  

Kindergarten in Italy has now become an integrated system in evolution, 

characterized by the fundamental right to education. Therefore, the final goal of 

kindergarten education is to promote the development of independence, skills 

and good citizenship in children. All this is reflected in daily experiences when 

a child recognizes and communicates an understanding of fundamental activities 

and manages transactions with others. Moreover, the child learns to appreciate 

other points of view and to recognize rights and duties (NCTM, 2000; NRC, 

1989; INC, 2007). This research tries to find whether measurement-related 

concepts can be introduced in kindergartens by letting children prepare food and 

drinks whose ingredients need to be measured in several ways. Our objective is 

also to see if children can seize the underlying differences and similarities 

between the use of different measuring instruments and units of measurement. 

The school undertook to send school materials to a school in India. To obtain 

these materials, the children prepared, packaged and “traded” food products. 

The experience of preparing food and beverages for this project taught them the 

concepts of weight, volume and length (preparing pasta, juices, blended drinks, 

pastry cream and chocolate rolls). Finally, in assigning a value to these products 

in order to exchange them for the school material children learned about 

numbers in relation to pricing. 

CULTURAL REFERENCES 

In the field of experience, specifically “speech and words”, the National 

Curriculum Guidelines indicate among its goals the development of specific 

skills including that of “communicating to others your own reasoning and 

thoughts through verbal language, used in an appropriate way in different 

activities” (INC, 2007). We have wondered what is the relationship between 

everyday language and scientific language at this particular stage of a child’s 
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cognitive development.  Exploration, observation and comparison in scientific 

activities can be used to support the development of language among children 

and between children and adults. Therefore, the problem of mathematical 

communication “depends at least as much on what we see as on other types of 

less abstract speech”. The question then concerns the “effectiveness of 

communication” and its mediators: semiotics, artefacts and visual (Sfard, 2009). 

“Equally important to the acquisition of mathematical ideas is the neural system 

that governs body movements” (Lakoff, Nunez, 2005). Some research shows 

that body movements can express the perception of objects and spatial 

orientation and therefore crucial elements of mathematical reasoning. Dealing 

with the problem of measurement in kindergarten leads to particularly complex 

experiences and language. Moreover, Vygotskij’s development theory entrusts 

schools with the task of “stimulating” the movement from spontaneous to 

scientific concepts; on the one hand, this “stimulation” provides for the 

maximum development of the scientific concept acquisition stage, while on the 

other hand it exploits spontaneous concepts in order to promote the highest 

levels of cognitive development (Vygotskij, 1984). We can see, therefore, that 

“measurement can constitute an area of near development in which experiences, 

although not completely understood by a child, can successively be integrated 

into a network of conceptualization” (Bartolini Bussi, 2008). Moreover, it seems 

important, once again, to affirm that the learning objective in kindergarten is to 

enter the world of adults by following the “who, what, where, how, why” 

method in order to make a concept clear and to explain the meaning of a process 

(Ginsburg, Pappas, Seo, 2001). This objective can be realized by resorting to 

well-defined mathematical concepts, such as the ability to invent and plan, make 

similarities and relationships, as well as to analyse the different forms of natural 

language that are the starting point of every activity of formalization. It seems to 

us that we have followed the guidelines related to everyday activities, 

knowledge of personal history, time rhythms and cycles, space orientation and 

exploration of nature. It also seems to us very relevant to point out the 

importance of gathering, arranging, counting and measuring by resorting to 

more or less methodical ways of comparing and arranging, in relation to 

different properties, quantities and events through the invention and use of 

objects or sequences or symbols to record and remember some simple 

measuring instruments and, finally, by making quantification, numeration, 

comparisons  (Geary, 1994; Ginsburg, Seo, 2004; Clements, 2004; Copple, 

2004). 

METHODOLOGY 

The didactic methodology uses the inquiry approach, a model based on 

assumptions of knowledge, learning and teaching derived from criticisms of the 

traditional method of transmission.  Through the inquiry approach, it is possible 

to: encourage students to explore; help students to verbalise their mathematical 
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ideas; bring students to understand that many mathematical questions have more 

than one answer; make students aware that they are capable of learning 

mathematics; and, teach students, through experience, the importance of logical 

reasoning. In other words, we try to enable students to develop the mathematical 

capabilities necessary to pose and solve mathematical problems, to reason and 

communicate mathematical concepts and to appreciate the validity and the 

potential of mathematical applications (Borasi, Siegel, 1994).  This has been 

recommended in numerous important American and Italian studies on reforming 

the teaching of mathematics (NCTM, 2000; INC, 2007). 

Several researchers who have studied the learning of mathematics have found 

that students must actively demonstrate a personal understanding of 

mathematical concepts and techniques. Only in this way can they reach a level 

of significant understanding (Ginsburg, 1983; Steffe, von Glaserfeld et all, 1983; 

Baroody, Ginsburg, 1990). This position is reflected in constructivism. The 

influence of constructivism on mathematics teaching can be seen in requests for 

teaching environments that encourage students to actively participate in 

developing their knowledge rather than receiving it from teachers or books.  In 

these classes, the roles are reversed. Instead of passively listening, the students 

assume responsibility for their learning.  The teachers, on the other hand, speak 

considerably less and listen a great deal more to the students’ reasoning in order 

to help them understand what they have deduced (Confrey, 1991). In other 

words, to be good students, children today must be researchers (“inquirers”).  

Therefore, only doubt and uncertainty can motivate the search for new 

knowledge (Skagestad, 1991). Our experience was based on the inquiry 

approach model, which allowed us to alternate problem posing with problem 

solving. It showed children solving problems which arise and for which no one 

has the answer rather than solving problems prepared by the teacher.  For 

example, when they have to assign a price to one of their products, they decide 

on the basis of their different personal daily experiences. We have then chosen 

to get children to make some types of food such as pasta, cream, fruit juices and 

chocolate roll; in this way they can form their own opinion about the best way to 

measure things, not to mention the experience they have already gained from 

their everyday life. 

This model led us to use the problem posing method in which the children’s 

answers, their questions and the data they used are analysed. In other words, 

with this methodology the children can make observations, ask questions and 

formulate proposals. Moreover, they can compare an external investigation with 

an internal one. It is also possible to compare and contrast exact and 

approximate investigations, using the strategy of “and what if…” to generate 

new hypotheses.  It has especially been important to see how children know 

special terms and the two main aspects connected with the measurement 

process: i.e. comparison and order. That’s the reason why it was useful to 
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analyse the clinical-like conversation not with a view to verifying the 

correctness of the answers but rather to gain an understanding of the social and 

cultural motivations behind them. It was an extremely important method for 

forming, informing and maintaining the teacher’s “intermediary inventive mind” 

(James, 1958).   

OUR RESEARCH, ITS RESULTS AND THEIR ANALYSIS 

Our research has been carried out in two classes of two different kindergartens. 

In the first class there were 16 children and in the second 19; all in all, the 

project lasted 35 hours. One of the kindergartens was twinned with a 

kindergarten in India. The children saw films of this school and with the 

teachers decided to send school materials to the students there. From this came 

the idea to organize a “market” whereby the children traded the food and 

beverages they had prepared for pens, exercise books, etc. to send to India. The 

aim of the research was to give the student an enjoyable experience in which to 

experiment with measurement and then to relate it to their primary needs (“the 

right to food”) and their childish pleasures. This situation turned out to have a 

great influence on scientific learning; in particular, it allowed children to 

become familiar with the concepts of weight, volume and length. This 

establishes a connection between children and the “who, what, where, how, 

why” method (Ginsburg, Pappas, Seo, 2001) and leads them towards the 

scientific conceptualization of the measurement process (Bartolini Bussi, 2008). 

Through the presentation of some objects (a stick, an orange, a piece of chalk, 

a pencil, a coloured ribbon, some coins, a sheet, a bottle, a glass) we have tried 

to understand what children know of the size, weight and volume of these 

objects. 

Children have then been spurred to have a clinical-like talk like the following: 

Teacher : Is the pencil longer than the chalk? Is the pot higher than the orange? Is 
the pot larger than the bottle? Is the orange heavier than the sheet? 

After looking at the objects put on the desk children have started to express their 

opinion as follows: 

Mattia: The pencil is longer if I put it this way, while if I turn it the pencil is short! 

Federica: The bottle contains more milk than the glass! 

Giovanni: The orange is heavier than coins. 

Mattia: I’m taller than the stick, but Federica is shorter than me! 

Teacher: Which are the longest things you know? Which are the widest ones? 
Let’s try to find the longest, widest, highest and thinnest things in 
this classroom. 

Mattia: The door is tall! ... and the teacher too, because she’s taller than me! 

Giovanni: On the contrary, the window is wide. 
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The distribution of strips of paper having different length to each child has 

allowed us to make some inquiries about their previous intuitive knowledge of 

comparisons and orders. In particular we have asked children to find in the 

classroom some objects as long as their strip of paper. 

Mattia: My strip is as long as Luisa’s case on the zip side. 

Federica: On the contrary, my strip is as long as the poster which leaves are stuck 
onto… it is very long! 

Teacher: This means that the poster which leaves are stuck onto is longer or 
shorter than Luisa’s case? 

Giovanni: I think that Luisa’s case is shorter than the poster which leaves are stuck 
onto because the strip of Mattia is shorter than the strip of Federica. 

Then we have made accurate inquiries about the order concept by asking 

children to find the longest and the shortest strips so as to arrange them in length 

order, from the shortest to the longest. It’s at this stage that we can infer how 

visual and artefact semiotic mediators become an important instrument for their 

“effectiveness of communication” (Sfard, 2009). After the talk stage the activity 

carried out at school concerning the above-mentioned objectives developed in 

three further stages: an initial observation and exploration stage of the actions 

and movements of an “expert” adult in the preparation of sweets; the second 

stage in which the children become cooks and, handling the ingredients, they 

formulate and verify hypotheses, because they have to reconstruct the previously 

observed procedures, going through the recipes and proving their validity;  the 

last stage in which the attention is focused on the possibility to set up a trade fair 

as a problem solving exercise concerning  the “value” of the prepared products 

and the meaning of fair exchange, identifying the objects to trade and their 

value. All the activities performed show how the inquiry approach is carried out 

in real terms and draws attention in particular to the formation of concepts 

according to the constructivism theory in the teaching of mathematics (Steffe, 

2004). 

In particular, in the first stage, three adult experts were brought in to prepare 

single products: a grandmother for the preparation of an ear-shaped pasta 

(orecchiette) typical of their region; a mother to make a cream pastry and a 

blended drink; and, a professional pastry chef to prepare a chocolate roll.  After 

watching the experts prepare the products in class, based on typical housewife 

measurements such as  “a handful of sth”, “a pinch of sth” and “a spoonful of 

sth” there was a fruitful discussion on what they had observed. Problems 

relating to weight emerged when trying to interpret recipe indications given by a 

grandmother, such as “a handful”, and the additional problem of the different 

quantities of flour contained in a child’s hand and an adult’s hand. Children of 

the two schools have solved the problem in one or more ways also thanks to the 

use of different instruments.  A scale with two plates was used in one school; the 

following discussion ensued: 
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Teacher: “What is happening?” 

Denise: The amount of flour in my hand is smaller and the plate stays up but 
Grandma’s handful is heavier. 

Teacher: Could we put the plates at the same height? 

Giovanni: Let’s put some other handfuls of flour on the plate to make it go up. 

Teacher: Ok, but how much flour do we have to add? 

Giovanni: As many handfuls as the two plates are at the same height [and he 
shows the height with his hands]. 

In the other school Mattia realizes that the amount of flour hold in each handful 

is different and says: 

Mattia: … but the amount of flour is different, … I mean, it’s more than my 
Grandma’s handful, yes but my handful is smaller.  

Mattia tries to convince his friends of the truthfulness of his statement and says: 

Mattia: Let’s take two sheets and let’s put my Grandma’s handful of flour on one 
sheet and my handful of flour on the other one. Look, it’s more! 
Look! 

Federica: Yes, it’s true, you’re right! 

It is possible to infer from what children have said two main aspects of the 

measurement concept at intuitive level, i.e. comparison and the additive 

principle between homogeneous quantities. The inquiry method is also reflected 

in this conversation, as there are a lot of solutions to the same problem and also 

the desire to support their opinions. 

The importance of the linguistic aspects in the relationship between natural 

language communication and mathematical communication became as clearly 

evident as did the problem of learning mathematical concepts through body 

movements (Sfard, 2008; Lakatoff- Nunez, 2005).  

When preparing the blended drinks and the pastry cream, the “expert” indicated 

the necessary quantities of ingredients but the children had to choose the proper 

instruments to measure the liquids and solids. For example: a big glass indicated 

a greater quantity of milk than a small glass which the children discovered 

contained exactly half the amount; a soup spoon rather than a teaspoon was used 

to put more sugar in a drink; a ladle contained even more than a soup spoon. The 

practical experience of preparing pastry cream and blended drinks involved the 

children in a discussion of volume-related units of measurement.  With the 

expert, the children decided which utensils (soup spoons, teaspoons, ladles, big 

glasses, small glasses) should be used to measure the ingredients.  

Mum and cook: Right, let’s see children which utensil is better according to you? 
Take a look at these utensils (the mum shows the spoon, the 
teaspoon, the ladle, the glass, the cup, and so on). 

Vincenzo: Let’s measure the flour with a ladle because it holds more than a spoon 
which can be used to measure sugar. 
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This started a discussion on the quantity of liquid already prepared which, 

according to Federica, would not be sufficient for everybody once it became 

cream.  

Federica says: But we haven’t got enough cream for everybody! 

Mum: But why? How can you say it? 

When she was asked how she could be sure of this, she suggested dividing the 

cream among all the students.  Upon verifying that there was only enough cream 

for half the students, she suggested adding double the amount of ingredients to 

the mixture. When they finished preparing the cream, they started looking for 

ladles to pour the cream into glasses and decided to pour four ladles into the big 

glass and two into the small glass. The children were able to see the change in 

volume between a glass of a substance before being blended and after.  During 

the preparation of the blended drinks the children first invented and produced 

the recipes discovering the changes in volume between the quantity in a glass 

before and after it was blended.  They filled a big glass with pieces of fruit, 

milk, orange juice and sugar but once it was blended the volume increased 

producing enough liquid to fill a big glass and a little glass. Another interesting 

aspect emerged during the preparation of the chocolate roll. This product was 

chosen to study a series of questions related to the concept of length which was 

dealt with in a natural way by the children during the activity. The ensuing 

discussion allowed the children to come to a common understanding. Then, the 

natural desire to eat the chocolate roll led to find a way of dividing the roll in 

equal parts. The teachers had equipped the classroom with “good” instruments 

for measuring and the children, looking around the classroom for something to 

help them measure, were able to identify instruments long enough for this 

purpose. Next, the children chose a strip of paper as the best tool for measuring 

and then they developed a way of folding the paper in equal parts. This folded 

strip was then used to cut the chocolate roll into enough equal parts for all the 

children. The direct experience of preparing the chocolate roll was planned as a 

problem-solving activity concerning the concept of length.  The children 

managed to devise and execute a system for dividing the roll in equal parts for 

everyone thereby learning the concept of multiples. Mattia and Pietro try to 

compare the lengths of different sheets of paper scattered on the table to the 

length of the chocolate roll.  When he finds one that was just slightly longer than 

the roll, Federica says, "Let’s cut off the extra bit and write “The Length of the 

Chocolate Roll” so that we know which is the right piece!”  Mattia suggests using 

the strip as if it were a ruler by putting measuring marks on it but the idea proves 

to be difficult to apply because the marks do not allow for cutting equal pieces.  

Mattia has another idea.  He suggests folding the strip in two but the chocolate 

roll is still longer and bigger and, if cut in this way, there would only  be enough 

for two children. In fact, Mattia measures the folded paper against the chocolate 

roll to see if it is exactly half the length and verifies that it is. Then Federica 
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suggests, “Let’s fold the strip in half again” but it still is not enough for everyone.  

The children continue folding the paper strip until there are enough pieces for 

everyone.  This discovery gave rise to interesting games on the meaning of 

double and half using other materials. 

This way we have made inquiries about the possibility that children can develop 

the ability to face situations of problem solving and problem posing. Moreover, 

it is obvious that children have been able to take an indirect measure using the 

instrument of the semiotic mediation (i.e. the strip of paper) and so they have 

found a way of making an effective unconventional “metre” (base 2) having 

submultiples, too (principle of Eudosso – Archimedes).  

In the second stage, when they personally prepared the baked goods and had to 

deal with measurements, the children had the opportunity to experiment with the 

concepts of weight, length, and volume. During the preparation stage we have 

observed how children can get the main concepts of the measurement process, 

even if at an intuitive level. As for the preparation of orecchiette, for example, 

children have to make a measurement roughly  and at the same time more and 

more accurate, which doesn’t mean that this measurement does not follow a 

definite plan or pattern. Preparing the cream leads children to make comparisons 

thus choosing the suitable measuring instruments; and as for the preparation of 

the chocolate roll it is necessary to use adequate units of measurement. 

In the third and final stage, the children organized and operated a barter market 

where they “exchanged” their goods for school materials on the basis of “price 

lists” which they had developed and agreed on previously. The expression 

“Barter-Exchange” was introduced at the beginning of the project, during the 

preparation of the orecchiette. The teachers bring to the children’s attention that 

the grandmother had worked hard to make the orecchiette and should be 

compensated for this. Our goal was to get the children to barter in exchange for 

school materials to send to the Indian school twinned with ours. This experience 

led to the organization of the barter market and the development of the “price” 

list. In establishing the “prices”, it is important to emphasize the process by 

which the children attributed value to their products.  For example, “if a 

complete chocolate roll was worth a package of ten exercise books, then how 

much was one piece of chocolate roll worth?”. In choosing which products to 

exchange, it was necessary to use the concept of double.  For example, the 

children agreed among themselves that a small glass of pastry cream was equal 

in value to exactly half that of a big glass and a big plate of orecchiette was 

worth double the amount of a small plate.  To determine the value of the blended 

drinks, the children took into account the preparation time and the change in 

volume and therefore the need to ask for more school materials in exchange. 

In order to exhibit the price list to the public, some kind of poster was necessary.  

The children solved the problem by designing one with drawings of all the 

instruments used to measure the various products: glasses, espresso cups, 
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different kinds of plates and the short and long strips of paper. During the fair, 

each child bartered their products with the adults and, at the same time, 

explained how the products were prepared and, above all, how they arrived at 

assigning a value (“price”) to the products.  In this way, it was possible to verify 

that the child had acquired a full understanding of both the concepts related to 

measurement and the value attributed to the products. The observations relative 

to the price of the products are equally interesting. Initially, the children were 

reluctant to barter because of their personal feelings for the objects they had 

made, a behaviour that is typical in this age group.  This strong personal 

attachment to the products was further highlighted in the barter stage when there 

was a request for a “big” piece of cake, for example.  It was observed that often 

the value of an object was closely tied to its size. During the barter market 

another concept linked to the measurement process was examined. When 

children had fixed the price of each product the equivalence between different 

units of measurement, as well as the main concepts of the equivalence, have 

come out once again in an intuitive way. The drawings made by the children in 

the price list are evidence of how children have acquired the above-mentioned 

concepts of measurement. The entire project proved to have embraced all the 

fields of experience included in the Italian curriculum guidelines, not only the 

specific one related to mathematics and “knowledge of the world”.  

CONCLUSION 

This experience allowed us to confirm the idea that it is possible to talk about a 

child’s scientific knowledge, as long as we give this sentence the right 

connotation. To avoid making an “intellectual mistake”, we must talk about 

“correct knowledge”. This is what our research in kindergarten is generally 

devoted to: having the child’s first experiences and reasoning follow a “correct” 

formulation, always respecting the development of the child, who must not be 

thought of as an “adult”. Moreover, what we continue to observe in our research, 

and what stimulates and supports us, is the children’s sincerity when facing 

different situations, that spiritual condition which prevents them from wanting to 

distort the observed reality, their capacity to ask questions without feeling 

judged, as well as their ability to change their mind. These are all typical of 

children’s behaviour (something which adults no longer have) but they are also 

essential requirements when talking about “scientific nature”. 
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The importance of adequate external and internal (mental) representations for 

mathematical understanding as well as for generalization is shown with 

examples taken from early mathematics in pre-school education and from 

primary mathematics in schools. Regarding relations between numbers and 

special aspects of addition and subtraction, in the main part it is discussed 

whether or to which extent referring to actions with concrete materials and to 

children’s every-day life experience might be a learning obstacle and not helpful 

for children’s insight and for their ability to generalize mathematical concepts. 

In addition, alternative ways for classroom practice are discussed. 

CONCRETE AND ACTION-ORIENTED THINKING IN PRIMARY 

SCHOOL MATHEMATICS 

It seems to be common sense not only in primary mathematics education that to 

proceed “from the concrete to the abstract” is the best – or even: the only – 

option, i.e. to invite learners to carry out actions with concrete objects or to 

present them situations taken real life in such a way that they can grasp the 

“intended” mathematical concepts and procedures. In this article it will be 

discussed which alternatives do exist, and it will be shown that – especially with 

children who do not belong to the high achievers – in some aspects and 

situations another way is more promising, namely to focus their attention to the 

meaning of mathematical symbols and to help them to get insight in the way 

how mathematics is done by using words and signs. 

An explanation for the dominance of the way “from the concrete to the abstract” 

might be found in Piaget’s work and his – in fact – very important findings and 

ideas that might be summarized by his terms “abstraction à partir de l’action” or 

“abstraction réflèchissante” (see, cf., Aebli, 1980, p. 217). It should be remarked 

that in this abstraction process Piaget focusses on the reflection of actions, and 

not on the actions or on the real objects used to carry out these action. One of the 

most convincing ideas how to promote students’ learning processes in using real 

situations was created by researchers of the Freudenthal Institute when they 

established the concept “realistisch rekenonderwijs” (realistic mathematics; see, 

e.g., Treffers, 1987, or van den Brink, 1989, who, however, also referred to the 

van Hiele levels). The introduction of mathematical concepts based on situations 

the students are familiar with from every-day life might also be founded on 
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Greeno’s situated perspective on cognition and learning and his discussion of 

generative knowledge (see, e.g., Greeno, 1989, Stern, 1998, or Caluori, 2004, 

pp. 86ff).  

There is no doubt that for a lot of learners and for a lot of mathematical concepts 

it is very useful and important to start with situations in which mathematical 

concepts and procedure can be applied. Nevertheless, it should also be taken into 

account that this method also includes risks, especially regarding children who 

have problems with the abstraction process which has to be passed inevitably to 

grasp the intended concepts and procedures as useful and universal mental tools. 

In their study on the numerical concepts with primary school children, for 

example Gray, Pitta and Tall underlined: “It is our contention that different 

perceptions of these objects, whether mental or physical, are the heart of diffe-

rent cognitive styles that lead to success and failure in elementary arithmetic” 

(1997, p. 117). Rowlands and Carson put it even more strongly from their “criti-

cal review of ethnomathematics” (2002, p. 98): “Independent of good intentions, 

ethnomathematics runs the risk of attempting to equalise everything down to the 

poverty of the ‘builders and well-diggers and shack-raisers in the slums’. 

In short: Action oriented mathematical thinking might be sufficient in many 

aspects of primary school, but it is not in higher grades. 

EMPIRICAL FINDINGS FROM PRE-SCHOOL AND PRIMARY 

MATHEMATICS 

Mathematical thinking obviously does not start with formal instructions in 

school, and therefore Early Mathematics has become an important field in 

research. Regarding pre-school and early primary school education, the last 15 

years in the focus of our research there were four fields: 

1. The development of the “Osnabrücker Test zur Zahlbegriffsentwicklung” 

(Early Numeracy Test), a diagnostic tool for children aged 4 ½ to 7, based 

on the Utrecht Getalbegrieps Toets” (van Luit, van de Rijt & Pennings, 

1994; van Luit, van de Rijt & Hasemann, 2000; van Luit, van de Rijt & 

Hasemann, 2001). 

2. Interviews on individual differences in mathematical thinking of children 

before and at the very beginning of formal instructions in school 

(Hasemann, 2006; see also Hasemann, 2007). 

3. The relation between early structure sense and mathematical development 

in primary school (Lüken, 2010, 2011, 2012). 

4. Work with mathematically gifted children aged 5 to 8 (Hasemann, 

Leonhardt & Szambien, 2006; Hasemann, 2007). 

In addition, we will discuss some findings from to a teaching experiment in 

grade 2 and from interviews in grade 3 on “word problems and mathematical 
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understanding” which were carried out together with E. Stern (Hasemann & 

Stern, 2002, Hasemann, 2005). 

Findings from pre-school education 

About 70 children in their last year of kindergarten in interviews the item in 

figure 1 was presented. Nearly all the children could to solve the problem, but 

the time needed to complete the task was extremely different: Some counted all 

the dots and needed minutes to find the correct square; others were ready in 

seconds as they had realized immediately that in this square there are six dots 

(arranged like those on a die) plus one dot, or they saw two times three dots and 

one dot (for more details and further items see Hasemann, 2006, pp. 74f; 2007, 

pp. 34ff). 

 

 

 

 

 

 

Figure 1: Point to the square with seven dots. 

Even kids in kindergarten show extremely big differences in their kind of 

thinking: Some recognize visually presented pattern and structures and are able 

to use them flexibly to solve mathematical problems, others have to their 

disposal only counting procedures they are familiar with. Referring to 

Linchevski & Livneh (1999) and Mulligan and Mitchelmore (2009) Lüken 

(2010, p 241) called this ability to recognize pattern and structures “early 

structure sense”, and she indicates with this term the “ability to see any 

predictable regularity or ordered entity and the relationships between parts in 

such a pattern”. In a longitudinal study Lüken found out that there is a cor-

relation between children’s ability to recognize visual pattern and structure at 

the very beginning of school and their mathematical competences at the end of 

grade 2 (2010, p. 246): Children who have this structure sense already at the 

beginning of school are very likely to be the higher achievers at the end of grade 

2, and vice versa, those how have no such sense tend to be the lower achievers.  

In addition, Lüken discussed the question what the cognitive milestones in the 

development of an early structure sense are (2011, p. 2). From an analysis of 

video-taped interviews with children just starting school she concluded that the 

lower achievers, for example, do interpret a pattern of dots that are arranged as 

the die-five as one number (namely “the five”) whereas the high achievers are 

able to interpret this pattern in addition as a partition of this number (4+1 or 

2+2+1): “High achievers have an awareness of the spatial structure and function 

of particular configurations” (Lüken, 2011, p. 5). It follows that “a learner has to 
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organize the perception of things in a particular, mathematical way, for instance 

learn to relate geometric clues to numerical matters, … flexibly decompose and 

related substructures” and “intentionally reframe the structures of a pattern”. 

Most learners cannot do this process by themselves, “they have to be 

instructionally supported with” (p. 7). 

Observations and findings in the first grades of school 

The question is how to support the learners. In a teaching experiment in grade 2, 

Hasemann & Stern (2002) tried to find out which arrangements in the classroom 

might be more likely to support weaker students’ ability to grasp numerical 

relationships (for details see the next section). As a starting point interviews on 

word problems were conducted at the beginning of grade 3. The following 

transcript is taken from an interview with an eight-year-old girl who was asked 

to solve this problem: 

Jan has got 7 rabbits. He has got 4 rabbits more than Thomas. How many rabbits do 

both boys have together?      

1 I: Please, read the text. 

2 S: (reads the text) … 7 + 4. 

3 I: How did you do that?  

4 S: Because there is ‘how many rabbits do both boys have together’ …  

5  7 + 4 equals 11. 

6 I: Why is it 7 + 4? ... (16 sec) ... How many rabbits has Jan got? 

7 S: ... 7. 

8 I: And how many has Thomas got? 

9 S: 4. 

10 I: 4? (The girl nods her head). Where is that in the text? 

11 S Points to the text. 

12 I: Please, read the text. 

13 S: He has got 4 rabbits more than Thomas. 

14 I: ... Who is ‘he’? 

15 S: Jan. 

16 I: Fine. This means, Jan has got 4 rabbits more than Thomas ... and  

17  how many rabbits has got Thomas? 

18 S: 4. 

19 I: 4? 

20 S: Nods. 

This kind of dealing with the numbers in a word problem is widespread, and it 

might be interpreted in different ways: For example, it might be concluded that 

problems like this were ignored in the class yet; or the girl didn’t pay enough 
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attention or has bad understanding of this special kind of problems; or she 

doesn’t like mathematics at all. Even if these conclusions were more or less 

correct (this girl was seen by her teacher as a rather bright learner in language, 

but not so good in mathematics), they do not reach to the heart of the matter. 

Riley and Greeno (1988, see also Hasemann, 2007, pp. 196f) in a study with 

children from kindergarten to grade 3 found 14 types of word problems with 

extremely different levels of difficulty. Most items of the “compare” type (as for 

instance: “Mary has got 4 marbles. She has got 3 marbles more than John. How 

many marbles has John got?”) are rather difficult for younger children. The level 

of difficulty of an item, above all, depends on the difficulty children have to 

transfer the real situation given in the word problem into the mathematical 

language, i.e. it depends on the fact how easy or how difficult it is to represent 

the situation in mind, to connect this situation with available knowledge, and to 

deduce adequate calculations. 

Following the path “abstraction from realistic situations” sequences of symbols 

like “4 =  + 3” or “  + 4 = 7” only make sense for children if they have learnt 

to connect these sequences with different situations in such a way that they can 

transfer it also to new situations. A step in this mental process from situations to 

sequences of symbols (and back from symbols to situations) might be diagrams 

if they do not just reproduce the situations but represent the relevant mathe-

matical relations without irrelevant details. As an example we take the task 

There are 9 children on the red bus. There are 6 children more on the green bus 

than in the red bus. How many children are on the green bus? 

The pictures in figure 2 were drawn by a student in grade 3 who reproduced the 

situation with a lot of (irrelevant) details whereas the diagram in figure 3 (which 

is taken from the work in the classroom [see the next section]) represents 

quantities and the relevant relationship between these quantities: 

 

 

 

 

 

Figure 2: The red bus    and the green bus 

 

| | | | | | | |            | | | | | | | |   | | | | |     

 

Figure 3: The red bus    and the green bus 
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Action-related thinking becomes inadequate when the situations cannot directly 

be simulated by actions. In fact, a word problem becomes nearly insoluble for 

a lot of children when a relation between quantities has to be recognised; the girl 

in the interview mentioned above had this problem: She ignored the relation in 

the relevant statement (“he has got 4 rabbits more than Thomas”), but referred to 

a cardinal number (in the sense of “he has got 4 rabbits”) and did an obvious 

calculation (7+4 = 11). 

Most lower achievers in mathematics are not able to detach their thinking from 

concrete objects and real actions: “The properties by which the physical objects 

are described and classified need to be ignored; and attention is focused on the 

actions on the objects which have the potential to create an ’object of the mind’, 

which has new properties associated with new classifications and new 

relationships. For some there may be a cognitive shift from concrete to abstract 

in which the concept of number becomes conceived as a construct that can be 

manipulated in the mind. For others, however, meaning remains at an enactive 

level; elementary arithmetic remains a matter of performing or representing 

actions” (Gray, Pitta and Tall, 1997, pp. 115). These authors’ evidence is based 

on responses to a range of elementary context-free addition and subtraction 

problems given by children at ages from 7 to 11: “’Low achievers’ tended to 

highlight the descriptive qualities of the items in strongly personalised terms, ... 

there was a tendency to associate these items with a story in the sense that they 

were seen as pictures that required colour, detail and a realistic content. In 

contrast, ’high achievers’ concentrated on the more abstract qualities within 

(the) series of items. Though they initially focused on core concepts, they could 

traverse at will a hierarchical network of knowledge from which they abstracted 

these notions or representational features” (p. 123).  

The next examples are taken from our work with mathematically gifted children, 

aged 5 to 8. Confronted with the item 

To finish a special work 4 machines need 25 days. Unfortunately, after 7 days one 

machine breaks down and the work is finished with only 3 machines. How many 

days the work is delayed? 

a boy produced as an answer the diagram in figure 4 (the reader is hearty invited 

to find out why the boy – rightly – regarded it as a solution of the problem): 
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The diagrams in figure 5 were produced by the same boy some days later to this 

item 

Is it possible to write 12 and 60, resp., as sums of consecutive numbers? 

These diagrams, especially that one which is related to 60, highlight to the role 

and the importance of external and internal representation in the process of 

generalization. 

A teaching experiment in grade 2 

Having in mind the behaviour of students as presented in the interview in the 

previous section, Hasemann & Stern carried out a 12 lessons intervention study 

on word problems in nine classes at the end of grade 2 in the Hannover area. At 

that time word problems were well-known to the children. Two different 

additional training programmes for the solution of word problems were 

developed, each of which was tested in three classes; in addition, there were 

three control classes. One of the programmes focussed on students’ real-life 

action-related behaviour. In this programme the teachers’ instructions followed 

the scheme “from the concrete to the abstract” (and were guided by the idea of 

“ongoing schematisation” developed in the Utrecht project mentioned above) 

while the other programme was based on abstract and symbolic activities. 

The “abstract-symbolic” training-programme was conducted in three classes. 

The mathematical relations and structures that are particular difficult for child-

ren were made explicit in these lessons, and specific help to overcome the 

obstacles were provided. This programme wasn’t “abstract” in the sense that just 

formal calculations were carried out, instead this programme was also action-

related and included a lot of “games” appropriate for children at grade 2. 

Figure 4 Figure 55 
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However, as media to visualise relationships between numbers mathematically 

structured representation tools were used as, for instance, the 100 square and the 

number line (figure 6 and 7). 

 

 

 

 

 

 

Figure 6: 100 square                 Figure 7: The beginning of the number line 

Exercises with the 100 square: The children sat in a semicircle in front of a big 

100 square-poster and followed a route on it given by the teacher: 

1. At the beginning I stood on the 7. 

2. Then I walked a step downwards. 

3. After that I walked 26 steps forwards. 

4. Then I walked 3 steps upwards and one to the left. 

5. Where I am? 

After some “Where I am”-games the students were encouraged to follow the 

route with blindfolded eyes.  

At the number line a game called “Mister X” was played: An empty number line 

was drawn on the board and the teacher (or a student) wrote a number (“Mister 

X”) between 0 and 100 on the back of the board. The players tried to guess this 

number by narrowing down the numeral range, it was only announced whether 

the number was too small or too big; the players had 10 attempts at most. 

The children also played “brain-games” like: “I imagine two numbers. One is 

bigger by 5 than the other. Which numbers could it be?” In the training in these 

classes mainly relations between numbers were emphasised, and then more and 

more used by the students to solve word problems. 

Before and after the training-programme a test was carried out in the classes 

taking part in one of the two training programmes mentioned above and also in 

the control classes. During the evaluation a considerable improvement was 

becoming obvious especially with the low-achieving children, not only in the 

correct solution of word problems but also regarding their ability to solve 

arithmetical problems. An increase of efficiency was to be expected because 

there is always a correlation between time of lessons and progress in learning. 

The main surprise was however that the programme which focussed on pupils’ 

real-life action-related behaviour had the lowest success, while the “abstract-
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symbolic” programme achieved the most increase of efficiency with the low-

achieving children (Hasemann & Stern, 2002, pp. 235ff; Hasemann, 2005). 

FACIT 

This finding is not really surprising. It’s even plausible that especially the less 

competent children are best aided by helping them to recognise relations, 

patterns and structures which they – in contrast to the more competent children – 

are not able to find by themselves in the concrete and obvious. This recognition 

evidently stands in contradiction to a popular way of acting (cf., e.g., Gellert, 

1999, pp. 114/131); most of the teachers seem to believe that especially with the 

less competent children the only way of acting is “from the concrete to the ab-

stract”, or – the worst – the only way of teaching is to come down just to the ob-

vious and concrete. 

The difficulties of numerous children with mathematics, not only in primary but 

also in secondary schools, are partly due to the use of numbers exclusively as 

cardinal numbers (quantities) and in rather simple arithmetic. This leads to a 

restricted mathematical understanding and makes generalization difficult (or 

even impossible). In the first grades it is possible to solve most arithmetical 

tasks only by the conception of concrete actions. This thinking is insufficient in 

higher classes (and – among other problems – leads to the well-known 

difficulties with fractional arithmetic), children should learn to shape relations 

between numbers already in primary school. In addition, the procedure “from 

concrete to abstract” is not sufficient enough to help low-achievers to detach 

themselves from the concrete and obvious and to recognise the relations and 

structures in the actual situation. As a matter of course it is necessary in 

mathematical lessons to start with concrete actions and a practical context which 

is directly comprehensible for children; however, it is important to go carefully 

directed (and not only implicit) into relations and structures. If they are not 

misunderstood as counting-tools, materials like the 100 square and the number 

line (with their pre-forms abacus, 20 number grid and calculation chain) are 

excellent fields of experience and practise especially for less competent children 

to create mental models of situations where mathematical relations are 

represented. The study showed that it is possible to encourage low-achieving 

primary school children through carefully directed abstract-symbolic activities 

to insights in mathematical relations. Materials for instruction and methodologi-

cal suggestions for such lessons are available for a long time past. 
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This study regards issues relating to evoking and developing creative 

mathematical activities in early grade pupils. Both theoretical observations will 

be expressed, regarding working with pupils who are interested in mathematics 

and concepts of working with such pupils will be discussed. The main part of the 

study comprises presentation and analysis of children's works created during 

after-school meetings of the Young Mathematician's Club. Diversity of the task-

solving strategies applied by pupils will be shown, together with those activities 

which may become the basis for shaping generalisation and specification skills. 

INTRODUCTION 

The studies run in Poland on mathematical skills in small children show that  

one may see some signs of mathematical skills in nursery school pupils and early 

primary school pupils, and the number of children gifted with those skills is 

impressive. (Gruszczyk - Kolczyńska, 2011a) 

It stems from the studies that such children are willing  

to participate in games requiring a considerable intellectual effort and combinatorial 

reasoning (…). At the same time, they demonstrate astonishing cognitive 

inquisitiveness (…). They are also able to focus for a longer period of time on 

complex tasks; what is more, they find them on their own, thus manifesting 

astounding inventiveness. (Gruszczyk - Kolczyńska, 2011a) 

Therefore,  

the necessity of supporting mathematically talented children already at the level of 

nursery schools and in the first grades of school education is emphasised. 

(Gruszczyk -Kolczyńska, 2011b) 

First years of school education are significant for further education. This is when 

the child develops a conviction about his/her abilities, which is so motivating. In 

this period of early education, skills of different kinds of reasoning are shaped, 

and we know “that assistance in creating opportunities for developing thinking 

is a much more important investment in child's cognitive development than lots 

of knowledge”. In such shaping of thinking one should use a natural child's 

inclination to games and create opportunities of experiencing success. Success 

and joy of action affect intellectual development positively, “and by achieving 
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success we frequently want to repeat it and enjoy an emotional feeling that 

despite possible failure we constantly win” (Chmielewska - Łuczak D, 2011). 

A natural children's inclination to intellectual effort gives a teacher a possibility 

to develop children's skills. Those pupils who like mathematical tasks should be 

surrounded with special educational care. Currently, as emphasised by 

E. Gruszczyk - Kolczyńska (2011b), “within the scope of pre-school and early-

school education there are no classes preparing for supporting development of 

talented children, including those with mathematical skills”. The author believes 

it is necessary to create an additional educational path. That path aimed at 

developing mathematical activities and skills could include contents and skills to 

be taught both during lessons and after-school classes.  

YOUNG MATHEMATICIAN'S CLUB 

One of possible concepts of after-school classes, which may support intellectual 

development of early school pupils in the area of mathematical creativity, has 

been presented in a manual for early - school teachers titled Young 

Mathematician's Club
1
. The exercises presented in it are addressed to pupils 

who are interested in numbers, geometric world, mathematical relations and who 

enjoy creation. The range of topics of a series of the Club meetings is loosely 

connected with the curriculum of the first stage of education and refers to the 

situations well known to children; the topics cover selected mathematical 

activities the beginnings of which can be shaped in pupils who are willing and 

interested in mathematics. Games, exercises and tasks are arranged in such a 

way that pupils have a number of opportunities to do manipulation exercises, 

repeat them and discover their own strategies of conducting and solving 

mathematical problems. The manual includes, apart from presenting a series of 

classes, Characteristics of classes and Comments to tasks with detailed tips 

and suggestions for a teacher.  

All classes presented in the manual have been conducted after school with third-

grade pupils from primary school
2
. In each Club meeting, the pupils solved 

exercises and tasks, which constituted a thematic series. In accordance with the 

concept presented in the manual, the pattern of each series of classes was the 

same and it consisted of three stages: a Starter, Manipulation Classes and 

a Work Sheet. The Starter introduced the pupil into a situational context. At that 

stage, the teacher agreed with the pupils the language of communication and 

understanding of the meaning of the proposed manipulation material and graphic 

presentations. Manipulation Classes were a form of playing games for children. 

The pupils could experiment and discuss their ideas how to solve particular tasks 

                                                 
1
 Rożek B., Urbańska E.; Klubik Młodego Matematyka. A manual developed within the frameworks of the 

project titled: Development and implementation of a complex system of work with talented pupils, co-financed by 

the European Union under the European Social Fund 
2
 The classes within the Club's frameworks were conducted by a teacher representing the first stage of education, 

B. Jachymczak, M.A., working in the  Public Primary School run by Salesian Sisters in Kraków 
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and exercises. At the third stage of classes, the pupils solved tasks included in 

the Work Sheet on their own. Those tasks referred to the same mathematical 

activities as in the Starter and Manipulation Exercises, but they often had 

a different real context. 

The manual describes pupils' works, enriched with the scans of authentic 

children's solutions. It constitutes an illustration of different pupils' approaches 

to tasks and shows children's creative skills.  

STRATEGY AS A GENERALISATION TOOL 

The issues relating to the task solution process are central to many psychologists 

and pedagogues. The word strategy, borrowed from other fields of science is 

often used to describe that process. M. Ciosek (2005) writes about it in her 

monograph and she quotes different definitions used to describe that word, 

coming from various psychologists, for instance: 

strategy is a regularity in taking action; 

strategy is a certain systematic way of solving problems; 

strategy is a certain detailed plan of action. 

The application of the term strategy in the context of solving mathematical tasks 

emphasises that aspect of task solving which is related to planning and 

consistent implementation of that plan. Yet, it is worth noting that in order to be 

able to build a strategy one needs to become clearly aware of what a given task 

is about and find significant relations between data. Next, it is good to analyse 

a given situation in several particular cases in order to notice some common 

features, which will allow for discovering a general principle. Such analysis of 

particular cases can be done randomly, but it can be also conducted 

systematically in order to make generalisation easier. Thus, we have to do with 

specification and generalisation processes, which play a crucial role in 

discovering a strategy and help the pupil to achieve success in solving 

mathematical tasks. In A. Z. Krygowska's (1977) opinion, the analysis of several 

special cases and looking for a common pattern for them form elements of an 

inductive generalisation process. Its further stages constitute verbal creation of 

a common idea, its expression in a symbolic language, and last but not least, 

checking whether the generalisation we have achieved is proper. It seems 

important that while teaching mathematics teachers should shape in children 

those important creative activities, namely specification and generalisation. It is 

also good to realise that the  

generalisation process occurs individually. The pupil "grows into” the 

generalisation process depending on his/her psycho-physical development and 

mathematical experience. Here is a great role of a teacher to arrange such situations 

for the pupil at the right time, not to impose the final effect and to support the pupil 

discretely in looking for generalisation. (Legutko, 2011) 
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PUPILS' WORKS ILLUSTRATING APPLICATION OF DIFFERENT 

STRATEGIES 

Below, we present selected pupils' solutions of tasks included in the Work Sheets 

and we analyse them in terms of activities which may be the basis for shaping 

generalisation and specification skills. Diversity of the applied strategies and 

consistency in their application is striking in children's solutions of the tasks. 

Pupils' inventiveness both in geometrical and arithmetical tasks is illustrated 

with examples of solutions of the selected tasks. 

Task 1 

Jacek has blocks in 4 colours: pink, green, blue and yellow. He builds towers by 

putting blocks one on top of the other. The tower is built from 3 blocks, and each 

block has a different colour. Draw as many Jacek's towers as possible.  

In the solution of the task, the pupils tried to create as many towers meeting the 

specified criteria as possible. They did not have to draw all twenty four towers. 

Thus, some of them draw only a few towers. We can say that they specified task 

criteria in a random way. One pupil, for instance, did the following: 

 

Most probably he made towers randomly using three blocks with the specified 

colours, and he focused on fulfilling the task conditions while making 

subsequent towers; therefore, his towers had different colours and each of them 

was different from the previous ones.  

Interestingly, one pupil fulfilled a partial strategy of making towers:  

 

It can be seen that a protagonist of the strategy here is a yellow block, changing 

its position. One by one, the pupil draws possible towers in which this one is at 

the bottom, later on in the middle and finally on top. In this way, 18 towers have 
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been built. Creation of another six towers would require supplementing of the 

applied strategy with another step: towers without a yellow block. 

There were also pupils who, while applying their strategies in a systematic way, 

created all possible towers. Such a way of selecting examples points to the way 

of reasoning, which may constitute the basis for creating generalisations. 

One of the pupils applied successfully a strategy consisting in building, one by 

one, possible towers, which start with a block of the same colour: 

 

She started drawing with six possible towers, in which the first block is yellow. 

After setting the first block, she was building possible towers where the second 

block was the same. Next, she was drawing possible towers changing the colour 

of the initial block. It is worth noting that those six towers in each group were 

built by applying the same strategy once again. After deciding, for instance, that 

the first block was yellow, possible towers were now created in which the 

second block was green, and later on such towers in which the second was one 

blue and finally all towers in which the second block was pink.  

Similarly, starting with a block of the same colour the pupil below created her 

towers: 

 

The original arrangement of towers in a regular system of rows and columns 

should be noted here, which could help in generating all six elements of a given 

group.  

Task 2 

Kasia arranged with cards all two-digit numbers, where the sum of digits equals 9. 

Try to write down as many such numbers as possible. What do you think, have you 

managed to find all Kasia's numbers? 
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The question at the end of the task was to encourage the pupils to try to write 

down all possible numbers meeting the task criteria.  

Some of the pupils gave randomly only several numbers meeting the criteria, 

such as the pupil below:  

 

There were also such pupils who listed all numbers in this random way: 

 

There were also pupils who applied a partial strategy here. For instance, they 

gave some two-digit numbers with the sum of digits equal 9, and next a number 

with transposed digits. Subsequent pairs were totally random; it was enough that 

the sum of digits of the written number meets the task conditions. They 

continued to do so until they were unable to think of a new number meeting the 

requirements. For example, the pupil below acted like that: 

 

As can be seen, while applying his strategy he "lost” only number 90. After 

number 45, the pupil tried to write down some example, which may confirm the 

fact that he was not sure to have listed all cases. 

Another strategy applied here was to build numbers by putting tens of 

subsequent digits as digits and adding a matching single digit. Some pupils did it 

correctly: 

 

Others had problems with number 90 here: 

 

Task 3  

Jaś and Małgosia received sweets. They counted them and it turned out that 

Małgosia had 4 sweets more than Jaś. Jaś gave Małgosia 2 sweets. Who has more 

sweets now and how many more? 

That task required that pupils compared the size of sets, although the number of 

elements in each set was unknown. The pupils had to conclude from the fact that 

Jaś gave Małgosia 2 sweets that the difference increased by 4, so Małgosia has 

now 8 sweets more. 
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Some pupils made typical errors in their solutions: 

 

As can be seen, from the fact that Małgosia received two sweets, and already 

had 4 sweets more than Jaś, the pupil concluded erroneously that Małgosia will 

have 6 sweets more.  

Some pupils presented the situation given in the task in the form of an activity. 

Such a strategy of the solution may constitute the basis of a general point of 

view and discovering the way of solving such kind of tasks. For instance, one of 

the pupils did the following drawing: 

 

He presented the initial situation: two bags with sweets and 4 additional sweets 

next to Małgosia. Later on, by means of arrows he showed that he took out 2 

sweets from each bag and those from Jaś he deleted and drew next to Małgosia's 

bag. 

Another pupil presents her reasoning by drawing as if shots from a film: 

 

First, we can see the illustration of the initial situation (1), then two sweets are 

taken out from each bag (2), afterwards we can see the activity of giving the two 
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sweets (3) and then presentation of the final situation (4) in which the answer 

can be read.  

Task 4 

Each square was cut in a different way:  

 

Arrange a colourful square from the created elements, being puzzles.  

The strategy of solving that task requires finding equalities of adjacent sections 

and interdependencies between angles of the figures. The pupils presented the 

squares which were created as a result of manipulation with concrete material. 

Equality of sides of the puzzles from which squares were built was evaluated by 

the pupils visually. Frequently, such evaluation, despite the fact that the 

resulting square looked a bit ”crooked,” was accurate from the mathematical 

point of view. It can be seen, for instance, in the following solutions: 

             

While looking for a task solution empirically, specific difficulty appeared with 

applying of the strategy regarding comparing the lengths of sections. That 

difficulty related to visual comparisons. In some solutions, the quadrangle built 

visually resembled a square, but its sides were not equal, so contrary to the 

pupil's intentions and conviction it was not a square. The pupils fell in a trap of 

putting sections, which differed in length only slightly, one next to another as 

equal. It can be seen below:  

 

The upper side of the quadrangle built by the pupil is one and a half times longer 

than the diagonal of the initial square, since three legs of the green triangle are 

adjacent to it. The lower side of that figure is twice as long as the side of the 

initial square, because it was built from four yellow squares. Thus, the figure 

built in this way cannot be a square, since the upper and the lower side are not of 

the same length, although visually they may look equal. That apparent equality 
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of sections stems from the size of the square from which the puzzles were cut. 

The initial side of the square was 8 cm long, so its diagonal was 8√2cm long. 

Thus the pupil built a quadrangle whose lower side was 16 cm long, whereas the 

upper side was less than 17cm long. The difference between lengths of those 

sections on the puzzle could be unnoticeable for the pupil. In order to become 

convinced that the sections created in this way are not equal, at this stage of 

education one cannot refer to relations between numbers. An accurate 

application of the strategy relating to the equality of sections requires advanced 

knowledge about disproportionate sections. However, while making do with the 

visual evaluation, it is worthwhile showing apparent equality of the sections to 

the pupils. One may present such erroneous pupils' arrangements using puzzles 

created on the basis of a bigger square. For instance, if we make puzzles from 

a square with a 20 cm long side, the difference between the lengths of sections 

under discussion will be over 2 cm and it will be clearly noticeable for each 

pupil. 

GENERALISATION OF THE TASK SOLVING METHOD 

In children's works, one could see their fascination with a task solving strategy 

discovered by them. It could be observed in applying it carefully to solving 

different tasks, frequently with different topics. Undoubtedly, one can notice 

here manifestation of a generalisation method. For instance, it can be seen when 

solving tasks for which a mathematical model is similar. For example, it regards 

a series of combinatorial tasks below. 

Task 5 

An ice-cream vendor sells chocolate, strawberry, blueberry and vanilla ice cream. 

Jacek wants to buy 3 scoops of ice cream with different flavours. Mark chocolate 

ice cream with a brown colour, strawberry with red, blueberry with purple and 

vanilla with yellow. Draw as many different ice creams that Jacek can buy as 

possible. 

Task 6 

Zosia has round biscuits with jelly, each with some sauce. Sauces are in five 

flavours and colours: brown, purple, red, green and yellow. She decided to put two 

biscuits on each plate in such a way that each cake is of a different colour. Draw as 

many biscuit sets as Zosia may arrange. 

Task 7 

Wojtek has sweets in five flavours: chocolate (brown), raspberry (red), blueberry 

(purple), gooseberry (green) and lemon (yellow). He puts three sweets of each 

different flavour into one bag. Draw as many bags as Wojtek may prepare.  

Most of the pupils, in accordance with the intention of the task authors, came to 

conclusion that the order of occurrence of particular elements is not important in 

the groups being created. Taking such interpretation into account, in Task 5 one 
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can create only four different ice cream portions, in Task 6 ten plates with 

biscuits and in Task 7 also ten bags with sweets. However, for some pupils it 

was difficult to disregard, especially in the solution of Task 5, the condition 

which is important for them in a real situation. For those pupils, the order of 

putting scoops in the portions being created was important.  

It is worthwhile analysing solutions of the three above tasks given by one of the 

pupils, who transferred the method of solving Task 5 he discovered to the other 

ones. In Task 5, he considered the order of putting scoops necessary and based 

on this interpretation he created all possible 24 ice cream sets:   

 

As can be seen, he used the following strategy consistently: I am making all 

possible ice cream portions one by one; they start with a scoop of the agreed 

flavour, and later I change the first scoop. When solving subsequent tasks, 

perhaps fascinated with the regularity of the discovered method, the pupil 

transferred the interpretation: "the order of the elements is important”, to the 

second and third task. He did not pay attention to the fact that in a real situation 

of making portions of biscuits or bags with sweets the order of elements is not 

significant. When using his strategy, he received all possible 20 plates with 

biscuits: 

 

and as many as 60 bags with sweets: 

 

His solution of Task 7 is impressive. The pupil was able to apply properly and 

consistently until the very end the strategy invented to solve Task 5 in order to 
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create such sets of sweets in which the order is significant. He created all 

possible sets in which the first element is a sweet of the agreed colour. At the 

beginning, he drew twelve different bags, in which the first one is a green sweet. 

Next, he drew other possible bags, changing the colour of the first sweet into 

yellow, red, purple, and finally brown. In this way, he received five groups with 

twelve bags in each. 

FINAL OBSERVATIONS 

The third-grade pupils, where the Club classes were tested, participated in them 

with great pleasure. They were happy to do manipulation classes, solved all the 

tasks and frequently designed such tasks on their own. It should be emphasised 

that by solving tasks included in Work Sheets they focused on finding solutions 

of even quite complex tasks, which constituted an intellectual challenge for 

them. Looking at the works description, it can be seen that task solutions were 

original and clever. This illustrates a thesis which is important for the 

development of thinking, namely that it is not good to impose on children one's 

own ways of task interpretation or task solving methods too early. Such 

children's "different views” on the same reality, if properly developed, lead to 

independent reasoning and action, and they support the development of creative 

mathematical activities of a small pupil.  

The tasks and exercises offered in the manual turned out to be available to all 

pupils taking part in the Club classes. They stimulated pupils to look for 

solutions adjusted to the abilities of each of them and to create their own 

strategies. Most of them were able to give examples of objects meeting the task 

criteria. Some selected examples randomly, which often did not allow them to 

obtain all possible solutions. However, we can say that those pupils performed 

specification of task conditions. This is an important stage of development of 

children's mathematical reasoning. The next stage will be related to the ability to 

perceive some regularity in the examples being created. 

Many pupils discovered partial strategies of task solutions. They perceived 

certain regularities and presented, frequently in accordance with the instruction 

to a given task, as many cases meeting the specified conditions as possible. 

Although it did not generate all possible solutions, pupils' thinking was clearly 

directed towards looking for some regularity.  

It was striking that several participants of the Club classes were able to find all 

possible solutions meeting task requirements, even if the task contained only 

a suggestion to find as many objects meeting the specified conditions. Most 

frequently, all those possible examples meeting task criteria were given by those 

pupils who had discovered and applied consistently their solution strategies, 

which were often remarkable. One may draw the conclusion that pupils' 

experiences acquired in building their own strategies and effective application of 
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those strategies should influence handling of mathematical tasks by them later 

on. 

 It is worth adding that the pupils who applied their strategies surprised with 

carefulness and consistency, when creating their solutions in a systematic way. 

Such regularity of example selection allowed them to notice general patterns. 

Finding regularities is an important feature of mathematical thinking. It 

manifests a creative mathematical activity, which may become the basis of the 

generalisation process.  

In further development of creative activities relating to the generalisation 

process it will be important for pupils to be able to express, both verbally and 

symbolically, general regularities observed by them. At another stage of 

developing those activities, it will be important to remember that the formulated 

generalisations are certain hypotheses which need to be further studied and 

supported with evidence.  
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We present the results of a long-term teaching practice aimed at favouring 

theoretical thinking in primary school pupils. Our research question is to assess 

whether this practice achieves pupils’ good results in this way of thinking. We 

focus on the operations commutative property as a detector of forms of 

generalization. The minutes of a 4
th
 graders arithmetic activity show that 

teacher’s methodology gave children the opportunity to express their different 

points of view about generalization. 

THEORETICAL FRAMEWORK 

Literature about generalization offers several ways of interpreting this mental 

activity. The generalization can be considered differently depending on the 

features of the mathematical topics. Here we consider the realm of arithmetic for 

primary school, with its peculiarity. We consider generalization a product of 

theoretical thinking, owing this position to Douek (2006, p. 823). 

[a] The same researcher presents the following remark: 

A change of semiotic system […] can be a means for the considered processes 

[cognitive processes towards generalization] to take place, as well as a sign that 

they are taking place. (Douek, 2006, p. 824) 

[b] We can find (Moss & Beatty, 2006; Geraniou et al., 2010) that 

generalization is produced by the individuation of a pattern. The ‘exploration’ in 

arithmetic occurring in primary school can give rise to some children’s 

intuitions about generalization, via patterns. The appearance of a pattern from 

a repeated investigation can be in itself a sort of generalization, but the fact is 

clearer when variables are used instead of specific numbers. This is a first step 

in the origin of algebra, but we can delineate other ways towards generalization.  

[c] Generalization has an important cognitive role for economizing information 

needed in the construction of knowledge. But for being useful it is necessary that 

generalization it is paired with competence of implementing the generalized 

statement in particular cases, together with the identification that this peculiar 

situation is deduced from the general statement. Therefore in the phase of 

constructing/recognizing a generalization pupils are faced with direct (i.e. from 
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general to particular) and inverse problems (i.e. from particular to general) 

(Marchini, 2002).  

[d] The ‘natural’ and historical evolution from arithmetic to algebra presented 

the passage from rhetorical (syncopated) treatment to the symbolic one. This is 

mainly due to Viète (1591) with his transition from numbers to ‘species’. Some 

researchers consider the introduction of symbols in algebra and the consequent 

formalisation of thoughts as cornerstone for the presence of generalization.  

For example, the generalization of a rule or procedure that would hardly be 

understood through a single listing of numerical cases can be expressed in a literal 

code. (Malara & Iaderosa, 1999, p. 167) 

[e] But Rogers (2002, p. 578-579) distinguishes between icons and symbols in 

algebraic thinking: 

[…] archaeological evidence suggests that over time we have created icons, used 

indexes and developed symbols which first replace and later become the objects of 

thought […]. In our case mathematical objects are represented by icons, indexes and 

symbols which we use as tools to develop processes whereby we describe and 

manipulate the world. The distinction between icons, indexes and symbols is a 

subtle one. On one level, an icon can be taken to represent the object itself. […] The 

interpretive process that generates iconic reference is what we call recognition. The 

word “re-cognition” means thinking about something again, and “re-presentation” is 

to present something again. Iconic relationships are the most basic means by which 

things can be “re-presented”, and hence “re-cognised”. 

Therefore, the presence of a ‘representation’ of something with letters as icons 

could be considered a generalization, but not the formalization of a thought.  

[f] Another point of view is presented by Hejný (2004, p.2):  

3. Stage of generalization. The obtained isolated models are mutually compared, 

organised, and put into hierarchies to create a structure. A possibility of a transfer 

between the models appears and a scheme generalizing all these models is 

discovered. The process of generalization does not change the level of the 

abstraction of thinking. 

4. Stage of universal (mental) model(s). A general overview of the already 

existing isolated models develops. It gives the first insight into the community of 

models. At the same time, it is a tool for dealing with new, more demanding 

isolated models. If stage 2 is the collecting of new experiences, stages 3 and 4 mean 

organising this set into a structure. The role of such a generalizing scheme is 

frequently played by one of the isolated models (e.g. fingers serve as a universal 

model for a simple counting).  

In his paper the author presented an example of generalization realized by 

a three year old girl with her finger, without formalization, as it is usually meant. 

This theory of generic model has been presented recently by Hejný (2008). We 

adopt Hejný’s proposal as the main theoretical framework for our research, since 
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it is independent from formalization and the examples of children’s statements 

often set aside the formal aspects. Moreover the stage 3 

can be applied also to generalization ‘by extension’, e.g. 

from addition to multiplication and from natural numbers 

to rational numbers. 

[g] In order to explain our didactical experiment, it will 

be useful the so called (Pirie and Kieren, 1989) ‘onion’ 

model
4
 which is a recognized tool for looking at growing 

understanding as it is happening. In it, generalization 

does not appear explicitly, but it is present differently 

mainly in the more ‘external’ stages. In our theoretical 

framework generalization overlaps some of these stages, 

but does not coincide with them (e.g. we have examples 

of generalization without formalisation).  

DIDACTIC AND LOGIC OF THE COMMUTATIVE PROPERTY 

Didactical analysis 

The addition and multiplication commutative properties are often proposed as 

a ‘fact’, in the sense that in all the examples aiming at facilitating the learning of 

these operations the environment justifies the use of commutative properties. 

With addition, this fact happens in a dynamic situation of adding to or in a static 

situation (putting together) or adding in combining disjoint sets (Tsamir et al. 

2008, p. 57). The same happens when multiplication is presented by arrays.  

Therefore, the property assumes the role of an ‘en act’ knowledge and the 

reflection about it can be considered a superfluous remark and an unnecessary 

terminology (‘commutative’). But the comparison between addition and 

subtraction is enough for casting light upon the necessity of a name for 

a property holding always for addition and hardly ever for subtraction. 

Commutativity of addition is useful in case of ‘counting on’ when the first 

addend has cardinal value lesser than the second addend one (CAL strategy of 

Baroody and Gannon (1984), p. 322). Later on, when an explicit algorithm for 

addition in a column is used, commutative property is used to check the result. 

This practice is more useful in the case of multiplication. These procedures 

attach importance to commutative properties. 

Didactical attention in primary school to the commutative property as 

a fundamental peculiarity of operation is rare. 

Logical analysis 

We can consider commutativity as an axiom stating a peculiarity of a binary 

                                                 
4
 Reproduction difficulty suggested us to slightly modify the graphical aspect of the original drawing of Pirie and 

Kieren (1989, p.8). 

Inventising 

Structuring 

Observing 

Formalising 

Property Noticing 

Image Having 

Image Making 

Primitive Knowing 

Figure 1- The ‘onion’ 

model 



Teacher’s best practice for theoretical thinking 173 

 

 

‘operation’ in a suitable structure 
5
. Therefore this property is intrinsic part of 

the definition of that operation as a specific two-argument functional symbols. 

Therefore this property is a ‘brick’ which is essential for the construction of that 

suitable structure. To state correctly commutativity for ‘addition’ in a first order 

logical language, we must use a specific name for the binary operation, two 

indeterminates and two universal quantifier on them:  

(1)              x y(x+y = y+x), 

The sentence (1) is the result of a generalization in the sense of a statement 

which resumes many cases
6
. In fact, in the ‘standard’ arithmetic interpretation of 

the logical structure the two indeterminates should be interpreted as variables on 

the set of natural (integers) numbers; therefore, they can assume the numerical 

value you want. The statement 24 + 35 = 35 + 24 is an example of (1) in which 

we interpreted x as 24 and y as 35. This is the ‘direct’ problem we considered in 

[c]: from the statement to the examples. The ‘standard’ arithmetic interpretation 

is not the possible unique one, since we can consider different ‘abelian’ 

structures, all of them having the commutative property as an axiom.  

This structural – syntactic point of view is a final point of a reflexion about the 

concept of ‘structure’ and it is not the way in which pupils can act. They know 

some aspects of arithmetic and they can generalize their semantic experience 

with numbers in order to obtain something similar to the statement (1). In this 

case we can speak of a generalization by induction from the everyday 

experience with arithmetic. It is the ‘inverse’ problem in [c]. Hejný’s approach 

to generalization [f] is close to this. 

In the statement of commutative property there is also a morphologic aspect 

which can be considered as a pattern [b]. The open formula x + y = y + x is an 

equation (in logical terms), i.e. it is an equality of two terms. The evident 

morphological aspect is that the term to the second member of equality is 

obtained from the first member by exchanging the indeterminates.  

THE TEACHER’S PRACTICE 

The first author participates from a long time to research activities of the Local 

Unit of Research in Mathematics Education of Parma University managed by 

the second author. The possibility of teaching mathematics to the same pupils, 

following them in all the grades of primary school, favours her choice of a long-

term didactical project. Now (2012) she is teaching in grade 4. In grade 1 she 

followed a teaching project borrowed from Hejný et al. (2006), based on the 

semantic environment ‘Father Woodland’.  

The Czech authors suggest that this environment is useful for the first step 
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6
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Figure 2 A protocol of a 

1
st
 grader in a true – 

false task 

 

towards algebraic topics such as pre-concept of 

equations, conceptual thinking in pupils not only at the 

elementary level, solving methods of linear equations, 

solving of Diophantine equation. Some results of such a 

practice have been presented in Hejný et al. (2009), 

Marchini & Back (2010), Jirotková et al. (2011). In 

Rossella’s today experience, 4
th
 graders recall their 

learning produced by the means of this semantic 

environment. In this environment, commutative property 

of the addition is an ‘en act’ theorem since it is 

(obviously) true in it. 

The structural properties of arithmetic and relational 

thinking in the meaning of Molina et al. (2007) were 

always present in Rossella’s teaching. An instance of 

that is evident in Figure 2, in which there are examples 

and counterexamples of transitive and commutative properties of addition, 

together with neutral element and reflexive property of equality. Therefore, her 

pupils are always ‘exposed’ to the commutative property of operations. In the 

previous grades she presented the verbal statement expressing this property, 

commenting suitable equalities.  

THE RESEARCH: AIMS AND METHODOLOGY  

This research aims to assess whether a constant care of the theoretical thinking 

favours the process of generalization in arithmetic. More specifically, we want 

to detect if pupils not only remember the statement, but are able to handle 

generalization and in which form. In particular we are interested to the pupils’ 

use of a suitable language and to their management ‘direct’ and ‘inverse’ 

problems related with generalization. 

We can define the teacher’s actions as ‘yeast’ methodology. Rossella very often 

presents open questions to pupils leaving them to discuss freely the topics. In 

particular, for this research she asked what they know or remember about the 

commutative property of addition. The discussion was presented in different 

days and the pupils’ contributions were recorded by writing each pupil’s 

statement on a poster (110 cm × 70 cm) put up on the wall, waiting for the 

‘rising’ of the topic. This ‘yeast’ methodology increases the class learning since 

the intuitions of brightest children (the yeast) are shared among all and each 

motivated pupil can learn with her/his time of attention. 

This didactical methodology is suitable for the research, since these written 

posters are valid tools for understanding the overall dynamics of the activity, 

even if the diachronic dimension lacks.  
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THE MINUTES 

This non-‘ordinary’ presentation of the research results can help the reader to 

follow up on the appearance of different way of generalization taking part in the 

class dynamics. In the minutes we tried to reproduce the children’s speaking 

style; in them we can ‘listen’ echoes of the previous teaching/learning activities, 

but we focus our comments only on the commutative property. The children’s 

names are not the real ones, but their statements are reported accurately. We 

comment, in round brackets, on some statements, by presenting our 

interpretation in italic; letters in square brackets refer to the theoretical 

framework.  

The teacher’ question: what the commutative property of addition is?  

1 Max: 24+35 = 35+24 – Max is not able to express this property verbally, but 
he is able to do that (‘en act’ knowledge or Primitive Knowing of[g]: 
possibly [b], but also the use of numbers as icons [e]) . 

2 Omer: Changing the order of addends the sum doesn’t change (verbal 
generalization in rhetoric style, or simply, remembrance of 
a teacher’s statement).  

3 Fabio: Addends can be two or more. (verbal generalization in rhetoric style 
by extending the property from two to many addends [f]).  

The Fabio’s statement diverted the children’s attention to an unexpected 

combinatorial problem. Teacher did not intervene: it is an occasion, a new 

‘yeast’, to catch what can be retaken in another time.  

4 Gino: Commutativity is also for multiplication. (verbal generalization in 
rhetoric style by extending the property to another operation [f]; ‘en 
act’ knowledge or possible individuation of a common pattern [b] 
and Property noticing of [g]).  

5 Axel: Addends or factors must be different can be two or more. (This 
statement, connecting addition and multiplication, looks strange and 
wrong, but it is motivated by a linguistic reflection focusing on the 
fact that the commutative property with equal addends or factors 
cannot be distinguished from reflexive property of equality, violating 
the pattern [b] on the basis of a didactical contract that different 
writings imply different things – a morphologic point of view).  

6 Carla: Commutativity can be made also with letters: A+B = B+A; C+D+E = 
E+D+C = D+E+C = E+C+D =…(verbal generalization with the use 
of letters. We can consider the girl’s assertion as an example of 
generalization by a formalization having sprung from a pattern [b] 
or an Observing of [g]. Our feeling is that letters are not variables, 
but they are icons [e] and the girl wants to introduce an arithmetic 
among them. In every case this generalization goes from numbers to 
letters as an ‘inverse’ problem [c]. The second statement could be 
the formalization, or a translation of (3), by extending the property 
from two to many addends. We think that she is able to produce 
formalization [g]. The last equality sign looks like a thinking pause. 
Carla’s combinatorial thinking does not follow a unique pattern: the 
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first writing is in alphabetic ordering. The second ‘E+D+C’ is 
obtained from the first by ‘specular reflection’, the same pattern as 
B+A from A+B [b]. The other two expressions are obtained applying 
other strategies).  

7 Dante: There are six ways since with each letter I have two combinations = 
C+E+D = D+C+E (Dante’s statement concludes the combinatorial 
thinking of Carla in the case of three letters, even if the translation 
of his statement should be e.g. C+D+E = C+E+D, fixing one letter 
and exchanging the remaining two. It is a case of Structuring of [g]. 
The term ‘combination’ instead of ‘permutation’ is not 
mathematically correct. The self-confidence of Dante in the 
individuation of the exact number of permutation is remarkable in 
grade 4. These expressions are obtained by following a 
combinatorial scheme [b] and by detecting of the lacking cases in 
Carla’s statements).  

8 Luce: 3×2 = 6 (Luce resumes in a numeric formula the previous proposals of 
her classmates. Her presentation is not merely a list or 
a computation of the number of permutation, but she shows 
a combinatorial intuition, i.e. Inventising of [g]. Her change of 
language is relevant: from description – counting from a list of 
Carla and Davide, to a normative language with the change of 
operation. The presence of a multiplication instead of an 
enumeration can be considered a change of semiotic register which 
is coupled with a generalization as in [a]).  

9 Lia: As many letters there are, as many conbinations there are. (Property 
Noticing of [g]. She writes with spelling mistakes noticing that the 
number of permutations is an increasing function of the number of 
letters involved in permutations).  

10 Fabio: It is enough to discover how many combinations we have with the 
letter A: A+B+C+D; A+B+D+C; A+C+B+D; A+C+D+B; 
A+D+B+C; A+D+C+B (Fabio discovers the pattern [b], extending 
to four letters [f]. Here he presents only one case, the permutation 
starting with A, but his statement alludes that this isolated model, in 
reality, is in Hejný’s stage 4 [f], presenting the whole generalization 
suggested by his ordered thinking, via a pattern [b], showing 
a Structuring stage of [g]. Nevertheless, he needs the counting from 
a list procedure).  

11 Luce: Since there are 6 it is enough to make 6×4 = 24. (Luce recognizes the 
pattern of the solving procedure for the permutation problem, by 
using the ‘normative’ language as in (6) [a], without justification or 
proof. We could think that she is formalising Fabio’s suggestion. He 
did not state explicitly that there are six permutations holding fixed 
the first letter, but he hints at it. Luce is ready to translate the 
suggestion in a numerical statement. The result of this exchange 
looks like the generic model [f] for the number of permutations 
problem).  

a. Rossella: What happens with multiplication? (Teacher grasps Gino’s 
suggestion (4) for two reasons. The first is to lead again the 
discussion to the commutative property, leaving the combinatorial 
setting. The second is for asking pupils to generalize the 
commutativity to another structure and in this way to allow another 
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interpretation of the same condition expressed by (1) [f]. Her 
question mark is rhetoric and by it she mobilizes newly children’s 
attention to the main focus of the research).  

12 Kira: It is in the same way as with addition, but we make multiplication A∙B 
= B∙A; I use dot for avoiding confusion between the sign ‘×’ with 
a letter, as it appears on the pocket calculator (Kira shows an ‘en 
act’ knowledge the Primitive Knowledge of [g], but she does not 
return to a numerical example, since she expresses (4) directly in 
a formal way. It is a generalization by extension of the property to 
multiplication [f]. She faces the writing problem of the possible 
ambiguity of the sign ‘×’ even if the letter ‘x’ is not usual in Italian 
words).  

13 Omer: Dot is used in middle school.  

14 Luce: Factors can be two or more (This statement is a generalization by 
extension to multiplication parallel to (3)).  

15 Gino: Letters can be any number (This statement resumes the role of 
generalization by a first formalization [d] and direct problems of [c]. 
The presence of the linguistic universal quantifier ‘any’ is relevant. 
But Gino uses this quantifier in a semantic interpretation, not in 
a formal way).  

16 Luce: The letter can be a one-digit number or a many-digit number; e.g.: 
(Figure 3) (This example shows what Luce means. The letters are 
‘templates’ for whatever number, direct problems of [c]. In this way 
she is able to grasp the role of generic model [f] of the literal writing 
by giving examples of semantic interpretation. The arrow she uses 
denotes the ‘production’ from the formal writing to its 
interpretations. Compare with (6) in which Carla use the inverse 
direction: from numbers to letters).  

 

 

 

Figure 3 – Luce’s statement   Figure 4 – Dante’s statement 

17 Dante: I think that behind any letter there is a digit whether there are two 
letters, there is a two digits number. Equal letter, equal digit (Figure 
4). (Dante makes a wrong generalization and he misunderstands the 
commutative property of multiplication. The reason could be that the 
pupils made simple activities of cryptography for the learning of 
substitutions. He understood the morphological aspect of the 
commutative property, i.e. the pattern [b]; from that he produced a 
formalization on this base, but he is not aware of the relational 
aspect of the equality whose presence produces a statement. He 
shows mastery of variable treatment (Marchini, 2002), but the role 
of equality in the commutative property is completely 
misunderstood).  
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18 Dante: With the numbers, commutativity gives you the result, but with the 
letters you don’t have the result nor the value of numbers, thence 
you cannot calculate. (This second statement shows the abridged 
passage from isolated model given from experience of computation 
to generic model [f] given by formalization [d]. Dante is feeling 
a strong necessity to connect his experience with numbers. We can 
consider him as a semantic thinker in the Property Noticing stage of 
[g]).  

19 Luce: I don’t take interest in the number hidden behind A, but I am interested 
in the procedure. (Luce is in another developmental state: her 
interventions, generally, show a structural understanding [g]. She is 
speaking of a ‘procedure’, but without numbers, there is not 
a procedure to be performed neither a computation algorithm; her 
interest is in the structure of the arithmetic [f]. She is anticipating 
a more ripe structural thinking).  

20  Carla: If I must explain the commutative property I would take interest in 
what I am performing (Carla in (6) introduced letters, but by 
comparing interventions (20) and (6) it is evident that she is able to 
formalize [g], but not to generalize).  

21 Omer: The use of letters is senseless, because you have not the result (Omer 
resists the change. He knows generalization by heart (2), but he is 
not able to put his statement into a formal writing).  

22 Luce: The use of letters is meaningful every time when I am concerned with 
the procedure; whenever my concern is about the letter value I must 
use number as if we have to solve a problem and we call x a number. 
(Luce states clearly the difference between the use of letters as 
unknown in problem solving and the use of letters as indeterminates 
in the definition of structures [f]. As in (19), ‘procedure’ is structure. 
From logical point of view she looks sensitive to the difference 
between an existential quantifier – the existence of solution in a 
problem – and the universal quantifiers - involved in the statements 
of a formal property of addition and multiplication. In this case she 
works syntactically).  

b) Rossella: What do you mean with ‘any number’? (Teacher retakes (17))  

23 Luce: All the numbers. (This statement could be misunderstood: small or big 
number or other kind of numbers, i.e. [f]? The girl’s classmates 
interpret her thinking).  

24 Gino: With natural numbers 10+20 = 20 + 10  :  10×20 = 20×10.  

25 Dante: With integer numbers -1 + (-14) = -14 + (-1)  ;  -1×(-14) = (-14)×(-1) 
(This statement extends the arithmetical structure to integers number 
in a form of generalization of monoidal structure of arithmetic to the 
ring structure of Z. It is worth noticing that at the moment in which 
this discussion took place, pupils have known relative integer 
numbers as magnitudes - the winter temperature – and only addition 
was introduced among them. The ‘force’ of the structure suggested 
them to consider also multiplication, [f] and [g]).  

26 Fabio: With numbers with comma 5,06+7,03+10,05 = 10,05+5,06+7,03   
6,7×3,5 = 3,5×6,7 (In this case, addition and multiplication were 
well known. Therefore, we can consider this statement as an 
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example of ‘en act’ knowledge or Property Noticing of [g]. Remark 
that in Italy the ‘comma’ is used instead of Anglo-american ‘point’ 
for separating the integer part from the decimal one).  

27 Dante: With squared numbers 16 + 25 + 36 = 36 + 16 + 25.  

28 Luce: With number with powers 1
2
 + 4

2
 + 10

2
 = 10

2
 + 4

2
 +  1

2
    

2
2
+3

4
+5

0
+7

3
=3

4
+7

3
+5

0
+2

2 
   7

3
 × 4

4
 = 4

4
 × 7

3
.  

29 Fabio: With fractions 3/5 + 4/10 = 4/10 + 3/5    2/5 × 7/10 = 7/10 × 2/5  
(31/40 × ¾ = 93/ ) (Fabio presents an attempt of computation) .  

These proposals (23 – 29) can be interpreted as the children’s search of models 

for the ‘abelian’ theory, among the interpretation they know. In a certain sense it 

is a ‘validity’ proof of the commutative property in logical meaning. 

30 Dante and Kira: For explaining commutative property it is sufficient to say 
A+B = B+A  A×B = B×A. But for using commutative or for 
facilitating computation or for checking computation WE USE 
NUMBERS. (Dante is repeating (18); Kira shows the same 
cognitive style as her classmate).  

31 Dante: Instead of letters we can use symbols. In this case A×C = C×A is 
equal to §×* = *×§. (In this intervention Dante suggests to use icons 
[e] instead of variables).  

CONCLUSION 

With this work we tried to show that most pupils involved in the class debate 

attained generalization of the several meanings presented in the theoretical 

framework. Some of these pupils were able to handle this mental activity using 

a suitable language and direct and inverse procedures related with 

generalization. Therefore, we can positively assess the long-term teacher’s 

activity. 

The developmental levels were not the same for all pupils. One of the last levels 

in the ‘onion model’ of [g] and the Stage of universal model of [f] were 

approached with high similarity by Luce’s interventions, although with some 

exceptions. Pupils whose arguments presented aspects of generalization showed 

that they accomplished this mental activity in different ways with some 

awkwardness. 

Less than half of the class participated in this debate. Is this a success? Can we 

assume that the long-term teaching activity gave pupils sensitivity towards 

theoretical thinking? We are convinced that generalization and the consequent 

management of the general concepts are possible in grade 4, but not that every 

pupil is ready for this important step. There are relevant intuitions that can be 

followed and exploited by the teacher for improving children’s understanding. 

The long-term teaching project can be evaluated as fruitful if we consider 

important that a fairly high number of children has approached such a complex 

topic. In fact, a teacher’s task should be to avoid mortification of clever pupils.  
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ASPECTS OF GENERALIZATION IN EARLY ALGEBRA 

 

Annalisa Cusi, Giancarlo Navarra 

GREM Università di Modena e Reggio Emilia, Italy 

 

In this paper we will present some studies we have recently developed in our 

research project in the theoretical framework of early algebra. We will illustrate 

a first “inventory” of those conditions which might foster the construction of 

significant basis to support young students’ gradual approach to generalization 

from different points of view (linguistic, perceptive, social and mathematical). 

INTRODUCTION: GENERALIZATION AND EARLY ALGEBRA 

Traditionally, most curricula separate the study of arithmetic, mainly taught in 

primary school, from the study of algebra, considered to be suitable for 

secondary school students. However, many researches have shown the negative 

effects of a too quick transition from arithmetic to symbolic manipulation. 

Warren et al. (2006), for example, suggest that algebraic activity can occur at an 

earlier age and that this kind of experiences, proposed through appropriate 

teacher actions, could assist students in this complex transition. Blanton and 

Kaput (2011), too, stressed the importance of giving children opportunities to 

begin using symbolic representations as early as first grade in order to make 

them acquire those basic concepts which can allow them easily explore more 

complex concepts in later grades. These ideas have brought to the rise of early 

algebra, which now has the characteristics of a real new discipline (Kaput et Al. 

2007). This is the frame in which we have developed our ArAl Project (Malara 

& Navarra, 2003)
 7
. 

The hypothesis of early algebra is that the common “arithmetic to algebra” 

framework is too limiting and narrow (Smith & Thompson, 2007) and that 

therefore it should be reformulated in order to give students the opportunity to 

develop algebraic thought when they start carrying out the first activities in 

arithmetic. This approach does not require to bring the algebraic curriculum in 

primary school, but to revise the way in which arithmetic is conceived and 

taught in order to promote a shift from a procedural conception of arithmetic to 

a relational and structural one. We believe that it is also necessary to clarify 

what is the meaning of promoting the development of algebraic thinking at this 

level. We agree with Radford (2011), according to whom the use of notations is 

neither a necessary nor a sufficient condition for thinking algebraically and that 

algebraic thinking is characterised by the specific manner in which it attends to 

                                                 
7
 ArAl Project (Arithmetic pathways towards favouring pre-algebraic thinking) is a National Project developed 

by the GREM (Group for Research in Mathematics Education) directed by N. A. Malara (professor in the 

Mathematics Department of Modena and Reggio Emilia University) and coordinated by G. Navarra. 
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the objects of discourse. The author suggests that algebraic thinking is about 

dealing with indeterminate quantities conceived of in analytic ways (i.e. 

considering the indeterminate quantities as if they were known and carry out 

calculations with them as with known numbers). 

Fostering the teaching of early algebra means, for teachers, giving their students 

the opportunity to activate different modes of thinking such as: analyzing 

relationships between quantities, predicting, generalizing, exploring stimulating 

situations, modelling, justifying, proving. 

Generalization is considered to be an important determiner of growth in 

algebraic thinking and a fundamental preparation for later learning of algebra 

(Cooper and Warren, 2011). A rich context from the point of view of the 

different meanings that could be conveyed through it, and therefore potentially 

suitable to stimulating generalization processes, is represented by activities 

related to the research of regularities (see paragraph D2). During this kind of 

activities students have the possibility to experiment a crucial aspect in the 

generalization processes: seeing a generality through the particular and seeing 

the particular in the general (Mason, 1996). Cooper and Warren (2011) suggest 

that, during these activities, a step towards full generalization in natural 

language and algebraic notation is quasi-generalization, in where students are 

able to express the generalisation in terms of specific numbers and can apply 

a generalisation to many numbers, and even to an example of ‘any number’. 

In the approach to early algebra teachers play a crucial role in identifying the 

best activities to be performed and in promoting those processes which foster 

generalization. Obviously their way of proposing these activities in their classes 

is strictly connected to their deep beliefs, which have been highlighted thanks to 

our analysis of the numerous transcripts (about 4500, collected from 2004 and 

2011) of the activities performed in our project. These transcripts were object of 

a joint reflection carried out by teachers and researchers through the 

Multicommented Transcripts Methodology (MTM)
8.
 Some reflections on 

methodological aspects recur independently of the age of students (from 5 to 

15); therefore they can be considered mirrors of the most widespread behaviours 

of teachers. The high number of reflections referred to generalization from 

different points of view suggested us to identify a tentative but enough detailed 

“inventory” that we will present in the second part of the paper. Before 

proposing this inventory it is necessary to introduce some theoretical aspects 

which constitute our framework for the approach to early algebra, with 

particular reference to the aspects related to generalization processes. 

                                                 
8
 The MTM, developed in the ArAl Project, is based on the critical analysis of transcripts of the audio-recordings 

of whole-class discussions, carried out by the teachers involved in the Project, through the intervention of 

different actors: the class teacher, his/her E-tutor, other teachers, teachers-researchers and university researchers. 

The commented transcripts are shared through E-mail and during  periodical meetings for a critical exchange. 
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OUR APPROACH TO EARLY ALGEBRA 

Our perspective in the approach to early algebra is a linguistic and 

metacognitive one and is based on the hypothesis that there is a strong analogy 

between modalities of learning natural language and algebraic language (Cusi, 

Malara and Navarra 2011). In order to explain this point of view, we make use 

of the metaphor of algebraic babbling. 

This metaphor represents the process through which the student acquires first 

a semantic, then a syntactic control of the mathematical language in a way 

similar to the one he/she learns natural language. This learning is first 

characterized by an initial discovery of meanings and a gradual, creative 

appropriation of rules and by a subsequent deeper knowledge, developed during 

the school years, when the student is able to reflect upon the structure of the 

language. 

Fostering this process requires to build up an environment able to stimulate the 

autonomous elaboration of formal codings, to be negotiated through class 

discussions, and a gradual experimental appropriation of algebra as a new 

language. The rules of this language are then located into a didactical contract, 

which tolerates initial moments of syntactic ‘promiscuousness’. 

Another fundamental aspect in our approach to early algebra is therefore 

recognizing the potential role played by the relationship between argumentation 

and generalization in the social construction of knowledge. Only when 

argumentation becomes a shared cultural instrument in the class this relationship 

can be made explicit and the students can understand the role played by 

verbalization in the development of their capability of reflecting upon what they 

are saying. Moreover, comparing particular cases help students recognize their 

similarities, gradually highlighting their connecting thread. 

Another crucial aspect in this approach to early algebra is helping students 

recognize and interpret canonical and non-canonical representations of 

numbers
9
 in order to make them build up the semantic basis for the 

understanding of algebraic expressions. Non canonical representations can be 

considered “semantical ferries” towards generalization (see paragraph A2). 

Because of the central role played by verbalization in supporting the 

achievement of symbolic notation, another critical aspect is making students 

understand the importance of respecting the rules of algebraic language. 

While students start soon interiorizing the importance of respecting the natural 

language’s rules in order to facilitate communication, it is difficult to make them 

develop a similar awareness in relation to algebraic language. It is therefore 

                                                 
9
 Among the possible representations of a number, one (for instance 12) is its name, called canonical form, all 

the others (3×4, (2+2)×3, 36/3, 10+2, …) are its non-canonical forms, and each of them will make sense in 

relation to the context and the underlying process. 
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necessary to help them understand that algebraic language, too, is a finite set of 

arbitrary symbols which can be combined according to specific rules to be 

respected. This kind of conception could be fostered through the creation of 

linguistic mediators which force the respect of rules in communicating even 

advanced concepts by means of algebraic language, in a perspective which 

foster generalization
10

. 

FACTORS WHICH CONTRIBUTE IN STUDENTS’ CONSTRUCTION 

OF THE SEMANTICAL BASIS FOR GENERALIZATION 

As researchers who develop their studies in the field of early algebra, having to 

face the theme of this volume (Generalization in mathematics at all educational 

levels) made us try to identify what kind of situations, methodologies and 

attitudes could foster, in young students, the construction of the significant 

premises for a gradual approach to generalization in order to help them 

overcome the difficulties they will have to face in later grades. In the following 

we will present a first ‘inventory’ of the situations we have identified, 

subdivided according to the ambits they refer to: linguistic, perceptive, social, 

mathematical. 

A1. Generalization and language: the role of argumentation 

The students of a class (11 years old), who are used to argumentation, are exploring 

a growing pattern, whose components are called ‘pyramids’, with the aim of 

identifying general laws to connect the characteristics of every pyramid (the total 

number of triangles it contains, the number of rows, the number of white 

triangles…) with its position in the pattern. 

 
          1            2               3                    4                … 

When the class is working to find a general law to determine the number of black 

triangles in the row which constituted the base of every pyramid, a student (Y.) 

observes: “On the line where the pyramids lie … for example, in the fourth pyramid 

the black triangles are four and the white are three … my pyramid of six floors has 

six black triangles and five white triangles on its base… The white (triangles) are 

always one less than the blak ones. Maybe a pyramid with any number of floors has 

a number of black triangles on its base which is equal to the number of floors and 

as many white triangles as the black ones minus one”. The teacher of the class 

proposed this reflection as a comment to the transcript: “Before her intervention, Y. 

wasn’t aware of her conclusions but, as she was verbalizing, she started deducing 

and expressing the general rule”. 

                                                 
10

 In the ArAl Project, as a linguistic mediator, we use Brioshi, a virtual Japanese student who doesn’t speak the 

Italian language but knows how to express himself using a correct mathematical language. Brioshi is an 

algebraic pen friend with whom students communicate using mathematical sentences which should be written 

through a correct application of syntactical rules in order to be understandable (Malara e Navarra, 2001).  
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This example highlights the fundamental role played by the relationship between 

argumentation and generalization in the social construction of knowledge. This 

relationship can be made explicit only when argumentation becomes a shared 

tool for the teacher and the students: every component of the class has to get 

involved in this process and has to relate him/herself with the ways in which the 

other components get involved. This means that the students must take the 

responsibility for their learning and that the teacher must take the responsibility 

for fostering students’ social construction of their knowledge. 

We could say that the power of argumentation is related to the fact that those 

who start developing it are not completely aware of their ideas before they try to 

express them. As argumentation becomes an habit, the student understands its 

value and becomes aware of its role in comparing facts and in making their 

similarities gradually emerge, together with their connecting thread. 

A2. Generalization and language: the potential general 

Through the activity called ‘pyramids of numbers’ (the sum of every couple of 

numbers written on two adjacent bricks is equal to the number on the brick over 

them), the teacher guides students toward the identification of the law which 

expresses how to determine, without any calculation, the number written on the 

brick at the top of a three-floors pyramid as a function of the numbers written on the 

three bricks on the basis of the same pyramid. 

         20      7+4×2+5  

       11 9    7+4 4+5  

 7 4 5  7 4 5  7 4 5 

               Fig.2a               Fig.2b        Fig.2c 

The classical method of completion (Fig.2b) is not enough in order to determine 

the required law because it leads to an ‘inexpressive’ result (in this case 20). The 

non-canonical representations (Fig.2c), instead, allow the construction of what 

we call a relational-ontological representation of the number at the top of the 

pyramid, i.e. the representation which constitutes the best explicitation of the 

general law “The number at the top is the sum of the two side numbers and the 

double of the middle one”. The next step to be carried out is the translation of 

the equality 20=7+4×2+5 into natural language. The final step for students is 

becoming aware that this sentence, expressed in natural language, constitutes a 

potential general through which it is possible to carry out a further conversion 

into algebraic language: n=a+2b+c. We think that the first, epistemological, 

source of difficulties associated with the use of letters in mathematics, is related 

to the capability of conceiving a letter as a number. This aspect could represent 

an insurmountable barrier to algebraic language and generalization. 

The concept of potential general could be related to the notions of quasi-

variable (Fuji and Stephens 2001) and quasi-generalization (Cooper and 

Warren, 2011) as possible bridges between arithmetic and algebra for students 
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from 6 to 14 years old. This observation leads to the introduction of another 

theoretical construct, essential in the construction of the necessary conceptual 

and methodological premises in an effective approach to generalization. 

A3. Generalization and language: the pupil as thought producer  

The ‘law’ identified in the previous example of the bricks pyramid is: “The 

number on the top is the sum of the two side numbers and the double of the 

middle one”. This conclusion represents an important moment of condensation 

in the evolution of algebraic babbling. The pupils have been guided towards the 

collective construction of a general, though improvable, definition and have 

formulated its explicitation. They were protagonists as producers of ‘original’ 

mathematical thought: it means that they were able to express with a clear and 

synthetic language what they have understood and what they have said in public. 

Traditionally, however, the teacher is the one who mediates between the topical 

moments of institutional mathematical thinking (principles, theorems, 

properties, etc.) and their application; in these cases the pupils are mainly re-

producers of a theory, to the organisation of which they are basically strangers. 

On the contrary, it is very important that pupils are educated – through forms of 

collective exploration of thought-provoking problematic situations – in 

producing, in the natural language, general conclusions to be shared with the 

classmates and the teacher, organising them in a coherent and communicable 

way, as an intermediate step towards a later translation into mathematical 

language. 

B. Generalization and perception 

Perception, i.e. the psychic process operating a synthesis of sensory data into 

meaningful forms, developed in a socio-costructivistic context, allows to create 

meaningful premises to the approach to generalization. If, for example, one is 

asked to express his/her calculation strategies in order to find out the number of 

pearls contained in this necklace: 

 

 

 

two different perceptions arise, which lead to two different representations of the 

counting strategies (on this aspect, see also paragraph D1): (a) visualising the 

black and the white pearls separately leads to the representation 2×9+3×9; (b) 

‘concentrating’ on the pattern leads to (2+3)×9. We interpret the dynamics of the 

situation in the classroom through the following model: 
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If an (a) or a (b) pupil were alone, he/she would limit him/herself to his/her 

personal mental model and to its consequent external representation, because he 

would not be motivated towards searching for other interpretations, and 

therefore counting modes. A didactic contract based onto collective 

argumentation, on the contrary, promotes the sharing of knowledge: each pupil 

compares his/her representation with the other one and discovers that his/her 

way of ‘seeing’ the necklace is not the only one. The result is therefore 

a feedback that influences the internal representations and the new way in which 

the necklace structure can be perceived. The social construction of knowledge 

promotes the evolution of thought towards a shared conquering of new 

meanings. Overcoming the initial difficulty of integrating the other’s vision is 

the first step towards the understanding of the equivalence of the 

representations:  2×9+3×9=(2+3)×9. This shall lead to the development of the 

general meaning of the equality a×c+b×c=(a+b)×c and therefore to the 

understanding of the distributive property (Malara & Navarra, 2009). 

C. Generalisation and conceptualisation: the conceptual condensation  

The class (10-years-old) is exploring the behaviour of a scales, seen as a metaphor 
of first grade equations at one unknown quantity. 

Teacher: Let’s describe the situation. 

Jacopo: On the right hand side there was baking soda and 100 grams. On the 
left hand side there were three glasses of baking soda. 

Teacher: And what are we aiming at? 

Jacopo: We want to find out how much a glass of baking soda weights. 

Teacher: Ok. So what have we done, Matteo? 

Matteo: We have removed a glass from both sides, then we have divided by 
two the content of both dishes. So now we have a glass of baking 
soda on the left and 50 grams on the right. A glass weights 50 grams.  

We refer to the transition from the dynamic phase of concrete, generative 

activities, which characterize the pupils’ educational path particularly in the first 

eight years of schooling, to a phase in which the teacher promotes the 

condensation into knowledge of the mathematical concepts underlying the 

activities. The one in the example is meant to promote the need to spot out the 

principles of equivalence as tools to represent the experiences carried out. These 
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new concepts shall then be linked to knowledge concerning operations on 

natural and relative numbers, to the properties, to the use of letters, to the 

meaning of ‘equal to’. By reflecting onto the experiences carried out, the pupils 

are guided towards the identification of general principles that allow to solve 

other, structurally similar situations. A weak leading in this transition phase does 

not allow – and sometimes inhibits – the progressive approach to generalization, 

since the pupils shall keep operating at a concrete level, without working out any 

theory. 

D1. Generalisation and foundational mathematical aspects: the evolution of 

counting strategies 

During our cooperation between Italian classes of the ArAl project and English 

classes (pupils aged 9 to 15) we presented the following situation:  

This drawing represents a structure made of toothpicks.  

Count the number of toothpicks and explain in the 

mathematical language your counting strategy. It doesn’t matter 

to determine the number of toothpicks.   

With the Italian pupils (13 years old) we discussed the strategies produced by 

the English pupils (15 years old): (i) 5+5×11; (ii) 3×(3×5+1)+6+6; (iii) 

5×4+5×4×2. We asked them to interpret these strategies so as to make clear the 

meaning of these expressions. The evident result was that each counting strategy 

reflected the way in which the groups had perceived the structure of the 

construction (see paragraph B). For instance: the Italian pupils explained that the 

members of the group (i) had seen the five pillars as ‘combs’, and they had then 

added the last five vertical toothpicks. Free to count, the pupils discovered many 

alternative strategies, some of which were more ‘economical’ than others. When 

they were guided in comparing the expressions, they found out equivalences 

through proves, e.g. for (i) and (iii): 

5+5×11=5×4+5×4×2  5×1+5×11=5×4+5×8  5×(1+11)=5×(4+8)  5×12=5×12 

Starting from this activity, generalization arises as soon as the static situation is 

transformed into a dynamic one, that is in the moment in which students begin to 

explore how the counting strategies change in relation to the changing of the 

square’s dimensions, and they are asked to say if it is possible to find out a ‘law’ 

that allows to determine the number of toothpicks that are necessary to build 

a given shape. The pupils discover that it is better to organize an in-order 

research, for instance through a display of  drawings of the following kind: 

       … 

      1       2           3               4    5 
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The pupils are guided to activate a common counting strategy which express the 

interrelation between the number of toothpicks and the number of the place of 

the corresponding square and which can be expressed through a formal 

representation of the number of toothpicks of a construction, at the generic place 

n. In this way, they can identify the structures that allow to express the relations 

connecting the numbers in play in a given problematic situation, i.e. its 

structure. In this case (if n is the number expressing the position and s is the 

corresponding number of toothpicks) they write, for instance, s=2n(n+1). If the 

teacher concentrates mainly on the calculus processes, neglecting the reflection 

on them, she prevents the pupils from going through the experience that is 

necessary to the process of generalization and to the conceptualisation of 

arithmetical structures. 

D2. Generalization and foundational mathematical aspects: the progressive 

achievement of the concept of structural analogy 

Rosa (kindergarden - 5 years old) is comparing cardboard ‘trains’, the carriages of 
which contain objects set in a precise order. She is concentrating on two of them. 

Teacher: Why are you looking at those two particular trains? What do they contain? 

Rosa: Here is a red, a red and a yellow. 

Teacher: Yes, they are Duplo bricks. And what have you got in this one? 

Rosa: A walnut, a walnut, a sunflower and it goes on so. 

Teacher: So what? 

Rosa: They are almost the same. 

In this example, Rosa is doing algebra, since she finds out in a naive way the 

structural analogy between the two trains. Right from kindergarten or primary 

school, pupils can be allowed to recognize relationships between the elements of 

a sequence and their place number. They discover analogies (in this case, 

between two train structures), describe them with words and represent them with 

a code (e.g.: AAB), thus approaching a germ of formalised language, and 

therefore generalization. The common construction of the code, developed at the 

stage allowed by the pupils age, hence represents the collective result of a 

relational reading of the situation, in which the attention is concentrated not on 

its elements, but rather on the relationships that connect them. Being able to spot 

out such correspondences between different situations allows the development 

of analogical thought. Kindergarten constitutes the first step of this process, 

within a logic of continuity with primary school, where these germs of thought 

shall gradually ripen along the following school grades, through the exploration 

of a kind of arithmetic built up in the perspective of the development of 

algebraic thinking, hence towards a more mature generalization and a more 

advanced kind of abstraction. 
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CONCLUSION 

What we have described shows educational aspects that we believe should be 

constantly strengthened, since they support the process towards generalization, 

promoting in the pupils metalinguistic and metacognitive aspects, and 

consequently reflection: (A) on language: the ability to construct 

argumentations, to translate from natural into algebraic language, to produce 

original thought; (B) on the relationships between perception and the social 

construction of shared knowledge; (C) on passing from concrete generative 

situations to the construction of concepts (conceptual condensation); (D) on 

some foundational mathematical aspects: the evolution of counting strategies 

and the progressive attainment of the concept of structural analogy. 
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This article has two objectives: first, to present some preliminary results of our 

research in which we focus on mapping young pupils’ cognitive processes in 

geometry and on the process of knowledge transfer from an individual pupil to 

a group, i.e. on cognitive osmosis. The second objective is to demonstrate 

through own practice and experience how conducting experiments and engaging 

in their deep analysis can be an effective tool for the development of a teacher’s 

professional competences. The tool selected for the experiment is a set of 

geometrical problems from the learning environment of Cube buildings, 

involving 3D shapes and their 2D representations.  

INTRODUCTION 

The educational process is determined by various factors. In one of the 

universally known models, the relationship between a) the pupil, their learning 

and their development, b) the teacher and their professional endowment and c) 

the subject content is expressed by the model of a didactic triangle. The 

importance that has been assigned to the different parts of this didactic triangle, 

has varied throughout the past.  

T. Janík in (2009) writes that “There are numerous didactic transformations, 

transpositions or reconstructions taking place between the vertices of the 

didactic triangle. These are the subject of specific subject didactics.... It has 

become apparent that teacher’s didactic content knowledge is a prerequisite for 

a well mastered didactical transformation.” Lately, the notion of teacher’s 

pedagogical beliefs and their role in the individual teaching style of a teacher 

has become a frequent subject in mathematical education research. The teacher’s 

belief develops and grows more mature the longer he/she teaches. It is formed 

by his/her education, life style, demands of the society, it reflects the 

opportunities of life-long education and many other circumstances (Hejný, 

Kuřina, 2009). 

Important prerequisites for a change in pedagogical belief system and for the 

shift towards a development of a constructivism-oriented teaching style are 

a need for self-improvement and the availability of adequate tools. 

Based on our experience, conducting classroom experiments with pupils or 

students, reflecting on such experiments and analyzing them not only from the 

perspective of an independent researcher but also that of a participant, form 
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a very effective tool for teacher self-education. For that reason, one of the 

authors of this paper took up an offer to teach mathematics at the first year of 

primary school to complement her teaching contract at the faculty of education 

in primary school education. Thus a longitudinal action research was started that 

has been initially set for the period of five years, with the possibility of a 4 year 

extension. This presents an opportunity to collect a significant amount of 

valuable data. The outcomes of day to day analysis and reflection on the 

observed classroom situations are being regularly used to modify the subsequent 

teaching plans and strategies with the ultimate goal of centering the class 

activities around students. The data collected in experiments prompted by 

unforeseen situations is being collected and in the future will be subjected to 

thorough analysis. This work will form the basis for the dissertation of the first 

of the authors. 

METHODOLOGY 

The first author in the role of a teacher-researcher started teaching mathematics 

4-5 times a week in the first grade of a primary school in Prague on the 1
st
 

September 2010. The teaching content is given by the School Educational 

Program (SEP). A rough draft of a lesson plan is usually prepared by the 

teacher-researcher for the whole week and a detailed lesson scenario is done for 

each upcoming lesson. Each lesson is videotaped and the elaboration of 

a detailed scenario for the following lesson is based on reflection upon viewing 

the video recording. In the scenario much attention is paid to differentiated 

approach to pupils. 

The participants in this research are all pupils attending the class. There was no 

initial selection. There were 25 pupils in this class on the 1
st
 September, out of 

whom 18 currently attend classes on a regular basis, there are 10 girls and 8 

boys. 

The following research documents are being collected and compiled: framework 

weekly program, detailed updated protocol for every lesson, video recording of 

each lesson, transcripts of selected video recordings, pupils’ written production, 

including individual work, pair work and whole class work. A teaching journal 

is kept to record the first reflection based purely on the teacher-researcher own 

daily observations. Once a week a second reflection is done based on the week’s 

video recordings. In this reflection stage, some interesting phenomena are 

identified, and relevant samples from the video recordings are transcribed, 

formatted and archived. The reflection is also guided by feedback from 

colleagues and students who observed the lesson. This “external reflection” is 

also documented.  

Whenever necessary a further analysis of selected video segments is conducted 

in cooperation with one of my more experienced colleagues – experts. The 

theoretical framework for this analysis is specifically Hejný’s Theory of generic 
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models (Hejný, 2011a). This analysis usually results in an elaboration of 

a further partial experiment or a series of experiments with the potential to 

further reveal a particular phenomenon.  

The teaching is guided by the principles of constructivist approach to teaching 

and focuses on the building of schemata as understood in the didactic framework 

of scheme-oriented education (Hejný, 2007; Hejný, 2011 a, b). This approach is 

supported by the use of the textbook authored by M. Hejný et al. The pupils 

work in many different learning environments, both arithmetic and geometric, 

e.g. Stepping (Slezáková, 2007; Jirotková, 2011), Bus (Hejný, Jirotková 

2009a, b), Additive Triangles, Neighbours (Hejný 2007), Wooden Sticks, Paper 

folding, Parquets (Hejný, Jirotková, 2010), Cube Nets (Hejný, Jirotková, 2007; 

Jirotková, 2010), ...  

One of the learning environments significantly contributing to development of 

spatial imagination is the learning environment Cube Buildings (Jirotková, 

2010). Work with a set of cubes has been incorporated to class work on a regular 

basis since the beginning of the first year. The concept cube building is not 

explicitly defined for pupils but by many different activities (see Fig. 1. Task 1, 

2, 3, 4). This concept is pre-concept of geometrical solid. At the same time, it is 

included as a topic in various mandatory courses for students in primary 

education programs at the Faculty of education.  

THE FIRST EXPERIMENT 

In March 2011 an interesting phenomenon was observed in the pupil Vena (all 

pupils’ names have been changed). We decided to study this phenomenon and 

the subsequent lesson scenario was prepared in great detail. As a result, the first 

experiment here presented was carried out in two consecutive lessons. The 

experiment was conducted by the first author and so the I-statements here refer 

to her. 

In the introductory stage of the first lesson the pupils were working in groups of 

five and six. Each group had at their disposal an unlimited number of cubes and 

a square grid. The size of the squares in the grid corresponded to the size of the 

face of the cube. The pupils were given these oral instructions:  

Task 1.  

Construct a cube building using exactly four cubes and draw its plan into the square 

grid. Carry on with this activity and try to construct as many buildings as possible.  

The groups could work at their own pace. 

What is didactically important at this task? The task requires manipulative 

activity. Each cube building is a geometrical object, however, the whole set of 

solutions is a combinatorial object. The task thus connects two mathematical 

areas – geometry and combinatorics. When we look at the set of solutions as a 
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combinatorial object two questions are elicited: 1) Do I have all of them? 2) Are 

not two of them congruent? The second question brings our mind back to 

geometry. 

Vena (Ve) was working in a group with three girls. He took up the role of 

a coordinator. The girls were engaged in the building process and Vena was 

deciding which cube building should be recorded. After a moment, he reported 

that they were finished with the task. The following discussion (transcript min 

38:05 – 40:53) took place then: (Te means teacher) 

Te01: There’s still some time left. Look for other buildings. 

Ve01: But we have all of them. 

Te02: How many do you have? 

Sa01: One, two, three, four, five, six, seven, eight, nine, ten, eleven, 
twelve. And this one was constructed by me (pointing at one 
building). 

Ve02: Well, we have twelve of them and that’s all. 

Te03: I think that some other may still be built, what do you think?  

Vi01: I’ll try (constructing some buildings again but in a different 
position). 

Ve03: No, not this one. We already have it. It’s simply impossible. 

Te04: But your friends don’t believe you, look, perhaps they’ll manage.  

(Others take cubes into their hands and try to construct new buildings, Ve takes 
them out of their hands.) 

Ve04: But it’s really impossible! Really. 

Te05: Try to persuade them that it’s impossible. 

Ve05: Well, if I take from the tall one (pointing at the tower building a) the 
top cube, I must place it here next to it. And we already have that 
here (pointing at b). And if I take the top one here, then we can place 
it (still pointing at the building b) here (c), here (d), here (e), here (f) 
or here (g). And we already have all these here (pointing at c – g). 
And it’s the same in case of the lower ones (pointing at the rest of 
the buildings h – l).  

 

 

 

 a) b) c) d) e) f) g) 

 

 

 h) i) j) k) l) 

Figure 1: Cube buildings constructed out of four cubes. 
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Te06: So, what do you think? Is Vena right? 

St01:  I don’t understand him at all. 

Sa01: (Only watching Vena up to this point, holding one cube in her hand 
and moving it in space according to Vena’s explanation.) Yes, we 
won’t find any more. 

Te07: So, you’ll tell the rest of the class in the end of the lesson what 
you’ve just discovered, OK?  

The teacher-researcher tried to dissuade Vena from his conclusive statement 

(Te01, Te02, Te03). In the end she was able to guide him towards reasoning and 

justifying his conjecture. In (Ve05) the pupil described a strategy for 

constructions of all cube buildings out of four cubes. He spoke very quickly and 

he tried to tackle the difficulties of using geometrical terminology by frequent 

use of gestures and demonstrative pronouns. It was apparent that the rest of the 

pupils did not completely comprehend his explanation (St01). They tried to 

verify his conjecture by searching for new buildings. Perhaps only Sara (Sa01) 

was ready to accept Vena’s construct, i.e. his generic model (Hejný, 2011a) of 

strategy for constructing all cube buildings out of four cubes, and to take 

ownership of it. 

In the final stages of the lesson, each group presented their findings and the rest 

of the class was checking them. They found five, eight and twelve (ten, after the 

others corrected the result) buildings. Vena was the last one to be given the 

opportunity to speak and present his group’s findings. At the exact moment 

when he said: “We have built 12 constructions and there are no more possible,” 

the bell rang. Due to the noise, it was impossible to record precisely his 

explanation (why it is impossible). From his gestures we could infer that he was 

showing a way to exhaust all possibilities by sorting out the buildings by their 

height and constructing all buildings of the same height. We believe that Vena 

presented his strategy for constructing all cube buildings out of four cubes. 

This fact inspired further experimenting. The idea was to investigate the 

persistence of the generic model (the strategy) in Vena’s mind, his ability to 

modify it for another context and its transfer to other pupils; we call this latter 

process cognitive osmosis (Hejný, 2011a). In the next class, then, all children, 

with the exception of Vena, were given this task:  

Task 2. 

Take out exactly four cubes, not more than that. Construct a cube building from all 

of these cubes and draw its dotted plan into a square grid. Using the same cubes, 

construct another building and also draw it. Try to find as many buildings as 

possible. 

By dotted plan of a cube building we mean 2D representation of a cube building 

where the cube is represented by a square and e.g. tower of three cubes is 

represented by three dots in a square (see Fig. 2.).   
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Special attention was paid to the three girls who had been members of Vena’s 

group the previous day. These pupils all used the result of their previous work 

and arrived at 12 different constructions. Vena’s problem-solving strategy, 

however, was not used, due to the fact that there hadn’t been time for him to 

share it with his classmates the previous day. The exception to this phenomenon 

was Sara who organized her plans in a way that made it easy to see that all 

possibilities were exhausted. We suggest that Sara picked up on Vena’s strategy 

and now was applying it in her own way, in the ordering of her pictures. In other 

words, cognitive osmosis took place within this particular group. 

Vena worked entirely on his own, but he got a slightly modified assignment:  

Task 3. 

Take all your cubes. Construct as many buildings as possible but only those that are 

made of exactly five cubes and which have not more than 3 cubes on the first floor. 

Draw their dotted plans into the square grid. 

We expected Vena to use the same strategy that he had used when justifying his 

hypothesis of completeness of his solution. Yet, this expectation was not met. 

Clearly, Vena approached this new situation as a completely new problem. He 

was asked again to come up with the number of all possibilities but this time the 

restriction placed on the number of first floor cubes made the task more difficult. 

Vena repeated his process of discovery through creating isolated models. This 

time, though, the process took him less time and using only a few isolated 

models, Vena was able to create a sequence of these models: five-floor 

buildings, four-floor buildings, three-floor buildings with two cubes in the first 

floor and so on. These generic models became isolated models of a higher level 

and based on them Vena constructed a new generic model. It is apparent in the 

video recording that he was showing this strategy with his hand movement. As 

any change of language was not present in Vena’s communication we still speak 

about generic model, not a piece of abstract knowledge. 

THE SECOND EXPERIMENT 

The second experiment took place in the second year in November 2011, i.e. 

there was a lag of six months between the experiments. In those six months 

children were regularly given problems about Cube Buildings including those 

that called for examining and describing different types of buildings based on a 

given plan. In November 2011 the pupils were presented with this task:  

Task 4. 

Construct buildings based on the given plans and record the number of cubes in 

each floor for each building in a table. 

The worksheets available to the pupils contained the dotted plans of eight 

different buildings built from four, five or six cubes of different colors. There 
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was also a table designed for recording the number of cubes in each floor 

(Fig. 2). 

 

Building colour green red orange blue yellow pink 
light 

blue 

light 

green 

Number of cubes in 

first floor 
        

….         

Figure 2: Second experiment worksheet 1. 

After the problem-solving stage of the lesson, the following discussion took 

place: 

Ka01: Teacher, I noticed something interesting, but I’m not sure, it may be 
wrong.  

Te01: Try to explain it to us and we’ll try to decide whether it’s wrong or not.  

Ka02: Here in this red building (points at her worksheet), we have three cubes 
in the first floor and one in each of the rest of the floors. We have done 
this before but the building looked different, sort of like a corner.  

Te02: You mean that the plan had a different shape? 

Ka03: Well, it was drawn in a different way (nods) but it was the same in the 
table.  

Pe01: It was a different building so it should be drawn differently. And there 
can be the same number of cubes in the (gestures repeatedly 
a horizontal line) floors. 

Ka04: And so it’s not wrong? (looks around the class) 

Si01:  Teacher, can I show them? 

Te03: Of course. 

Si02:  Our red building (goes to the board and draws a plan of the red 
building) has three cubes in the first floor and one in the second. But if 
the top cube was here (draws a second plan with the same shape but 
with the second floor cube in the middle) it would be a different 
building and described in the same way. Or the three cubes could be in 
the first [floor] like a corner but then they could be two different 
buildings, either the top cube would be at the end or in the corner 
(draws plans of two new buildings). 

Ja01:  (runs to the board) Or the top cube could be on the other end (points at 
the other end cube in the L-shape building). 

Pe02: No, it couldn’t. Then it would be the same as Simon’s, only turned 
around.  

Te04: So, Kaja, did the boys explain to you if your idea was correct? 
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Ka05: I think so.  

Kaja noticed that one of the buildings is made of the same number of cubes as in 

a previous class (Ka01-04). She was concerned that there may be a mistake in 

the formulation of the problem. Simon (Si02) argued using the set of buildings 

that have the same values in the table but are distinct. The teacher-researcher did 

not interfere in the pupils’ discussion and let the pupils explain to Kaja in their 

own way.   

The next problem in the experiment was:  

Task 5. 

Build coloured cube buildings based on the table. Then draw a dotted plan for each 

of your buildings. Find all possible solutions. 

Children worked in groups of three, each group had one of the pupils who 

participated in the above described discussion.  

Table 1. Second experiment worksheet 2. 

The maximum of six and minimum of two cube buildings that corresponded to 

the problem’s statement were found from the total amount of eleven (or thirteen, 

including two symmetrical cases) buildings. This number is relatively small, 

most likely due to time constraints experienced in this problem solving activity. 

Ten days later this activity was picked up again in class and groups worked 

separately to complete their assignment including the description of their 

strategy. 

The results of this activity will be shown and discussed in detail during the 

planned presentation.  

CONCLUSION 

We described in the article the findings derived from two experiments 

conducted as part of the first author’s action research. These two experiments 

were specifically focused on the cognitive processes of pupils working with 

cube buildings (constructed from four cubes). The data yielded were analysed 

and revealed the presence of the following four cognitive phenomena: 

1. The discovery of a generic model (by Vena in Experiment 1). 

2. The modification of the generic model attained through previous 

experience (Experiment 1). 

Colour red blue yellow green black 

Number of cubes in 1
st
 floor 3 3 2 2 1 

Number of cubes in 2
nd

 floor 2 1 2 1 1 

Number of cubes in 3
rd

 floor 0 1 1 1 1 

Number of cubes in 4
th

 floor 0 0 0 1 1 

Total number of cubes  0 0 0 0 1 
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3. The cognitive osmosis within one working group (Experiment 1).  

4. Discussion as a tool for the discovery of the relationship between the table 

representation of a problem situation and the actual cube building. 

(Experiment 2, Ka 01, Ka 02)  

This paper points out certain interesting cognitive phenomena observed among 

second year pupils in classroom experiments. Naturally, experiments will be 

continued in the future. We will continue to focus on mapping young pupils’ 

cognitive processes in geometry and on the process of knowledge transfer from 

an individual pupil to a group, i.e. on cognitive osmosis (Hejný, 2011a) as well 

as on the role the teacher can play to make the process effective.  

Meticulous record-keeping of class activities will enable us to observe any 

developments in the teacher-researcher’s strategies. Since the beginning of the 

study, we have been able to detect shifts in at least the following four directions:  

1. The voice dominance of the teacher is receding, pupils are given more and 

more space in discussing their problem-solutions, ideas and opinions.  

2. The teacher does not interfere even when there is an incorrect construct.  

3. The work climate in class has been improving, pupils often work in 

groups and their work has been progressing from working together to 

collaboration. Mistakes and misconceptions are dealt with by pupils.  

4. The teacher is more aware of differentiating between her pupils. She 

chooses tasks so that the pupil is both capable of solving the problem and 

appropriately challenged by it at the same time. 

A significant part of the material and documentation collected in this action 

research has been used in class work preparing student-teachers at the 

department. Student solution samples (written or video recorded) are used in the 

course of Didactics of Mathematics for further analysis. This authentic material 

– which is based on pupils known sometimes to the student-teachers from their 

teaching practice – proves to be more effective than artificially compiled 

material in this type of teacher education.  

Student-teachers at our faculty come across Cube Building problems at different 

levels. First, in an introductory mathematical course, they encounter the subject 

of different geometric languages used in describing 3D objects. Later they solve 

problems that combine geometry and combinatorics in the course in 

Mathematical Problem Solving Methods, all the while they are encouraged to try 

the subject out within their student-teaching activities. They tend to guide their 

pupils within the limits of their own one strategy or solution, and assess the 

difficulty level based on their own experience. 

In conclusion we would like to emphasize the fact that each experiment 

represents a valuable enrichment in terms of not only our experience with 
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teaching children but also working with teacher-students at the primary school 

level. We find such experiments consistently to be an effective tool in an 

individual’s professional development.   
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At the beginning of the teaching of the concept of area we focused on various 

activities. The tiling is emphasized particularly with congruent patterns. We 

make a distinction between tiling in plane and tiling polygons of a given area. 

Special attention has been paid to the development of the skill of estimation 

during the covering of the tiles, namely what kind of patterns are suitable for 

tiling the polygons on the one hand, and how many tiles from the selected 

patterns are needed to cover the polygons on the other. Another activity is 

cutting and rearranging polygons or tiles. These activities were carried out in 

classes 4, 5 and 6. 

INTRODUCTION 

In this work we want to show an experiment in grades 4, 5, 6, where we used the 

tiling to introduce the concept of area. 

Research in this field of mathematical education often reveals poor 

understanding of the processes used for area measurement of plane figures. 

However, it is not only students who have difficulties in understanding the 

concepts of area and measurement  it is also student teachers Simon, 1995  

Baturo  Nason, 1996  Zacharos, 2006  Murphy, 2009  Some of our students 

have this kind of difficulties. Probably these difficulties are mainly attributed to 

the emphasis placed on the use of formulas, starting from the very first steps of 

introducing students to this subject. Though it is generally accepted that 

mathematics should be taught through understanding but in the topic of area it 

would seem that children often rely on the use of formulae with little 

understanding of the mathematical concepts involved Dickson, Boyd  Davis, 

1990  In our opinion the topic of measurement is very useful to develop 

problem solving, spatial sense, estimation, and concept of numbers. 

THEORETICAL BACKGROUND 

The area of a shape or object can be defined in everyday words as the amount 

of stuff  needed to cover the shape. Common uses of the concept of area are 

finding the amount of tile needed to cover a floor, the amount of wallpaper 

needed to cover a wall etc. Measuring area is based on the notion of space 
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filling , i.e. tessellation. Tessellations can be very useful in education and in 

teaching mathematics. They can be used from kindergarten to high school. Since 

tessellations have patterns made from small sets of tiles they could be used for 

different counting activities. Two or more tiles usually make some other shape. 

Tiles can be used to teach students that area is a measure of covering. 

Tessellation patterns can produce many lines of symmetry. With young children 

you could have them learn about tessellations with pattern block pieces of 

geometric figures such the square, triangle, rectangle etc. 

We applied these patterns to measure areas. 

The starting point for the creation and development of geometry is the process 

of measurement, which presupposes comparison between quantities. Comparing 

different figures  Sometimes areas of different objects can be compared directly, 

without measurement. We can compare areas of two different objects that one of 

them divided into parts which, if appropriately recomposed, would form the 

other figure. We can compare areas of two different objects with tessellation, i.e. 

both of them are covered with congruent geometric figures tiles  without gaps 

or overlaps. Activities related to each of three comparisons and evaluation of 

areas is carried out throughout the teaching process. At this point, either the 

logic of analysis and reconstruction or that of overlapping is introduced. In the 

case of overlapping, different shapes such as rectangles, triangles, squares, 

hexagon and trapeziums as well as irregular geometric shapes are used as 

measurement units. The teaching process provides an introduction to the concept 

of area and its measurement. 

Measuring length can be realized by using a ruler, measurements of areas is 

more complex, since length is directly measured by a ruler, while area is 

indirectly measured through the lengths appearing in the formula for calculating 

it Zacharos 2006; Murphy, 2009; Vighi & Marchetti 2011 , but it can be made 

using other artefact, e.g. tiles which can be different geometrical figures. 

According to Santi  Sbaragli 2007  the use of ruler brings unavoidable 

misconceptions , i.e. a misconception that does not depend directly on the 

teacher s didactic transposition . In early grades we assist to the blind 

application of formulae and according to our observations, the early use of 

formulas in area measurement has been criticized on the grounds that it 

generates misconceptions about area measurement. 

In Hungarian schools comparison between areas is generally reduced to 

evaluating areas and to comparing numbers. Teachers tend to determine 

equivalence of the magnitude of area of two figures by means of measurement. 

But transferring the comparison to the numerical field, we are in fact working 

with numerical order which doesn’t consider the criterion of quantity of 

magnitude  Chamorro, 2001 . 
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Estimation is very important in measuring area, too. Children can estimate 

which patterns are suitable for tiling the geometrical forms and how many tiles 

are need to cover the figure. Estimation is very important in real life for 

checking measurement and spatial ability. 

To establish the concept of area tiling is a fairly important activity, but not the 

only one. When a polygon cannot be covered totally with a given pattern, the 

need to cut and rearrange the pattern into pieces obviously emerges. The aim of 

cutting and rearranging is to achieve the most appropriate covering of the 

polygon. This also happens in real life when the floor is tiled for instance. The 

two basic types of cutting and rearranging are the cutting of the pattern of and 

the cutting of the polygon. The first activity is closely related to the actual tiling, 

it is a more sophisticated version, whereas the latter one serves as a comparison 

of the areas of the polygons thus contributing to the preparation of the 

measurement of the area. In this way both activities contribute to the 

establishment of the concept of area. 

RESEARCH QUESTIONS 

1. What sort of activities based on tiling, cutting and rearranging contribute to 

the establishment of the stable concept of area? 

2. To what extent are activities required in classes 5-6? 

METHODOLOGY 

A teaching experiment was carried out in classes 4, 5 and 6 of the demo primary 

school of the teacher training college. The teaching material and the teaching 

aids were compiled by the research team and the sessions were conducted by the 

class teacher in accordance with our guidelines. The tasks were done in groups 

of four, whereas setting the tasks and the discussion of the experience took place 

in the whole class. The sessions were recorded and photos were taken of the 

works produced and also the kids carrying out the tasks. Two 45 minute sessions 

were designed for all three years based mainly on the tiling activity, whereas 

another 45 minute session was planned for classes 5 and 6 relying on the 

activities of cutting and rearranging. Classes 5 and 6 had the same teacher and 

class 4 another one. Prior to the sessions none of the classes were involved with 

measurement of area. Learners in class 4 were not familiar with the concept of 

area at all, whereas learners in class 5 were introduced to the concepts of square 

and rectangle at the end of the previous term during some lessons. Learners in 

class 6 did tasks related to the area of rectangle and square two months before. 

They made use of the formulas of area and the SI measurement units of area 

were also introduced. 
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Session 1. Tiling the plane with various patterns. Tiling the rectangle with 

various patterns. 

Session 2. Tiling various polygons with patterns selected appropriately and 

estimating the number of patterns required to cover the polygons. 

Session 3. Cutting and rearranging patterns in order to cover a given polygon. 

Comparing the area of the two polygons by means of cutting and rearranging the 

polygons into each other. 

DESCRIPTION OF THE SESSIONS AND RESULTS 

Session 1 

There were nine groups of four children. All the groups were given one kind of 

tiles from the set below. 

Every group got several tiles of the same kind so that the rectangle could be 

covered. 

Teacher: Try and cover as economically as you can the rectangle. Make use of 
the most of them but without overlapping. 

The works were put on the board and the experience gained was discussed. We 

were wondering in what ways learners were able to put the coverings into 

groups. 

Observations 

Figure 1: The works on the board (Class 6) 

In all three grades the sessions took place very much in the same way. Children 

were required the same amount of time to do the tasks and raising the problems 

and the interest in the topic was roughly similar. 
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Perceiving the difference in covering rectangle and plane: In class 4 learners did 

not perceive the concept of plane. They could not make a difference between 

coverings with gaps (such as octagon) and coverings without gaps and coverings 

as well as coverings deficient on the margins (for instance hexagon). In classes 5 

and 6 the plane was illustrated by the tabletop and the geographical notion of the 

steppe (e.g. Hortobágy in Hungary). Children put the nine coverings into three 

groups according to the arrangement of the tiles: The plane cannot be covered 

with them without gaps (octagon, crescent) (set 1). The plane could be covered 

but not the rectangle (hexagon, trapezium, cross, L-shape) (set 2). Both the plane 

and the rectangle can be covered (rectangle, right angle triangle, square) (set 3). 

In all three classes the demand for cutting emerged. During the discussions the 

idea came up in that case when the paper rectangles could not be covered: 

S1: If one of the them could have been cut then it would have been put 
…(the trapezium on the L-shape) (Class 4) 

S2: In set 2 the margins should be cut. (by margin they meant the 
uncovered parts) (Class 6) 

Children have made an effort to create regular patterns of tiles. 

S3: We created squares from triangles, at first we did it at random, but it 
was not really appropriate. (Class 4) 

There were some hints at the types and the size of the tiles, as well as the 

connection between size and the possibility of covering: 

S4: It was possible to make square from rectangles and triangles. (Class 
4) 

S5: It is impossible to cover, because the elements are too big. (hexagon, 
trapezium, octagon) (Class 4, 5) 

Teacher: How many tiles do you need for set 3? 

S6: The larger the plane figure, the fewer are needed. (the plane figure 
was meant to be a tile by the child) (Class 6) 

Teacher: What kind of tile would you like to plan? 

S7: The trapezium would cover it, but it is ugly. 

S8: The rectangle is rather thin that would reach as far as it is. (Class 6) 

Session 2 

We put three large polygons cut from large sheets of papers on the board: 

At the bottom of the board the following patterns of tiles were seen: 

         

Teacher: Which plane figures do you think could cover the shapes cut out of 
sheets of paper without gaps? 
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Children answer some plane figures, and then the teacher asks who agrees with 

the answer. The votes are counted. 

Then children were put into nine groups of four, and they were given 3-3-3 large 

polygons together with a bag of tiles of the same pattern. Children were told to 

tile the large polygon with the tiles they were given. In case the large sheet could 

not be covered without gaps, then fewer tiles should be used so that they would 

not be overlapping. The idea was to make use of as many tiles as possible so that 

the large sheet could be covered totally. The nine tiling patterns children 

produced were put on the board. 

Observations 

It is shown in the Table 1 which tiles were selected by most of the children to 

tile some of the polygons. 

    

Class 4 
   

Class 5 
   

Class 6 
   

Table 1: Selected tiles 

Right angle triangle was represented in every case. 

Right angle triangle, square and rectangle can be found together except for one 

case; presumably they have recognised the relationship between them. A square 

can be covered by two rectangles or two right angle triangles. 

S9: If the rectangle is OK, then so is the square, because two rectangles 
cover exactly as much as a square and we could have counted by 
two. (Class 4) 

S10: I insist on the triangle, because if it can be covered with the square, 
then with this one too. With 24, because we said 12 squares” (Class 
6) 

S11: It seems that similar polygons can be covered with similar ones, 
hexagons with hexagons, L-shape with L-shape, irrespective of its 
shape. (Class 6) 

To select the right pattern of tile for the given polygon is not that easy (Figure 

2). 
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Figure 2: The works on the board (Class 6) 

Covering similar shapes with similar ones does not always work. 

S12: I was disappointed with the hexagon, because when I figured out my 
idea, I did not realize that it will be wider in the middle. (class 6) 

S13: L-shape can be covered with the yellow L-shape, but not with the 
blue one. (He has another try with the blue one.) It can be done with 
another type of covering, no, it does not work...” (Class 6) 

The difference in the size of the angles can be seen for them when they fit the 

tile to some of the vertexes of the polygon. 

S14: I thought hexagon can be covered with right angle triangle, it can be 
done. But no, it cannot be done, because of the angles... (Class 6) 

S15: I meant the trapezium in a slanting direction. The trouble is with the 
angle here as well.(Class 5) 

Out of the two triangles and two L-shape polygons only one of them is 

appropriate for covering hexagon and L-shape respectively. Thus the fact that 

the names are identical, it is still not enough. 

S16: We tried to turn around the right angle triangle to the hexagon at 
random, but it did not work. It cannot be done with this triangle, but 
it can be done with the other one, because its shape is different. 
(Class 5) 

S17: The yellow L-shape could have been OK, one of its branches is not 
thick. (Class 5) 

When estimating the tiles for covering children are able to make use of the 

relationships they have discovered between areas most of the time, but the 

position of the tile also matters. 

The estimation of the number of tiles required for covering is useful and 

children are keen on it. 



212  ESZTER HERENDINÉ-KÓNYA, MARGIT TARCSI 

Session 3 

To recall the previous lesson by making use of the photos of the coverings. For 

instance it can be seen what kind of tiles were used when they tried to cover the 

hexagon, and how many of them were needed. 

Teacher: How many hexagons or right angle triangles will be needed for 
covering if the tiles are cut into pieces? 

During this session children were put into groups of four. 

After the first task, children were asked to compare the area of two polygons of 

large sheets of paper by means of cutting and rearranging. This time it was the 

tiles but the polygons that had to be cut and rearranged. 

Observations 

Children were happy to do the tasks and they were also delighted to have access 

to the scissors. They made an effort to cover the large sheets of paper 

economically, however as the teacher did not point out that they should cut the 

tiles only it is required. Thus they did not really paid attention to how many of 

the original tiles they cut into pieces. When finally the pieces pasted to the 

sheets were counted the results were rather various such as 19, 23, 20, 15 pieces 

right angle triangles to cover the hexagon. Of course it was not really conducive 

to the establishment of the concept of the area measurement unit, but it 

contributed to the covering the polygons without gaps and overlapping. 

Two strategies could be observed: in the first case they aimed at systematic 

arrangement, whereas in the other case they tried and made use of every little 

pieces of cutting (Figure 3) 

Figure 3: Hexagons on the board (Class 6) 

This first task meant to make a connection between tiling and cutting and 

rearranging, although cutting the tiles into pieces not necessarily leads to the 

concept of the area measurement unit, still in everyday life cutting the tiles into 

pieces is quite often used in tiling the bathroom for instance. 
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Children of Class 6 applied three different strategies in the second task, in the 

comparison of the hexagon and the L-shape, the hexagon was cut into L-shape 

(Figure 4), the L-shape was cut into hexagon, and they tried to turn both 

polygons into rectangle (Figure 5) 

 

 Figure 4: Hexagon into L-shape Figure 5: Both polygons into rectangle 

In Class 5 children did not manage to turn polygons into rectangle. 

Cutting and rearranging one polygon into another seems to be useful to compare 

their areas. 

Rectangle has emerged as a kind of transmission polygon for the comparison of 

areas. 

The task has actually focused on the main thing in comparison: if one of the 

polygons can be cut and rearranged in a way that it covers the other one, then 

the two areas are equal, but if there is gap, the areas are not equal. 

CONCLUSIONS 

The two approaches to cover the subject matter, the frontal classroom and group 

work were appropriate. 

After the first two sessions both the children and the teachers came up with the 

idea to continue the experiment. Cutting seemed to be a useful way to solve the 

problems, however we realized that in class 4 more activities of tiling are 

required prior to cutting and rearranging. 

Activities are enjoyable in class 5 and 6 and they are not boring at all. Learners 

were highly interested and creative. 

In Class 6 during the activities learners did not rely on their knowledge about 

rectangles and squares gained earlier. For instance they did not want to tile the 

rectangle only with squares, or to use the number of squares for the estimation. 

For them the tasks of cutting and rearranging were as much as novelty as for 

younger learners. 
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The teachers, who were involved in the experiment, came to realize the 

complexity of the problem and also the benefits of the extended elaboration of 

the topic. 
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The paper presents a research focused on the ability of recognising regularities. 

It was carried out on grade 5 pupils from Polish primary schools and focuses on 

the ability of recognizing regularities. The results led us to three different types 

of students’ reasoning, depending on whether they used the arithmetic, the 

geometric or both aspects of the task. 

INTRODUCTION AND THEORETICAL FRAMEWORK 

Regularities constitute a basic topic of Mathematics. They can be found at 

almost every branch of mathematics, for instance, sequence classification and 

the principle of mathematic induction are based on them. 

Discovering and recognizing regularities is an issue that constitute a very 

important problem, present in international learning trends (Zazkis, Liljedahl, 

2002a, 2002b; Littler & Benson, 2005; Carraher, Martinez & Schliemann, 

2008). The problem of rhythm and regularities have drawn much attention in 

mathematics education in Germany. To set an example we can look at the 

MATHE2000 programme (Wittman, 2001) created for students and teachers in 

Dortmund. Studies that were conducted within this programme have shown that 

even 6-7-year-old children can sort out the issue of regularities without bigger 

problems, if they are taught in the “rhythm and regularities’ spirit”. 

Teaching how to spot and make use of regularities is based on introducing some 

bases principle that works in mathematics, namely readiness to action and 

activity. Regularities stimulate the kind of reasoning that goes beyond particular 

cases, the one that enable students to think about general rules. This kind of 

attitude is realized not only in Germany but as well in a lot of other countries 

such as Italy (Malara & Navarra 2003), the Netherlands or Czech Republic 

(Hejný & Littler, 2002). This trend was as well taken into consideration in 

International Students Knowledge and Abilities Study PISA (Białecki, 

Blumsztajn & Cyngot 2003). Mathematical content that occurs in PISA tasks 

was divided into four areas among which a group called “change and 

connection” was distinguished.  Tasks from this group made up 26% in total and 

to solve them students had to recognize and use some regularities of recurrence 

type.  

A lot of research results that encouraged us to immerse in the role of regularities 

in children mathematical education can be found in Poland. According to Siwek 
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(1985) the ability of recognising regularities and rules in simple mathematical 

contexts is a key factor in the proper mental child development. Other studies 

(Gruszczyk-Kolczyńska, 2001; Urbańska, 2003) have shown that the child’s 

ability to recognise the rule is the source of satisfaction. On the other hand, there 

is also the point of view according to which in teaching mathematics:  

…there are not enough opportunities to enable students to spontaneously derive 

pleasure from discovering and experiencing the fact of finding out something new. 

Students are rather indifferent to mathematical problems, and a human being that is 

indifferent to something cannot be creative. (Dyrszlag from Skurzyński, 1992, p. 

34).  

Within Polish school practice in teaching mathematics students are mainly 

exposed to tasks which aim at applying ready knowledge. In particular, students 

do not meet problems that involve the use of regularities. The restricted number 

of hours of mathematics classes and the tight schedule does not let the teacher 

introduce something that is not a part of the curriculum, which in fact may be 

relevant to the international mathematics teaching trends. Nevertheless, teachers 

are supposed to adjust the curriculum in a way it involves solving problems such 

as open tasks, looking for regularities, the ability of presenting the results as 

well as their justifying and assessing, finding examples and counter-examples. 

This is why the preparation to trace these kinds of issues calls for recognizing 

the children’s natural strategies for solving these problems.  

METHODOLOGY 

Our research, which was conducted among fifth-class students from primary 

school, aimed to find the answer to the following questions:  

 How do the pupils form primary schools deal with a task involving 

discovering and spotting regularities?  

 Are they able to make generalizations within some noticed rules? 

The task that served as our research tool is given below: 

1. Bolek and Lolek thought up a new game: making figures from colour blocks. Bolek 

arranged the yellow blocks and Lolek arranged the blue ones. Their work looked like this: 

Figure 1   Figure 2          Figure 3             Figure 4 

 

 

 

1. Complete the table: 
 

Number of 

figure 

Number of 

yellow blocks 

Number of blue 

blocks 

1 1 8 

2 4  

3   

4   

5   

2. If the boys wanted to arrange the seventh figure which blocks of both colours they 

would use? 
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3. Is a figure with the same number of yellow and blue blocks possible? Why or why not? 

4. Bolek and Lolek decided to arrange a very big figure. Which blocks would they need 

more: blue or yellow? 

This was an arithmetic-geometric task which allowed a lot of different 

interpretations. There was nothing mentioned about the fact that those pictures 

presented some scheme that should be followed. The aim of the task constructed 

in this way was to check whether the students are able to discover the 

regularities occurring in the task in order to use them in their later work, or if 

they are more likely to take their own free actions.  

The research included 38 students at the age of 11 attending two different grade 

5 classes. There were 20 girls and 18 boys in the research group. The research 

was conducted in school conditions, during normal classes. The students were 

sitting at their desks. It was about creating a situation that would be as similar to 

school everyday life as possible. The students were working in pairs. Each pair 

obtained one sheet that contained a task to solve and an extra paper where they 

can put down their calculations. The students were informed before starting their 

work that there were going to work in pairs, that their work would be recorded 

but they would not be assessed. 

Arranging task to work in pairs was done on purpose, as the process of solving 

task by a joint effort created the opportunity of conversation among students. 

We wanted to reach some verbal statements as they would be a very helpful tool 

in trying to reconstruct the way of reasoning that the particular pair had been 

following. Additionally, during the work we had at least a short conversation 

about the tasks with each pair. In the analysis that follows we use both types of 

data, written students’ work and the records of the conversation supplied with a 

video showing how the work was performed. The atomic analysis (Hejný, 2004) 

of students’ work and the atomic analysis of the video mentioned above were 

the research method that we used. Some additional information was obtained 

through the conversation with the teacher who was present during the whole 

experiment. The conversation took place not only after the finished work but as 

well during performing the task by the students. 

STUDENTS’ WORK ANALYSIS 

The activities in both classes were similar: students started their work by 

counting the elements located in the pictures, by depicting the figures and then 

they filled in the table with the results of their work. Filling the first four lines 

took them comparatively little time. At this stage of solving the task any trials of 

discovering regularities were spotted. They did not find any rules until they 

reached the fifth line of the table (to which no illustration was attached) which 

made them think about the task and looking for the proper solution. The quest 
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followed different ways, and its analysis let us distinguish the following three 

types of reasoning (Pytlak, 2006): 

 geometric: paying attention mainly to the pictures, spotting geometric 

connections; strong visual aspect; 

 arithmetic: ignoring the pictures and paying attention to the numeric data 

taken from the table; finding and discovering arithmetic connections 

between number given in the table; 

 arithmetic-geometric: both the table and the pictures were taken into 

account at the same extent, finding geometric connections and combining 

them with arithmetic ones; replacing geometric connections with 

arithmetic ones. 

The types of reasoning given above are connected with the way of students’ 

activity during their work at the whole task. The most essential issue in the task 

was the way students filled in the fifth line. The analysis of this particular part of 

the task enabled us to differentiate the following ways of the work that led to the 

discovery of what is going to be the next step in the process of finding the final 

solution: 

1. Analysis of the table’s columns filled with the numbers (up to this stage) - 

arithmetic reasoning: 

 Discovering the rule connected to the blue blocks and generalizing it so as to 

apply for the yellow blocks; 

 Discovering two different rules for the blue and the yellow blocks. 

2. Analysis of the pictures presenting the figures and drawing a sketch 

depicting the 5th figure; following the scheme and drawing the next 

figures- geometric reasoning; 

3. Analysis of the given pictures and on this basis filling in the tables- 

arithmetic-geometric reasoning. 

Below two examples of students’ work according to the type of their reasoning 

(1
st
 and 3

rd
 method) are presented. 

Robert and Bartek’s work as example of the 1
st
 method 

The two students started their work by counting the elements of each figure. 

Then they put their results to the proper places in the table. The four first lines of 

the table were filled in very quickly (number 16 in 2
nd

 line, 9 and 24 accordingly 

in the 3
rd

 and 4
th
 lines). The problem started with the 5

th
 line to which they did 

not have a picture enclosed. To find the solution they started analyzing the table, 

this time column by column. By looking deeper at the data, they found out that 

each number is 8 times bigger than the previous one. It led them to the 

conclusion that in the case of the blue blocks the difference between the 
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following values is fixed and amounts 8. The rule seemed to be clear and 

obvious. By applying the rule that they had just discovered they filled in the 5
th
 

line in the 3
rd

 column (32+8=40). 

It was much more difficult to discover the rule the changes in the amount of the 

yellow blocks that was to be put in the 2
nd

 column in the table. One suggestion 

was to fill the 5
th
 line with number 24. The four previous numbers were directly 

read from the picture, this could not be done for the 5
th

 line. The students knew 

that the number of yellow blocks also changes (is growing). They might even 

not have been analyzing the numbers given in the column “yellow blocks 

number”. The most probable is that the students wanted to apply “first signal 

strategy” (Żeromska, 1998) while trying to fill in the 5
th
 line.  The conviction 

that if the yellow and blue blocks occur in mutual configuration, the rule that 

work for blue blocks should as well work for yellow ones, might took its toll. 

The fact of discovering a principle and realizing how obvious and clear it was 

might have led to coming to the conclusion that it is a generally working rule for 

the whole arrangement. They also felt more confident and as a result having 

already a rule they decided to use it once more, namely for the yellow blocks. 

There is also another possibility. The boys did not even have to count how big 

the difference is between 16 and 9 but they might have merely roughly 

estimated it, claiming that it is 8. On this basis they could have decided at last to 

apply the rule working for the blue blocks and add as well 8 yellow ones. Hence 

they obtained that 16+8=24 in case of 5
th

 figure. The entry that they made in the 

2
nd

 column in the table created the sequence of numbers 9, 16, 24 and the 

numbers 9 and 16 were the results of the pictures’ analysis. 

The blank cell in the table where the number of yellow blocks should be written 

prefaces the one where the number of the blue blocks is to be put down. The 

order in which the boys gave their answers is the following: firstly the number 

of blue blocks and only then the number of the yellow ones. This procedure may 

imply how the boys analysed the table. At first, the rule that could be applied for 

the blue blocks was discovered and it was over-generalized to apply for the 

yellow blocks.  

There is a gap between the figure number 5 and the one with number 7. The 

boys probably filled in this gap by using the rule that they had already 

discovered on their own. As the starting point the students took the number of 

blocks for the figure number 5. The numbers for the next- seventh- figure were 

figured out through following calculations: 40+8+8=56 for the blue blocks; and 

24+8+8=40 for the yellow blocks. At this stage of the work the boys were not 

aware of receiving a wrong answer to the number of yellow blocks of which 

consisted figures number 5 and 7 (numbers given by the boys: 24 and 40). The 

mistake was due to this overgeneralization of the rule that was true only with 

blue blocks and not how the students thought for the yellow ones as well.  
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When filled in the whole table and gave the answer to the 2nd question, they had 

a little conversation with the teacher: 

N1: How do you know that here will be fifty six blue blocks and forty yellow 
ones?  

B1a: We count that here [He shows on the column “the number of blue blocks”] it 
is always add eight [reads and shows in the same time particular values 
from the table] 8, 16, 24, 32, 40, 48, 56 and then we obtain that results.  

This piece of conversation demonstrates that the students’ strategy for the blue 

blocks was the following: “it’s growing at 8”. Initially, during the conversation 

with the teacher the students were only giving records from the work they had 

performed before. They were confined only to the work at the column “blue 

blocks number”. Bartek gave a tangible description of their work: he read the 

data from the column mentioned above and extended it with the next two blanks. 

The statements about the yellow block were rather succinct: 

B1b: And there [He shows on the second column of the table] we also added. 

T2: What is here? 

R1: Here? The number of yellow blocks. 

T3: How did you count the yellow blocks? 

B2: The same like here [He shows on the 3
rd

 column] ...we also added. 

The teacher’s questions (T3, T4) show that the pupils had not analyzed the 

column for the yellow blocks but they assumed that the number of yellow blocks 

increased according to the same rule as it did for the blue blocks (reply B2 

clearly infers it). Not until this point of conversation had Robert verified former 

hypothesis, according which the number that differs successive amount of 

blocks is 8. After realizing that something may be wrong he started checking 

differences among the next numbers. It led him to find out that the difference 

did not account for 8. 

T4: Also did you add after eight? 

R2: No, after five. 

B3: This means that here is ... In the second figure we have … 

R3: In the third nine. 

B4: Do you have nine blue blocks? 

R4: No 

Boys: Yellow ones 

B6: You have nine yellow ones. 

R6: And twenty four blue. 

The two first lines in the table had been already filled in, so the students started 

their work with putting down the number to the 3
rd

 line. It is why Robert fixed 

number 4 (which was given in the 2
nd

 line) and number 9 (with which he himself 

filled in the 3
rd

 line) as a starting point for his consideration under the matter of 
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his own strategy. The difference between those numbers was 5. It was quite 

different value that the one that the students took as a constant difference among 

the successive amounts of the yellow blocks. This situation caused some internal 

problem for the boys. They had already taken the rule they had discovered on 

their own as generally working when they realized that this same rule is not 

useful in fact. 

The boys got into conversation with each other once more. As we can see right 

now, the empiric data that they filled in the table with is starting to live on its 

own. 

T5: So what is it with yellow blocks?  

B7: Should it be every five? 

R7: I suppose so. 

B8: But look [show on the line 2 and 3, where are numbers 4 and 9] 

T6: Every five? 

R8: I got lost [He paints over the values 9, 16, 20 from the second column] 

B9: Me too. 

The fact of discovering some stable situation (the one in which changes are 

fixed and easy to establish) turned out to be a very strong condition for the 

students. This situation is clearly depicted by the over-generalization of the rule 

for the blue blocks to apply it for the yellow ones. After finding that the number 

8 is not in fact correct, the students went on looking for the principle that could 

have been stated as the “stable increase”. Although the fact that the boys 

actually realized and spotted their mistake, the hypothesis stated by the teacher 

(T6) which was simply the verbalization of their former thoughts (R2, B7, R7, 

B8) did not convince them. They might have verified this hypothesis with a 

further sequence of numbers so as to have spotted that the two statements: 

“stable increase at 5” and sequence of number 6, 16, 20 did not go in agreement 

with each other. Robert deleted the previously written numbers (even the ones 

that were written down after counting the elements prominent in the pictures). 

He gave up his struggle to find any other solution (“I got lost”). 

At that moment, a change in the way of reasoning occurred. This time they 

analysed all numbers from the “yellow blocks number” column, not as it had 

been done before; they analysed only the numbers that they had filled in. It was 

the ground-breaking moment in the students’ reasoning that resulted in 

discovering a new rule that applied for the yellow blocks. 

T7: Look, between one and four there isn’t five 

R9: Three 

T8: There is five between four and nine 

B10: Odd we add! 
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Figure 1  

R10: [Instead of deleted values he writes numbers 7, 10, 13] 

T9: How did you add odd? 

R11: For example seven 

Robert did not keep up with his classmate thoughts. For all the time he was 

working according to the principle that the number grew with the stable value. 

He had already known that it was neither 8 nor 5. When the teacher paid 

attention to the first two values: 1 and 4, between which the difference amounted 

3, Robert thought that the given number 3 would be the stable value with which 

the number of the block grew. This misconception made him replace the number 

that he had earlier printed out with the following ones: 7 (4+3), 10 (7+3) and 13 

(10+3). 

Bartek verified his new discovery and simultaneously filled in the table once 

more. They went on commenting on his conduct, having claimed that he applied 

the rule “add the successive odd number to the former number”. He 

consequently used the past tense as if he wanted to underline the fact that he was 

strongly convinced that the “new” rule was correct. 

B11: Because we add for ex ample like this: three [shows on the 1 and 4 in the 
second column], because three is odd. Why have you crossed it out? 

R12: I think that it was wrong. 

B12: Three, and then five is odd, and then we add ... [he turns to his friend] Was it 
sixteen here? 

R13: Yes, sixteen 

B13: To sixteen we add odd ... 

R14: Eight 

B14: No, to sixteen we added seven odd. And only odd we added 

Bartek crossed out the record given by his classmate and put down the correct 

values: 9, 16, 25. From then on the group work was abandoned as Bartek 

continued his work on his own. He did not even try to explain his mate how he 

knew what to put down in the appropriate spaces. He was so deeply immersed in 

the task that he did not feel like wasting time to needless explanations. He took 

entirely the initiative. Robert did not keep up with Bartek’s ideas.  He also did 

not take over the conventional 

meaning of the past tense he was 

using. When he reached the 4
th

 figure 

and number 16 appeared, he got into 

the conversation and gave the report of 

the performed work saying “the 

difference is 8, it is growing” (R14) 

Robert remained merely the observer 

of Bartek’s actions during the process 
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of solving further tasks. Meanwhile, Bartek was trying to apply the regularity he 

had discovered in the work. At the beginning, he counted the number of the 

yellow blocks presented in the picture number 7. He got the result 57. Next, he 

placed the paper with the written task on his side and replaced it with a clear 

sheet of paper where he started writing down the rest of the table’s entities. The 

last data that was written down in the paper with the task involved figure 

number 7. Then Bartek extended the table so as to put there as well the number 

of blocks that the figure number 8 consisted of (Figure 1). However, he was not 

sure whether he acted in a proper way, so he found out his notes unimportant 

and did not take them into consideration while answering the 3
rd

 and 4
th
 

questions.  

In Picture 2 the left column corresponds to the blue blocks, and the right one to 

the yellow ones. It is clearly depicted that the students applied the rule that 

Bartek discovered. In the first column they were adding 8 to the former numbers 

and in the second column they were adding the succeeding odd number (15, 17, 

19). As they had made a mistake before, while trying to 

count the number of blocks used to create the figure 

number 7 (they obtained 57 and not the correct number 

49), they still did not reach the results that they could have 

used in the further work (even though they changed their 

way of reasoning and applied the correct rule). 

Figure 2 

While putting on the paper the next values for the number of yellow and blue 

blocks, the boys could have spotted that they results had started to drift apart. If 

the results had met for the figure number n=8, they would have reached the 

answer for the 3
rd

 question. Instead of that, they even did not know how based 

on the results they had reached should they explain that the figure that would 

consist of the same amount of yellow and blue blocks did not exist.  

The fourth task called for going beyond the very general level they stuck in, and 

the boys did not succeed in answering the last question.  

Ola and Karolina’s work as example of the 3
rd

 method 

The two girls were working together. They divided the work so that one of them 

was counting the elements of each figure whereas the second one was filling in 

the table with the data given by her partner. During the whole work they were 

exchanging their findings about the task. The person who took the lead in the 

task was Ola. Karolina, in fact, was only performing the tasks that Ola asked her 

to perform. Nevertheless Karolina also tried to control whether they follow the 

proper way of reasoning and if Ola’s ideas were incorrect, Karolina did not 

hesitate to put forward their own ones.  
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Figure 3  

The girls launched their work by counting the elements and filling in the table 

with the data they obtained. In order to fill in the 5
th
 line of the table, the girls 

returned to the pictures of the existing figures. They tried to find out any way in 

which the next figure was created through the analysis of the given figures. The 

analysis started by taking into consideration a blue frame and then they went on 

to look at a yellow interior.  It led the girls to the following statements: the 

number of the blue blocks located on the one edge of each figure grew by the 

stable number-2, the number of the yellow blocs located on the one edge of each 

figure grew in turn with the stable number-1.  The girls were able to recognize 

the geometric connection among the figures but on the other hand they were not 

able to establish the number of the blocks of the particular colour that they 

needed to create the 5
th
 figure. They had to draw the picture of this figure by 

using the geometric connections they had already found out. They made the 

picture of the 5
th

 figure in an additional piece of paper.  

The girls started drawing their sketch with the frame consisting of circles that 

depicted the blue blocks. Then in the interior of the frame five rows, each 

consisting of five elements that were to represent the yellow blocks, were drawn. 

The issue how the yellow and blue blocks are located towards each other was 

not taken into consideration by the girls. They also did not maintain any 

connections between the blocks while sketching their picture. Neither the 

proportion between particular elements, nor the layout or the shape of these 

elements were properly depicted. As we can see in the Picture 3 the girls might 

have found it more convenient or suitable to represent the square shape of the 

blocks with the circles. The first two elements that we can spot in the interior of 

the frame might suggest the “square” way of the girls’ reasoning. Nevertheless, 

the girls quite quickly came to the conclusion that the shape of the objects did 

not matter. They started to draw circles as it was less demanding task. They 

differentiated the colours of the figures but they did not correspond to the 

colours given in the task. This differentiation served only as a way of 

recognizing which object was which. The picture did not depict any particular 

figure; on the contrary it was drawn so as to illustrate some arithmetic values 

that corresponded to the particular figure. Not until finishing the sketch did the 

girls counted its elements: firstly the blue blocks simultaneously filling the 

circles that presented them appropriate numbers; secondly the yellow blocks. 

The process of counting the blue blocks was abandoned while reaching number 

15. While counting the yellow 

blocks a quite different strategy 

was used. The girls were 

pointing in turns the elements 

from each row (the dots put on 

the each element imply this 
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procedure) and simultaneously they together were counting them undertone 

(what was recorded on the video). The results that they obtained in this way 

were written down in the table. 

When the girls embarked on the trial of finding an answer to the second 

question, the teacher came and got into the conversation: 

O1: How many are together? Count. [She turns to her friend to count how many 
elements she has already drawn] 

K1: [She is counting the elements of figure no. 7] 

T1: What are you doing now? 

O2: To this second question. 

T2: And how do you know how picture has to look like? 

O3: Just because as here it was 11 in the fifth figure in one row [she showing at 
first on fifth line of table and then on column of blue blocks in figure 
No. 4 and draws up 2 blocks], then for sixth one would be 12, and 
for seventh one will be 13. 

 

Figure 4 

The girls once more divided the work among them. Ola by taking advantage of 

the picture of the 4
th

 figure was counting how many elements they should have 

painted; meanwhile Karolina was drawing and counting up the elements that had 

been already sketched. Number 11 given by Ola did not ensue from the table. 

While answering teacher’s question Ola actually firstly pointed the 5
th
 line in the 

table but it was merely a reference to the number of figure that she was talking 

about. So far the girls had been only analyzing the connections between 

particular figures and not among the arithmetic data given in the table.  The next 

step done by Ola shows also this fact, what she done was drawing two extra 

squares to the figure number 4. 

T3: How do you know it will look like this? 

O4: Because we noticed that [points all the figures, thinks] here it changes, about 
2 blocks, so it will be 11,13,15 [turns to Karolina] so draw 15 blocks 

K2: [continues drawing the frame for the figure no 7 consisting of blue blocks] 

Thanks to the analysis of the pictures the girls were able to spot that in each next 

figure the number of the blue blocks increased at 2. At first, Ola while trying to 

answer the teacher’s question (O3) made a mistake. She might have done it 

unconsciously as she started to enumerate the successive natural numbers 11, 

12, 13. Nevertheless, the girl very quickly stated the rule that she had discovered 

and went on applying it in a proper way.  The picture number 5 could have been 

very helpful although they did not refer to it during their conversation with the 

teacher within which the girls explained that discovered on their own regularity. 
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The picture was the result of the empiric work that was obtained thanks to 

applying the discovered regularity. The discovery of the rule according to which 

the next figures were created enabled the girls to draw the picture of the given 

figure without necessity of referring to the previous figure. This conclusions are 

based on some Ola’s statements such as “here it the number changes at 2” – 

what might have be taken by the girls as some kind of certainty that could have 

be used- “it will be 11, 13, 15” – and here the girls gave the results of applying 

the successive adding of the number 2. 

The way in which the picture presenting the 7
th
 figure was created was quite 

characteristic. Firstly, the column consisting of the blue blocks was drawn, then 

the amount of the elements was counted and checked whether it was correct. 

Afterwards, the horizontal line was drawn in which the 15
th

 element was treated 

as the first in a new row.  It clearly suggests that the spotted strategy was applied 

for one edge. Hence it seems to be clear that the girls took four elements twice 

into consideration. However, it did not hinder the girls in their work at the task. 

The elements were treated in two different ways: when were perceived as  the 

product of the strategy was treated as “two elements more in one edge than in 

the previous row”, whereas when perceived as the component of the whole 

figure was treated in totally different way. 

During the next stages of the conversation, the teacher came back to the first 

question and asked the girls about the way they had filled in the table. In the 

sheet of paper in which the task was written down there were no extra sketches 

added by the girls and in the additional piece of paper there was drawn only part 

of the 7
th

 figure. 

T4:  How did you complete the table? 

O4:  Here? [Points to the last line in the table] we counted the squares [shows the 
fig. 1-4] 

T5:  You could count only these four figures, what about the fifth one? 

K3: The fifth one is ... 

O5: We added 2, because we noticed that they increase by every 2. We added this 
to the blocks [points to the perimeter of the 4th figure], here 2 [adds 
2 squares to the left column of blue blocks] and here...[tries to draw 
squares on the left side of the top row, after a moment of hesitation] 
no, it can't be here 

K4: Ola, it was sufficient to add eights here [points to the third column of the 
table], then it would be together 40. 

O6: [looking at the numbers from the columns 'the number of blue blocks'] oh, 
that's true. 

Teacher: So was it sufficient to add 8 in blue blocks? 

Girls: Yes, it was. 

When the teacher asked the girls how they had filled in the table, Ola introduced 

the rule that they had discovered and show how the rule could have been used 
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for the 5
th
 figure. That rule was based on increasing the length of each edge with 

two elements. In order to explain the strategy the girl referred to the 4
th

 figure 

and using it she showed what should have been done in order to get the 5
th
 

figure. The elements that she added were standing out from the circumference 

which resulted in the fact that the newly created figure did not maintain the 

shape of the former figure. Ola did not show the picture that was previously 

drawn by Karolina in the additional sheet of paper that depicted the 5
th

 figure. 

That shows that the picture itself was not the most important tool but the way in 

which it was created was in fact crucial factor. The girl wanted to present how 

the rule that had been discovered could have been working for the blue blocks.  

For all the time she was referring to the rule “2 elements more than in the 

previous figure”. Based on the pictures 1-4 Ola was able to imagine the further 

sequence of edges for hypothetically constructed figures. In order to move on to 

the 7
th

 figure, she started with the analysis of the 4
th
 figure. She did not treat the 

figure as a whole but instead was looking only at the one edge (which then had 9 

elements) and on that basis she was able to generate (count up) the amount of 

the elements of the further figures through controlling the number of undertaken 

steps (to obtain 7
th

 figure from the 4
th
 one you have to add to the each edge 

2+2+2 (11=9+2, 13=11+2, 15=13+2).  

During the conversation with the teacher the girls came up with a new idea. 

They spotted that instead of drawing the figures over and over and then counting 

their blue blocks, it was enough just to add 8 to the previous value. Karolina was 

the first girl who noticed that instead of adding new squares to the pictures and 

subsequently counting them is was easier to add 8 to the number of the blue 

blocks that the previous figure was built of. The discovery was made thanks to 

the analysis of data that had been put in the table. As soon as Karolina spotted 

this newly-found regularity she shared this idea with Ola who agreed with her 

friend without doubts. 

We can see here how the geometric rule that was once spotted and applied was 

replaced with the new rule, the arithmetic one. These two regularities did not 

rule out each other but they were still working independently. 

T7: And the yellow ones? How did you find out how many of them there are? 

O8: Because we noticed, that if there is one in the first figure [points yellow 
blocks in the figure] here in the figure no 2 there are 2 [points to the 
first column of yellow blocks in the figure no 2], in the figure no 3 
there are 3, and here 4 [saying this points to the first columns in each 
of the figures] 

Firstly the only one rule for the yellow blocks that had been discovered by the 

girls was the one saying that there is a connection between the amount of the 

yellow blocks in one row with the number of the figure (O8). In order to make 

the sketch of the figure the girls were drawing consequently 5 rows with 5 

elements in each for the figure number 5; 7 rows with 7 elements in each for the 
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figure number 7 and so on. Ola tried to explain her point of view to the teacher 

by presenting the picture number 5 that had already been made. 

K5: [points to the second column] here increased by 3, and here by 5… 

T8: Did you draw the figure and then count the blocks? It is a very good idea. 

During her conversation with the teacher, Ola was focused only on giving a 

report of the work she had done whereas Karolina took a more reflective 

attitude. It could have been influenced by the work that she had been supposed 

to do – merely drawing the figures. Actually, she did not have the opportunity to 

analyze the arithmetic data given in the table. Not until Karolina’s conversation 

with the teacher, had Karolina had the chance to investigate the data and found 

out any connection between successive numbers. The discovery for the blue 

blocks that had been made and agreed by Ola encouraged Karolina to continue 

on her searching for existing connections. 

T9: [turns to Karolina] Do you have any idea? 

K6: That's right, here it increases by 8 [points to the third column], and here by 3 
as we counted [points to the second column (1 and 3)], and here by 
5...[stops for a while, a moment of hesitation]. Yes since there was 1 
here [points yellow blocks in the figure no1], there were 4[points 
with circular movement to yellow blocks in the figure no2] and here 
2 [points to the first column second line], here 9, and there 3 [points 
9 and 3]. 

O9: Or maybe not... 

K7: We counted in this way: here 1, here 2, here 3, here 4 [points to the following 
figures in one column], in the next one should be 5 

O10: And in the sixth one 6 and in the seventh one 7. 

T10: So there would be 5 yellow blocks in one row in the figure number 5. And 
how many altogether?  

K8: We can easily count this [points to the picture of the figure no 5 made by her 
on the separate sheet of paper] 

Karolina was trying to find any connection between the numbers of yellow 

blocks in the individual figures.  She started analyzing the data written down in 

the column “yellow blocks number”. She was looking at the differences between 

successive numbers. Her aim was to find a rule similar to the one that was 

working for the number of the blue blocks. She was looking for any constant 

number that while added to the previous number will give the next one. She 

spotted that the numbers grew in a quite regular way: To get the second figure 

you have to add 3 to the previous one, to get the next one you have to add 5, 

then the number you have to add is 7 and so on. Nevertheless, Ola was not sure 

if it was the right way. She continued her trial to connect somehow the number 

of the yellow blocks with the number of the appropriate figure. She might have 

reached the right conclusion if it had not been her friend interruption.  
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Ola interrupted her friend; Karolina’s explanation was different from the points 

that the girls had discovered and used within their work. After Ola’s interference 

in Karolina’s matters, the second girl gave up her investigations about the issue 

of the number of the yellow blocks and went on to report the tangible course of 

their work. She showed what they had spotted, namely that the number of the 

yellow blocks in the figure were equal to the number of that particular figure. 

O11: There will always be more blue blocks. 

T11: Why do you think so? 

O12: Because yellow as if on this basis, in the fifth there would be 5 each, in the 
sixth one 6, so in the fifth figure they double. 

K9: It can't be more here, there can't be equal number of the figures [points to the 
blue and yellow row; points to the blue blocks in the corner] 

O13: There can't be more yellow blocks than blue ones. 

K10: If we counted the figures, these small squares, would be the same here. 
[points to the row of blue blocks and adjacent to it the row of yellow 
blocks as well as the two blue blocks being in the same row as 
yellow ones.] 

O14: Nothing can be done, nothing, then it would be... 

Girls:  No. Nothing can be done. 

Both girls agreed that there would always be more blue blocks. They took into 

consideration not only the pictures that they had been given at the very 

beginning but also the ones they had drawn on their own. While they were 

looking at the figures they spotted that the blue blocks were located close to 

each other whereas the yellow one were in a more distant location to each other. 

Furthermore, the girls noticed that the yellow blocks were surrounded by those 

blue ones, which implied that in one row there would never be more yellow than 

the blue blocks (as there were always two extra blocks in a row consisted of the 

yellow blocks).  

The last conversation on the strategy that the students followed eventually show 

that they were not analyzing the figures as a whole but they only took into 

consideration the extreme columns and rows. They applied the so-called “local 

visualization”. If Karolina had been a leading person in the group or if she had 

been able to realize her points, they might have correctly solved the task.  

Although both girls, Ola and Karolina, noticed some regularities, they were not 

able to state and report them clearly. They were working only within the real, 

tangible objects (in that case, that objects were mainly the pictures of the 

figures). They were not able to go beyond the data that the task presented to 

them. It shows that the girls are not able to work at the higher level, level of 

abstraction, although it is possible that if the teacher had helped them, the girls 

would have been able to succeed and draw some regularities.  
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CONCLUSIONS 

The students who took part in the research were for the first time exposed to a 

task in which they had to find out and apply some regularities. While 

approaching the task they began with the action of counting the elements that 

had been already drawn. Based on that students’ conduct we can draw the 

following conclusion: it is not enough to depict the task as a sequence of 

connections to provoke students into searching for rules and connections. The 

way in which students started their work shows that they are not used to 

“reasoning through regularities” and what is more they do not present the 

“connections searching “ attitude. As Krygowska (1977) underlines, students 

tend to form their image of mathematics only on the basis of the tasks they are 

exposed to during normal day-to-day classes. In general, students solve the tasks 

in an exactly the same way as they were taught to do it during classes. In the 

task that we presented its contents (the table, the figures, the blue and the yellow 

blocks) had motivated students to undertake a practical attitude towards it. They 

counted the elements and wrote down in the table proper numbers. Besides that, 

they were partly able to spontaneously discover some regularities. Students’ 

activity was focused on looking for the connections. When they succeeded in 

finding one they were encouraged to look for another. It should seem that the 

students’ attitude presented within the research could be the foundation to 

making a hypothesis that looking for regularities is a human natural tendency. 

The two different ways of reasoning that are presented in this paper depict three 

different ways of mathematic thinking. As the work at the task went on, been 

stuck to one particular way of reasoning brought different results. Some ways of 

thinking helped students in making generalization whereas others were 

disturbing. What happened with these methods at the further stages of solving 

the task? The answer to this question is presented through the elaborate 

descriptions of students’ work.  

Bartek and Robert were consequently applying the first method of work. From 

the moment when they spotted the arithmetic regularities the pictures started to 

be useless for them. They ignored them during the next stages of their work. 

Firstly they tried to over-generalize “their” rule for the blue blocks and they 

applied it for the yellow ones. The conversation they conducted with the teacher 

let them realized some mistakes in their way of reasoning: at the same time it 

was a stimulus for them for finding a new rule for the yellow blocks. To some 

extent, they were even able to generalize these rules. The method of the work at 

the first part of the task that was adopted by the boys turned out to be too stiff. 

They used the method over and over while trying to find a solution to the next 

questions and did not bother themselves to look for any other strategy. The one 

they had discovered restricted them to looking at the issue from only one point 

of view. Nevertheless, their method led them to the full and correct solution of 

the task. It is apparent that these boys in fact do have a big potential of reasoning 
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through regularities, finding connections and, what is the most important, of 

both independent and active way of thinking. Their decision to analyze 

connections between figures confirms that. 

They succeeded in going beyond the data given in the task and to move the rules 

that had discovered on the elements that they could neither touch nor see. The 

boys were able to discover some rules but their difficulty was to admit the 

generality of those rules. 

The difference in the way in which boys try to solve the task is visible. Both of 

them presented different ways of reasoning. The trait that dominated at Bartek’s 

attitude was the accommodation of his own reasoning. In the course of the work 

at the task Bartek modified the rules he had discovered and adjusted them to the 

already existing empirical data. In comparison, Robert was stuck in his first idea 

all time. The matter that was likely to be the most important for him was purely 

solving the task and getting some data that could have been taken as the correct 

one. Indeed, he did not seem to worry about the way in which the data had been 

obtained. It seems that Robert is good at real, tangible situations in which he can 

deal with the existing objects as opposed to the situations when he is forced to 

move on to the abstract level. Bartek takes care of both the result and the method 

that led to it. He derives satisfaction and joy from the same activity of 

discovering and creating something new.  However also he finds it difficult to be 

in his element while dealing with abstract problems. He tried to solve the task to 

the very end but his own restrictions are stronger and too difficult to overcome.  

Using the third method may suggest the students’ mathematical maturity. 

However the student who is not sufficiently familiar with mathematics can 

suffer a failure while trying to adopt that method in solving the task as Ola and 

Karolina’s struggle shows. Initially, the girls were only focused on the analysis 

of the figures’ pictures that were enclosed to the task and on discovering some 

geometric regularities. After the discovery made by Karolina, who spotted some 

arithmetic connections, the girls were trying to use only this sort of regularity in 

their further work. Unfortunately, they kept too strongly to the geometric 

representations of particular figures. They focused on the way the blocks were 

located in the pictures (an analysis of particular rows, not the figure as a whole). 

We can point some duality in their conduct. On the one hand we have the 

arithmetic regularities spotted by the girls, on the other hand there are some 

geometric connections among the adjacent rows of the blue and yellow blocks. 

If the girls had been working independently, Karolina might have discovered, 

while using the third method, two different strategies: one for the blue blocks 

and another for the yellow ones. She then might have been able to make some 

generalizations as well. In spite of the fact that both girls are assessed as “equal” 

by their mathematics teacher, they differ at the intellectual level. During the 

research Karolina presented a more mature mathematical reasoning, while Ola 
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needed particular elements in order to apply her mathematical thinking. We can 

see how crucial it is within mathematics education to expand the students’ 

abilities of abstract thinking. 

By participating in the research the students from grade 5 of primary school 

were able to find out some rules and regularities which occurred in the task. 

They were using them correctly up to some point as they were able neither to 

generalize them without any external help nor to move them on to the more 

distant figures. They in fact did state the rule correctly as well as did not make a 

mistake in explaining how it work but it turned out to be not enough so as to 

solve the task to the end. Not until the teacher’s interference had they been able 

to apply the discovered rule for the comparatively big figures. This fact implies 

that the process of generalization is not a spontaneous skill and it does not occur 

automatically as the result of solving some sequence of tasks. It is the ability 

that should be stimulated by the teacher and consequently enhanced by him/her. 

The results of the research also indicate the specific way of comprehension of 

the “generality rule” by the students. It is an accessible generality which is 

always looked at consideration the specific values. The teacher sees this 

generality in a different way namely while discovering the rule he takes for 

granted its accuracy for any n. Students in turn having in front of them the few 

next elements is able to discover the rule through which they were created. 

Subsequently, pupils are able to use the rule properly for the next elements. 

Nevertheless, the students get lost in a situation which forces them to apply the 

rule for any n. Then even the proper rule stops working from the students’ point 

of view. The students seem able to experience only the “local generality” (in the 

described task the rule was working for the first 8 elements) and this generality 

(at some stage of education) is sufficient for them. 
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HOW TO MOTIVATE YOUR STUDENTS FOR MATH AND 

SCIENCE EDUCATION 

 

Lambrecht Spijkerboer 

APS-international, Utrecht, Netherlands 

 

This paper considers the influence of the pedagogical/didactical role of the 

teacher in classroom on the choice of students for math- and science education. 

Classroom observation in relation to research findings for motivation, are 

carried out to find ten focus points. Those ten points of attention are presented 

to increase the influx in math and science formation for 14-15 year old pupils.  

 

THE MAIN AIM OF THE RESEARCH 

In this research the focus is to increase the influx of students for math and 

science studies. Several possibilities to motivate students for math and science 

are carried out by a variety of schools (Bouton & Fanselow, 1997; Vinke & 

Schokker, 2001). The main question is what can teachers do in their every day 

lessons to increase interest and motivation of low achievers in high school for 

14-15 year old pupils to choose for math and science education. 

 

METHODOLOGY 

The research was carried out on thirteen Dutch Universum
1
 schools in ‘havo 3’

2
-

classes. The research specifically targeted on the interest of low achievers in 

high school at the moment these students had the opportunity to skip math- and 

science-education in their choices for further formation. Out of pre-research, ten 

points of attention for teachers were found (Vermaas, 2007). In two different 

research groups (group I and II) math/science teachers were trained with these 

points of attention to study their effectiveness on the short and long term. 

                                                 
1
Universum schools are high-schools with more students interested in math- and science formation. During five 

years, high-schools in the Netherlands had the opportunity to profile themselves with additional financial support 

from the national government, in order to get more students interested in math- and science education. 100-150 

high-schools took the opportunity and developed many different kinds of activities in order to reach the target of 

more influx in math-and science education for 16-18 y.o. pupils. They were called ‘universum’-schools. 
2
 ‘Havo 3’ is the group of low achievers in high-shools in the age of 14/15 y.o. In the end of the school year 

those students have an opportunity to skip their math- and science education, or not. 
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The results as presented find direct application in the classroom to achieve 

a positive attitude of students in havo-3 towards math- and science-education. 

The research project was carried out by APS
3
, during three years (2008-2010). 

Pre-research 

Out of all Dutch high schools, the best four schools were selected using two 

performance indicators: 

 the high influx of havo-3 students who choose math- and science-

education for further formation 

 average or higher grades at the final math/science exams 

Literature research about low performers in Dutch high schools combined with 

school visits to the four excellent schools have been conducted. Interviews with 

pupils, teachers and school leaders in connection to classroom visits were 

performed to determine the influence of the pedagogical/didactical role of the 

teacher in the math and science classroom on the two performance indicators. 

Especially for the group of students mentioned, ten focus points of attention for 

teachers were found: 

1. keep personal contact 

2. give positive feedback 

3. challenge your students 

4. be clear in the procedures to follow 

5. provide accessibility to yourself 

6. make use of teamwork 

7. activate your students in classroom activities 

8. connect curriculum with real life 

9. structure your lessons 

10. give clear explanations 

Research design 

In two research groups with math/science teachers were trained to take care of a 

self chosen number of the ten points of attention mentioned above. They focus 

on these points especially during their lessons in the research - havo-3 - class. 

Pre- and post-classroom visits, interviews with students, the teacher and the 

school leader were carried out at each school, to find which of the ten points of 

attention proved to be most effective. 

                                                 
3
 APS is a non-profit company for educational consulting in the Netherlands and abroad. See 

http://www.apsinternational.nl APS also carry out research- and development projects for the governmental 

educational department. 
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The first research group (group I) consists of eight schools in the first year. In 

the second year, four of those schools were selected to study the sustainability of 

the changes in the didactic role of the teacher. The second group (group II) 

consists of five schools, who were offered a one-year consulting period, with the 

training and research as described above. 

 

RESULTS 

The focus points with the most important changes of attitude of the students 

were measured, as well as the percentage of pupils that make choices for further 

math/science formation 

 

Results most important 

focus points 

less important 

focus points 

percentage 

change 

relative 

increase of 

percentage 

Group I 

first year 

2. positive 

feedback 

5. accessibility 

8. curriculum 

1. contact 

6. teamwork 

35% > 45 % 29 % 

Group I  

second year 

4. procedure 

8. curriculum 

2. positive 

feedback 

45% > 52 % 16 % 

Group II 1. contact 

4. procedure 

5. accessibility 

6. teamwork 37% > 44% 19 % 

Table 1: results of group I and II in first and second year 

Interviews carried out among pupils of the teachers in these research groups, 

gave indications for what reasons those results were achieved. 

 

CONCLUSION 

Among other indicators to influence the attitude of low achievers for math- and 

science education, the teachers’ role is one of the most effective. Besides focus 

points mentioned above, the personal touch of a teacher influences the 

classroom atmosphere, the way students are motivated and feel good with the 

subject. An interesting research question is what actions for teachers are possible 

to train, in order to achieve higher influence to students’ attitude towards math 

and science and the study of those subjects. 
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The main aim of our article is to focus on analysis of the solution of one 

geometric application task for pupils of the 6 graders (from 11 to 12 years old). 

We are observing how they choose the possible strategy, their calculations, how 

they note it and success of the solution. The task contains the image and pupils 

are supposed to calculate the area of the shape placed in the square grid. We 

are using the statistic software CHIC to find the relationship between the 

didactic variables. 

THEORETICAL BACKGROUND  

The knowledge of geometry is basis to understanding the environment in which 

one lives. Geometry and shapes concepts are important for students to 

understand as they can be transferred to different subject across the curriculum. 

The idea of 2-dimensional and 3-dimensional shapes and solids can serve as 

stepping stone into the concepts of angle and measurement (Mulligan, A. et al.). 

When teaching how to calculate the areas of the basic geometrical shapes 2
nd

 

level of the primary school pupils we need to link to skills and experience 

already obtained. For pupils is very important to have the correct understanding 

of units of measurement before the introduction of the standard units. Children 

know geometrical shapes since their early childhood from daily activities. 

Young children move through levels in the composition and decomposition of 2-

D figures. From lack competence in composing geometric combination of 

shapes, they gain abilities to combine shapes into pictures, they synthesize 

combination of shapes into new shapes (composite shapes), eventually 

anticipating making larger shapes out of smaller shapes and combining those 

composite shapes, which they then think of as new units, or shapes (Sarama and 

Clements,2008).  In order to classify shapes children need the language of 

properties as well as the names of shapes and teachers need to plan activities 

which stimulate children discuss properties (Hopkins-Pope-Pepperell, 2004).  

Clemens claimed when teaching a measure of shapes, many curricula lead 

through a sequence of comparing objects directly, then measuring with 

nonstandard units as paper clips, then with standard units. Recent research 

suggests that following this sequence rigidly may not be best. Children benefit 

from using objects such as centimetre cubes and rulers to measure as their ideas 

and skills develop. Not only do children prefer using rulers,   but also they can 

use them meaningfully and in combination with manipulate units to develop 

http://scholar.google.co.uk/scholar?q=analysis+of+the+solution+strategies&hl=en&as_sdt=0&as_vis=1&oi=scholart&sa=X&ei=dLtHT6KyKIGf0QXhg_2sDg&ved=0CBkQgQMwAA
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understanding of length measurement. Even if they do not understand rulers 

fully or use them accurately, they can use rulers along with manipulate units 

such as centimetre cubes and arbitrary units to develop their measurement skills 

(in Sarama and Clements, 2008). Waren and English (1995) posit that ability to 

recognize and manipulate plane shapes has been acknowledged by many 

educators as having a major intimate relationship between many aspects of 

mathematical learning such as the ability to visualize mathematically and the 

ability to conceptualize plane shapes.  In the study of Hassan (2002) was found 

that there was significant relationship between visual perception of geometric 

shapes and achievement of secondary school students in geometry. Based on 

these results, it was recommended that students should be exposed to the 

geometry of the immediate surrounding since this will restructure and enhance 

their cognitive and affective abilities in the learning of geometry.  

One of the possible strategies how to calculate the area of plane shape is to 

compose shapes together or to decompose them into elementary shapes. If 

working in the square grid then one square is one unit. When solving 

mathematical problems we could see different solving strategies as well as 

different ways to express the solutions.  Larson and Chinnappan (2000) argued 

that, among other factors, the organizational quality of students’ geometric 

knowledge is associated with better problem-solving performance. In   their 

study, they reported finding on the extent to which content and connectedness 

indicators differentiated between groups of high –achieving and low-achieving 

10 years old students undertaking geometry tasks. The challenge for 

mathematics educators and classroom teachers is to devise strategies for helping 

all students to improve the state of connectedness of their knowledge bases, but 

particularly to assist the less effective problem solvers to exploit more of the 

knowledge they have acquired. Rickard (1996) denotes that it has been 

acknowledged by the relevant research literature that when students are dealing 

for an adequate period with problem solving tasks of the same conceptual 

backdrop, they develop problem solving techniques. They also make 

connections among mathematical ideas using specific problem solving strategies 

(in Papadopoulos, 2008). In our case conceptual backdrop is the area of triangle 

and trapezoid and the techniques are decomposition shape given in the square 

grid and using that picture for relevant calculation of the area.  

METHOLOGY OF THE RESEARCH 

In our research we focused on the analysis of solutions of a mathematical 

problem, which was prepared for the numeracy test for 6 graders. We had 

chosen 281 solutions for deeper analysis excluding solutions rated zero (where 

pupils didn’t solve or didn’t know how to solve the task). This left us 88 

possible solutions (31.3%). We didn’t look for reasons of the failure in solving 
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such tasks as it wasn’t the aim of our research. The main purpose of this 

research was to analyse the link between  

- solution strategies of the task given as a figure, 

- the actual solving the problem (calculating the area), 

- the notation of the calculation,  

- the final result of the task.  

We have investigated the geometric as well as numerical conceptions of the 

pupils.  

We were creating task in accordance with mathematical competencies and 

competency clusters as per OECD PISA study: 

1. The tasks which are measuring the competencies at reproduction cluster.  

2. The connections cluster competencies based on the reproduction cluster.  

3. The competencies based on reflection cluster. 

(http://www.oecd.org/dataoecd/63/35/37464175.pdf) 

Our surveyed problem has been created on the reflection cluster. 

Problem: Garden house. 

Mr. Plum would like to build the garden house as per the following drawing. 

 

Picture 1 

How much will the new roof covering cost him? He will use the shingle type 

DIAMANT. The price list is in the table below. 

 

Picture 2 

 (3.00 m
2
/bal expression means that one package will cover 3m

2
 of the roof) 
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Analysis of pupil’s solutions 

When surveying pupil’s solutions we could observe the following: 

1. Pupil has or hasn’t worked with the picture when calculating the area of 

the roof. 

2. If pupil worked with the picture he divided the roof to various elementary 

shapes. 

3. He used different strategies when calculating the area. 

4. When calculating the price of the shingles and his choice from the table 

was correct, he used various notations of the solution. The result was 

either correct or incorrect. 

When dividing the roof into basic shapes pupils were correctly targeting to the 

polygons where they were able to use the given area of the triangle 300dm
2
 

(which they knew is 3m
2
). The codes are assigned to the shapes to show exact 

relationship between the used elementary shape and the area calculation.  For 

example 2.(6C) means that pupil in his solution counted shape C (area of 6m
2
) 

twice. So we could directly see that part of the area is 12m
2
 (so the area of two 

rectangles). 

We could see the following elementary shapes in their solutions: 

Shape  The area of a shape Code  

 

A       

 

3m
2 

 

3A 

 

B      

 

6m
2 

 

6B 

 

C 6m
2
 6C 

D        12m
2  

12D 

Table 1: Elementary shapes. 

 

Based on the observed phenomena, we have identified the following didactic 

variables: 

Type P – work with the picture 

P0 – pupil didn’t worked with the picture 

P1-P3 – pupil used the following division of the roof 



242  GABRIELA PAVLOVIČOVÁ , JÚLIA ZÁHORSKÁ 

P1  

Picture 3 

P2  

Picture 4 

P3  

Picture 5 

Type C – roof area calculation 

C0 – pupil didn’t write any area calculation 

C1- pupil calculated the area as 12.3 what means 12.(3A) 

C2- pupil calculated the area as 8.3+2.6, what means 8.(3A)+2.(6C)                   

or  8.3+6+6, so 8.(3A) +1.(6C)+1.(6C) 

C3- pupil calculated the area as 6.6 what means 6.(6B,C)=4.(6B)+2.(6C) 

C4- pupil calculated the area as 6+12+6+12 or (6+6)+(12+12) what means 

1.(6B)+1.(12D)+1.(6B)+1.(12D) 

C5- pupil calculated the area as 6+6+6+6+6+6, what means 

1.(6B)+1.(6B)+1.(6C)+1.(6B)+1.(6B)+1.(6C) 

Type F – calculation of the price for shingles 

F1 – pupil wrote down sequences of the calculation of the price for shingles:  

36(m
2
):3(m

2
) =12 packages; 12.11,07(€)=132,84(€) 

F2 – pupil wrote down sequences of the calculation of the price for shingles:   

36:3=12.11,07=132,84(€) 

F3 – pupil wrote down sequences of the calculation of the price for shingles: 

36:3.11,07=132,84(€) 



Analysis of the solution strategies of one mathematical problem 243 

 

 

F4 – pupil used the “rule of proportion” for the calculation: 

11,07(€):3(m
2
)=3,69(€); 3,69(€).36(m

2
)=132,84(€) 

F5 – pupil counted: 36(m
2
).3(m

2
) or 36(m

2
). 11,07(€) 

F6 – pupil counted: 11,07(€).3(m
2
) 

Type R – the solution 

R1 – correct result 

R2 – incorrect result 

Except for the chosen strategies using the picture (shown as didactic variables 

type P) there were several other options to calculate the area of triangle and 

trapezium by using the rule of the same area of geometrical shapes and the area 

of rectangle (Picture 6) 

 

Picture 6 

EVALUATION OF THE RESEARCH 

Each didactic variable was assigned either value 1 (the variable in the pupil’s 

solutions occurred) or 0 (the variable in the pupil’s did not occur). 

We investigated the occurrence of didactic variables but mainly the relationships 

and dependencies between them. We were interested in the relationship 

between the numerical and geometrical ideas of pupils that resulted in the use 

of the picture in calculating the area and expressing the solution. We used the 

statistical software CHIC (Classification Hiérarchique Implicative et 

Cohésitive) for a deeper analysis of dependencies and relationships, which was 

developed by Regin Gras at al. who works in Laboratoire Informatique de 

Nantes Atlantique (Gras, 2007).  

C.H.I.C. is software which works with the frequencies of particular significant 

unites. It represents the connection between quantitative and qualitative analysis, 

it makes possible to compare the similarity of didactical variables present in 

research, suggest the relations of coherence between variables and describes also 

the probability of realized implication between variables by probability rate of 

their realization. Apart from the relations between particular didactic variables 

this software allows also the comparison of relations between whole classes of 
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didactic variables in three type of graph (similarity tree, implicative graph and 

implicative tree) (Földesiová, 2003).  

All three types of the diagrams were created to survey the relationship between 

didactic variables types P-C-F-R, P-C-R, P-C-F, P-R, P-C, C-R, F-R. We chose 

the following graphs to represent the examined relationships. 

 

 

 

 

 

 

 

 

      

 

 

 

 
 

Diagram 1: Similarity tree for all variables. 

 

Similarity tree define the similarity and intensity between two classes of defined 

variables. In the construction of the graph there are two variables with the most 

similar bases connected into one class (the highest level). Then there are added 

one or two variables with similar base and they create another but weaker level. 

Another variable with the similar bases are added this way. Only two highest 

levels are important for the evaluation of the experiment. The others are not 

significant from the statistical point of view. 

From the graph we could see that all variables are connected on the certain level 

of similarity. The highest level of similarity is between variables P3 and C1 

which is analyzed more deeply in diagram 2. The second level of similarity is 

between variables F5 and R2 which is described as implication in graph 3. In 

this graph is interesting similarity between two groups of variables: (P2, C2) and 

(F1, R1). It is at the lower level, however, here we see a similarity between 

solution strategies of the roof area task (division in the picture) and calculation 

of the price of the shingle leading to the correct result. Therefore we could say 

strategies P2, C2, F1 led to the correct result on the certain level. 
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Diagram 2: Implicative tree for variables P and C 

 

Implicative tree represents the implications or the equivalencies between some 

stated variables. By evaluation of experiment’s results the most significant are 

the first two levels in the graph, the others are irrelevant.  

To evaluate the relations using this type of graph we chose only variables type P 

and C. We were interested in bonding between the work with the picture and 

strategy of calculation the area of the roof. It means between numerical and 

geometrical conceptions of pupils. We could see strong equivalency between 

variables P3 and C1 from our graph. It means pupil would use division of the 

roof as per picture P3 if and only if he uses the strategy C1 to calculate the area. 

Looking through these strategies we could understand strong mental link of the 

calculation to the picture and vice versa. The second level of implication is 

between C3 and P1, so if pupil used the strategy C3 to calculate the area of the 

roof he divided the roof as per picture P1. Further relations between the picture 

and calculation are already at the lower semantic level between P2 and C2 as 

well as C0 and P0. Strategies C4 and C5 are not showing as significant in 

regarding the work with the picture. 

 

Diagram 3: Implicative graph for all variables. 

99% 99% 

88% 

88% 
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Implicative graph is reflecting the possibilities how pupil could think or consider 

the strategies of the procedure how to solve the task. Arrows between variables 

in the graph are coloured. Different colours represent percentage intensity 

between variables or indicate percentage of the pupils with the same knowledge 

who gets to the next variable. Only relations between variables over 85% are 

interesting for the results of the experiment. 

If we look at our graph we could see the software generated dependencies over 

85% between the following didactic variables: R1, F1, C2; F2, F5, 

and C4, R2.Therefore we can say, that if pupil used the strategy C2 to calculate 

the area of the roof than for 88% he used the strategy F1 to calculate the price. 

In terms of method and accuracy of both calculations, we can say this group of 

pupils had the best calculation skills. A similar relationship exists between 

variables F2 and C4. Method F2 represents the correct way of thinking when 

calculating the price but incorrect way of writing the calculation. C4 is a strategy 

for calculating the area of the roof which uses adding areas of the triangles and 

trapeziums, so pupil is not using multiplication. We can say that this group of 

pupils is able to think correctly but has less calculating skills.  Relation between 

variables F1-R1and F5-R2 is obvious.  

CONCLUSIONS 

When analysing pupil’s solutions of the problem we were observing other 

interesting strategies additional to the introduced. We won’t list them because of 

limited range.  We can conclude quite a strong connection between numeric and 

geometric conceptions of pupils showed. Different strategies how to divide the 

roof to elementary shapes shows variety geometric ideas of pupils, different  

options how to work with geometric shapes what are not possible to fill by full 

square units. Creating own strategies of solutions is related to the fact, pupils 

didn’t know formulas for calculation the areas of the shapes. If pupils did solve 

this task their results were correct in as much as 73%. Following our research 

we identify three different levels of student’s solutions according to their 

approach to the problem. However the order of the levels isn’t distinct. In one of 

the levels are pupils who have good calculations skills and functional thinking. 

These pupils were able to do correctly notations of mathematical calculations in 

link with geometrical interpretation of the task solving.  On the other level are 

pupils who have also good calculations skills and functional thinking. However 

these pupils preferred mental calculation as well as mental manipulation with 

figures. In the second part of the task (F as per didactic variables) were more 

calculations using also decimal numbers, so notation of the calculation was 

needed. Here we could see their incapability to write correct notation of 

mathematical calculation. It is quite common even for mathematical talented 

pupils who underrate formal part of the solution.  It would be interesting to 

investigate further which level pupils are globally having better mathematical 

skills and how important was influence of their teacher. The next level is the 
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lowest from the mathematical skills point of view. Here are pupils whose 

calculation skills as well as functional thinking are lower. Their geometrical 

interpretation of the task wasn’t clear. Generally we can say there is a strong 

mental relationship between the picture and the calculation. The results of this 

study confirm the fact that pupils of certain age, assuming the appropriate level 

of solving and mathematical skills and knowledge build and develop skills to 

solve mathematical problems by choosing their own solution strategies. 
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In this paper we are interested in the work with 8-grade pupils from grammar 

school in Nitra, who were 14-15 years old. Our activity with these pupils 

consisted of looking for mathematics in any form while walking in the park and 

taking pictures of the objects that represented some form of mathematics. Then 

we asked them to try and create some concrete mathematical tasks, which would 

be connected with their pictures. We recorded the pupils´ pictures, their 

creativity and original thinking. 

INTRODUCTION 

One of the goals of education at any school level should be to stimulate pupils to 

think creatively, think logically and to be able to solve problems. Creative 

thinking can be developed by a creative teacher who would help to form creative 

situations, support pupils’ initiative and give space to new and original ideas.  

(Blažková, Vaňurová, 2011). 

According to Pavlovičová (2008) mathematics as a school subject informs 

pupils of abstract system of knowledge. It is useful to make this system closer to 

pupils by using actual objects and activities, with which they already have 

certain experience. Pupils gain the ability to use mathematics by being directly 

involved in the world, which surrounds them. Interrelating knowledge gained in 

the process of teaching with reality gives pupils greater motivation to continue 

learning and gaining information in this way.  

THEORETICAL FRAMEWORK  

Creativity is an essential feature of personality which each of uses in our 

everyday life, since it allows us flexibility when dealing with real life situations. 

Study of mathematics should be seen as one of the opportunities for its 

development, although creativity is not traditionally associated with maths.  

Mathematics can be an interesting activity not only for the mathematicians but 

also for the teachers and students (Ponte, 2008). People who think independently 

feel the need to make sense of everything based on personal observation and 

experiences rather than on information they were given without questioning it. It 

is more tempting to concentrate just on the memorization of facts and practice 

algorithmic skills, than to work on creativity and independence in thinking 

(Hoffmann, 2008). 
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According to survey conducted by Blažková and Vaňurová (2011), creativity of 

children depends on great deal on teacher’s approach. When pupils solve only 

classical tasks by always using the same methods, they have problems to change 

their learned way or create a task independently. Children can develop certain 

commodity in thinking, little initiative or even unwillingness to work.  

Creativity is defined as a production of new and original ideas (Zelina, 1996). 

Research on creativity, at the group level, has highlighted the potential trade-off 

between social control and creativity (Nemeth & Staw, 1989).  

Creativity in the mathematics classroom is not just about what pupils do but also 

about what we do as teachers. If we think creatively about mathematical 

experiences that we offer our pupils we can open up opportunities for them to be 

creative. 

Mathematics is as much about problem posing as it is about problem solving. It 

is about noticing within a situation that there is a question waiting to be asked. 

At this point, creativity lies in noticing that there is something to be investigated. 

When setting up situations in the classroom we should make an effort to choose 

contexts that offer students opportunities to pose their own problems. 

Creative teaching requires from teacher to create and exercise such tasks, which 

would enable pupils to use their acquired knowledge more freely, in new 

contexts and when solving new and unknown problems (Lokšová &Lokša, 

1999). When talking about creative activity, just as about any school activities, 

what children produce depends not only on their own abilities but also teacher’s 

skills. Teacher who has wide spectrum of interests and who wants to share them 

with children in the school and outside it supports creativity of pupils more than 

stereotypical teachers (Vidermanová & Melušová, 2011). 

The results of research of Maj (2006) show that: 

- Among the mathematics teachers the knowledge and skills regarding creative 

mathematical activities are insufficient. 

- Among the mathematics teachers it is generally wrongly believed that the 

creative mathematical activities are developed by themselves during the 

mathematics lesson and do not require any special didactic endeavours, 

methods or tools to develop them. 

- The mathematics teachers do not have experience and skills of undertaking 

these activities and what happens is that they cannot provoke these activities 

and they cannot include them in the work with students. (p. 138) 

One of the main aims of mathematical education as such is preparing the 

students for dealing effectively with the real-life situations. The effect of activity 

in this area in Holland was the Realistic Math Education theory created by H. 

Freudental (in Heuvel-Panhuizen, 1998). We can find a lot of mathematics 

around us, in our surroundings. The world around us provides us with many 
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opportunities to come up with mathematical tasks that would be based on 

everyday situations. 

In our experiment we analysed one activity that teachers can use to increase 

creativity and motivation of pupils in mathematics. 

When working with students we used the method of brainstorming, which also 

helps to develop pupils' creativity. The basic principles of this method say that 

in the first phase of solving a problem, we must produce the most various and 

original ideas, but also be critical about them. In the second phase of problem 

solving, evaluation and further work with the ideas follow (Zelina, 1996).  

METHODOLOGY 

By supporting mathematical creativity we can provide a combination of 

knowledge and real life situations. Solving mathematical problems can be done 

by supporting pupils to be active and creative. A very suitable thing to do would 

be to look for mathematics in all that surrounds us. Pupils should look for 

mathematical properties, patterns, geometric shapes or bodies in the city, at 

home, in nature and so on.   

In our opinion, a very good activity appears to be finding mathematics in the 

environment of the park, which is a rich collection of such information. We can 

apply it at different age of pupils, but also in all the areas of mathematics.  

Looking for various plane geometrical shapes or bodies in nature and creating 

tasks to given problems by the pupils themselves can lead to increase in pupils’ 

motivation and their spatial imagining. It would be also useful if students were 

able to formulate and interpret their results. During these activities pupils can 

also apply all the knowledge they have acquired in geometry.  

Our research questions are following: 

- Do pupils know how to find geometry in the park? 

- Can pupils come up with concrete mathematical tasks that would involve 

geometrical objects that were found in nature by the pupils (out of set of 

geometrical objects given by the teacher)?  

In this paper we present one such activity which was conducted with 8-grade 

pupils from grammar school in Nitra, who were 14 -15 years old.  The activity 

was divided into two phases. In the first one, we asked them to look for 

mathematics in any form while walking in the park. We told them to take 

pictures of objects of their interest.  In the second phase, we asked them to try 

and create some concrete mathematical tasks, which would be connected with 

their pictures. This is how we gained rich collection of pictures. The activity was 

video recorded too. 
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The results of students were classified according to the common characteristics 

into several groups. We decided that the common characteristics in the pupils´ 

pictures will be: 

- mathematics that can be easily seen in the picture (the first group),   

- mathematics that could be seen only after teachers consulted pupils to 

help them see it. These pupils also subconsciously created mathematical 

tasks (the second group), 

- mathematics that could be seen after pupils added yet another object into 

the one they found, so that the newly created object became geometrical 

figure (the third group). 

CONCLUSION 

This activity was interesting for both pupils and their teacher. Pupils very active 

and after a few minutes, their creativity was awaken to the fullest. Here is a 

description of both phases together with the pupils' pictures. 

First phase 

Pupils’ pictures were then divided into three previously described groups:  

Easy-to-see mathematics – in this group we put those pictures in which it was 

easy to tell, what kind of mathematics was involved. Here pupils took pictures 

of geometrical shapes they found in the park.  
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Usage of mathematics – here we included pictures, in which connection with 

mathematics was not immediately clear. One could have even thought that they 

have nothing to do with mathematics.  From the conversations that followed we 

could see that pupils were subconsciously creating mathematical tasks.    

Transcript of the interview is as follows:  

E: Where can you see mathematics in this picture?  (Picture with face) 

P: But how many percent of the face makes the eye?  

E: So, you created tasks to go with the pictures?  

P: We did, some yes. We should not have?  

E: But yes. We will do this now for all your pictures. This will be your following 
activity. 

    

    

“Completion” of mathematics  

When pupils did not find appropriate objects with easy-to-see mathematics, they 

modified the surroundings in such way that mathematics became obvious. 

Difference between this and the first group is in greater creative and original 

thinking of pupils in this one. 

 

   

Second phase 

In the second phase of activity we asked students to create text which would 

represent problems to go with their pictures. This was the way in which we 

obtained a rich collection of photographs which presented our bases for creation 

of mathematical problems. There are no concrete measures related to 
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geometrical objects in our problems, they are open problems which could be 

completed and solved by pupils.   

Easy-to-see mathematics on photos of pupils 

When looking at the pictures in this part we can see what kind of mathematics 

pupils discovered there. Pupils are usually looking for the objects that look as 

specific geometrical solid; they are looking for different 2D shapes. They would 

be also able to count contents and volumes of found objects; possibly they could 

detect the different symmetry of a given object. Therefore, in the following 

photos it is not difficult to see what exactly inspired pupils from mathematics in 

the park. 

 

What symmetry can we find on the 

hubcap car?  

Usage of mathematics 

In this second part we have selected photos, which pupils already think that their 

knowledge of mathematics used to find mathematics in the park. Here are a few 

specific tasks, which the pupils came up with. 

 

If we empty one-fifth of the bin the 

total weight will be 80 per cent of the 

full one. What is the weight of an 

empty bin?    

 

How does the length of the rope 

depend on the length of the shadow? 

When is the length of shadow in its 

maximum and when in its minimum? 

 

 

How many kg of red and white 

painting was necessary for these 

columns, if 1 kg of paint covers 

approximately 8 m
2
 area? 
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What is ratio of the tail to body of the 

jumping squirrels in the park? 

 

 

I have 6.50 euros. How many friends 

can I invite for a hot-dog and a small 

drink?  

Completion of mathematics 

From the photos in this section it is clear that pupils tried to involve their 

classmates into the experiment. They tried to complete existing objects in the 

park so that we would be able to create specific text of problem. Next, we 

mention interesting pupil’s text problem. 

 

How many Peter´s feet can cover the 

top of this tree stump? 

 

The following table shows the number of photographs, which were previously 

divided into three groups formed by the researchers.  

Group of pictures Quantity of pupils’ pictures 

Easy-to-see mathematics 13 

Usage of mathematics 15 

Completion of mathematics 4 

Table 1: Classification of pictures into groups 

The table shows that pupils were interested in the activity. Most photographs 

ended up in the second group. This means that pupils were thinking about 

mathematics while taking pictures.  

In the next part, we wanted to see what parts of mathematics were used by 

pupils when creating the tasks. Pupils classified their photos into units of 

mathematics which they knew from previous years at grammar school. These 

were then included into table 2.  
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Part of mathematics Number of pupils’ pictures 

The planar shapes 13 

The solids 14 

The content and circumference of the shapes 11 

The volume and surface of the solids 10 

The ratio 9 

The computational geometry (length of 

segments, magnitude of angle, …) 

11 

The arithmetic 1 

The symmetry 4 

Table 2: Classification by parts of mathematics 

Creativity of pupils was visible while they were creating the tasks. Most tasks 

were made for parts “The planar shapes” and “The solids”. This fact is also 

result of pupils’ surroundings. Park was inspiring for them, since there were 

many objects with easy-to-see mathematics.  
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In this paper we will use an approach to the term “to understand 

a mathematical concept” developed in Poland by Zygfryd Dyrszlag. Among his 

four levels of understanding we focus on the third one: understanding at the 

“level of generalization”. The word “generalization” in this approach means 

rather not a student's mathematical activity, but a level of understanding.  

Based on the analysis of results of empirical research we propose answers to 

three questions: 1) What degree of understanding of a new mathematical 

concept can students reach as the effect of independent reading, on each of the 

levels: definition, local complication, generalization? 2) If the degree of 

understanding reached by the student can increase following heuristic 

directions given? 3) Is there a connection between the degree of understanding 

of a new mathematical concept on each of the levels and school grades? 

INTRODUCTION 

One of the main objectives of secondary school is to prepare young people to 

study. This is closely connected with a self-supplementing of knowledge by 

tapping into various sources of information and learning in this way new content 

and concepts. The need for self-educating does not finish at the end of one’s 

study. On the contrary, is present at the next stage of life, which is work. 

Upgrading different ‘job skills’ has already become a mandatory standard for 

most employees, and is essential, not only for possible promotion, but often 

simply to maintain their position at work. 

Most companies take steps to improve productivity while reducing employment. 

A very demanding job market and growing competition make the need for 

additional training, and sometimes even completely re-training a perspective, 

that any modern man has to take into account. Reading and analysis of 

mathematical texts is a skill that involves the student in taking a variety of 

mathematical activity and, therefore, directly implements the objectives of 

teaching mathematics as a subject. 

It also directly affects the ability to read and analyze a mathematical texts 

(Konior, 2002), that is, to which each of us has to do in everyday life (tax return 

forms, maps, manuals of various kinds of automatic equipment, legal 

documents, leaflets on the operation and use of medicines, etc.). What's more, 



258  MIROSŁAWA SAJKA, KRZYSZTOF LUTY 

this ability is also an important factor in the whole process of self-education 

(Konior, 2002). 

It is interesting to us, therefore, what is the efficiency in the assimilation of new 

mathematical concepts at this stage of learning through reading a mathematical 

text. This is related to our research questions.  

THE AIM OF THE RESEARCH 

We assume the definition of the term levels of understanding of a concept 

according to Dyrszlag (1972) and in this context we define a new term: degree 

of understanding of a concept at the given level. 

In the light of the terminology assumed the aim of the empirical research done 

was: 

1) a diagnosis of the degree of understanding of a new mathematical concept 

at the levels: definition, local complication and generalization that can be 

reached by students from the secondary school as the result of an 

independent reading of a mathematical text in the form the definition of a 

mathematical concept, 

2) examining the possibility of an increase of the degree of understanding of 

a new concept at the given level of understanding as influenced by 

heuristic directions given to the student, 

3) finding if the degree of understanding of a new mathematical concept at 

the particular levels correlates with the school grades that students 

receive. 

THEORETICAL FRAMEWORK 

Attempts of defining the term to understand a mathematical concept was and is 

being undertaken by many researchers during many years  (e.g.: Vollrath, 1974; 

Bergeron&Herscovics, 1982; Locke, 1985; Dewey, 1988; Hoyles&Noss, 1986; 

Klakla M. at al., 1989; Sierpińska 1992, 1994). Here, we will bring forward 

a definition by Dyrszlag (1972, 1974), which is being used in the Polish 

mathematics education research and literature, but rarely mentioned in the 

English language literature (Watson&Mason, 1998; Mason&Watson, 2001; 

Vollrath, 2002). 

The author distinguished four levels of understanding of a mathematical 

concept: definition level (UL1), local complication level (UL2), generalization 

level (UL3), structural understanding level (UL4). Below we give a concise 

outline of symptoms determining the levels according to Dyrszlag (1972). 

According to him (1974) a diagnose of understanding a concept is possible and 

consists in the analysis of the product of students' work on appropriately 

selected problems aimed at verifying the attainment of knowledge and skills 

assigned for the given school level. 
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LEVELS OF UNDERSTANDING (DYRSZLAG 1972): 

UL1 - The definition level  

Understanding at this level means the ability: 

- to produce the formal definition of the concept, including all conditions that 

identify it, 

- to apply the definition in a concrete example, 

- to show or create (or tell how to) designata, and 

- to recognize the designata and non-designata in a given collection of objects. 

UL2 – The level of local complication 

Understanding at this level means an extension of that at the UL1 by addition of 

specialized designata and non-designata and, at the same time, accounting for 

some extra conditions. Though, the complication is local only and embedded in 

concrete examples, not requiring a generalization.  

The various specialization of counter-examples may be followed by a partial 

abstraction of some features of the concept […]. It essentially lowers the degree of 

isolation of the concept from among other ones being either precedent (when 

counter-examples are specified) or subordinate (when examples are specified). 

(Dyrszlag 1971, p. 49).  

But – the author stresses – the extra conditions shouldn't be too numerous and 

factors like age and mental development of the student should be accounted for.  

Understanding UL2 manifests itself then through:  

a) indicating examples and counter-examples of the concept considering 

additional simple conditions, 

b) explaining why an indicated object is not a designatum of the concept, 

c) checking which of the given defining conditions is satisfied, and which is 

not, by the indicated object, 

d) introducing changes in the indicated example such that it becomes a 

counter-example. 

e) deciding if a boundary example is designatum of the concept or not. 

UL3 – The level of generalization 

Understanding at this level is characterized by: 

- thinking detached from concrete designata of the concept, 

- disposing with an operative knowledge on the whole class of designata, and  

- flexible use of symbolism linked with the concept. 
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At this level the possession of a fully formed mathematical abstract object is 

expected. It manifests itself through 

a) the knowledge of relationships between the range of the given concept 

and ranges of synonymous concepts, 

b) ability to point precedent and subordinate concepts, 

c) ability to classify a  precedent concept in a way that one class is the range 

of the given concept, 

d) ability to avoid difficulties when solving problems with variable 

symbolism, 

e) assertive answering to confusing suggestions concerning the concept, 

f) ability to remove the so called „information noise” (unessential 

information) in problem situations, 

g) ability to prove theorems concerning the concept. 

UL4 – Structural level 

Understanding at this level refers to structure and their models. It is 

characterized by spontaneous looking for analogy objects in considering models, 

which means seeing a common structure of different ones (e.g. Group, Vector 

space). This level is hard to reach (or at least evidence) in secondary school.  

METHODOLOGY 

Empirical research (Luty, 2010) was carried out among 18-19 year old students 

attending the 3d (last in upper secondary school) grade. They followed the 

extended-level curriculum in mathematics. 

 It was done in two stages. In the first stage understanding of the concept of the 

Cartesian product was examined, in the second – the concept of a complex 

number. Reasons for selecting those concepts were: 

- they are not known to the students at this school level so recapturing 

remembered knowledge can be excluded, 

- prerequisite knowledge possessed by Polish students at this school level is 

sufficient for the introduction of these concepts without a preparation, 

- the linguistic and logical structures of the proposed definitions, questions, and 

problems are new, while at the same time the language and symbolism are 

legible for the students. 

In both stages of the research written products of the subjects were analyzed, but 

the methodology in each stage was different. Figure 1 present the scheme of the 

research.  
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Figure 1. The scheme of the research 

The basic research tool were specially designed work sheets (Luty, 2010) 

referred to as respectively Work Sheet 1 (WS1) and Work Sheet 2 (WS2). Both 

bared the same layout. It started with a short text proposing the definition of a 

concept – the Cartesian product of two sets in WS1, the set of complex numbers 

in WS2. We quote them below. 

WS1: 

With symbol (a;b) the ordered pair is denoted, in which the following order is 

determined: a is the first element, and b is the second element. 

Let A and B are arbitrary sets. The set of all ordered pairs (a;b) such that a belongs 

to A and b belongs to B is called the Cartesian product of sets A and B and is 

denoted with symbol A×B. Otherwise, A×B ={(a,b): aЄA /\ bЄB}. The Cartesian 

product A×A is denoted shortly as A
2
. 

WS2:  

With symbol i the so called imaginary unit will be denoted possessing the property 

i∙i = i
2
= - 1. Set C={z: z= x+y∙i  /\  xЄR /\ yЄR}  is called the set of complex numbers, 

and its elements are called complex numbers. 

For each complex number z= x+y∙i where x, y ЄR we distinguish the real part equal 

x and the imaginary part equal y, which is expressed respectively as Re z=x, 

Im z=y. An arbitrary complex number z= x+y∙i where x, y ЄR can be interpreted as 

point in the plane with coordinates (x,y). 
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Each work sheet included besides six problems diagnosing the understanding of 

the concept at each Dyrszlag's level. We are aware, though, that the proposed 

assignment of problems is not unequivocal: a problem can examine the 

understanding at different levels at the same time. The diagnostic problems were 

designed according to directions concerning the quality of concept 

understanding's control at the given level (Dyrszlag 1974, p. 30). In particular, 

they were so chosen as not to require from the student carrying complicated 

reasoning, drawings or calculations. Also, questions transgressing the definition 

level did not admit casual answers as each required a justification of the answer. 

An additional research tool at the first stage was a questionnaire. It served to 

obtain the information which problems brought most difficulties for the 

students, if they had any doubts while solving them, and how they evaluate the 

difficulty of the whole work sheet WS1. The questionnaire also offered the 

students an opportunity of a free expression on the work sheet and comments. 

In the first stage 58 students participated. The analysis of the products and the 

questionnaire were here the only research methods.  

For the second stage 6 students were selected out of those 58. The selection 

criterion was school grades in mathematics at the end of last semester: two 

students with an A or B, two with C, and two with D or E. With each of those 

the researcher interviewed individually (Luty, 2010). 

The task of the student was to read the text and try to solve problems included in 

work sheet WS2. During his/her work the researcher was watching it and taking 

scrupulous notes. The objects of his observation were: the order of problems 

being solved, kind of corrections made, frequency of referring to the text, time 

devoted to each problem. In this stage then, as at the previous one, the method of 

analysis of students' written products was applied, but here it was complemented 

with the method of participating observation. 

We were also interested if a common analysis of student's answers and offering 

him/her general directions would make him/her inclined to correct his wrong 

solutions. So the research was continued with the method of non-standardized 

interview. After the end of the student's independent work on WS2 the student 

was asked to justify his/her answers. In the case of a wrong solution the 

researcher initiated a discussion. It was carried on the base of previously 

constructed list of heuristic hints and helping questions that aimed at facilitating 

the discovery of a correct solution by the student. 

All answers by the examined to problems in work sheets WS1 and WS2 were 

qualified according to correctness in four groups: fully correct (correct 

essentially and in the editorial layer), with minor faults (essentially correct, 

editorial faults), wrong (with many essential errors or lacking). 
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The analysis of answers to problems related to understanding at the 

generalization level indicated the need of introducing one more category: 

incomplete answer: essentially correct but missing some possible cases. 

In the analysis we assume that the solutions belonging to the first two groups, 

that is fully correct solutions or solutions with minor editorial faults, are the 

manifestation of the student's understanding of the concept at a particular level. 

We define the degree of understanding of a concept at the given level as the 

percentage of correct answers to all problems diagnosing understanding at this 

level. 

THE PRESENTATION OF THE RESULTS AND THEIR ANALYSIS 

The results and analysis of the first stage of the research  

1) What degree of understanding of a mathematical concept at the given level 

can students reach as the effect of independent studying a definition? 

By making quantitative analysis of the answers to problems from WS1, it turned 

out that the total degree of understanding of the concept at the given levels was 

respectively: 

55% - understanding at the definition level (UL1),  

48%  - understanding at the local complication level (UL2),  

18% - understanding at the generalization level (UL3). 

Comparing the results obtained we observe that the degree of understanding of 

the concept of the Cartesian product in the surveyed students group at levels 

UL1 and UL2 proved to be very similar, because the difference in the results is 

only 7 percentage points. 

On the other hand we can pay attention to a dramatic drop in the number of 

responses demonstrating the generalization level of understanding of the 

concept. The number of correct responses on tasks diagnosing UL3 was over 

two times smaller. The weaker students’ results at this point do not seem to be 

surprising, as the understanding of the concept at the generalization level 

manifests itself in the difficult skill of location the concept in the structure of 

parent and child concepts and the network of their interconnections. 

Furthermore, if the student has not received a high degree of understanding of 

the concept at the lower levels UL1 and UL2, a chance to solve any problems 

relating to the level UL3 is small.  

Also interesting is the sheer scale of this phenomenon. Globally, the degree of 

understanding of the concept at UL3 is twice lower than the degree of 

understanding at UL1 and UL2. 
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2) If the degree of understanding of a new mathematical concept at the 

particular level correlates with the school grades usually received in 

mathematics by students? 

To provide an answer to this question we have taken into account students’ 

school grades in mathematics at the end of the last semester. They prove to be 

more objective assessment of students’ mathematical ability and aptitude to 

learn the subject. Among all respondents had been identified three groups. The 

first was formed by 16 students with good results in mathematics (with grades A 

or B) we call them good group, the second average group represented those 

with the grade C (28 students), and the third poor group was formed by 14 

students (with grades D or E). In this paper we will call a member of the poor or 

good group respectively as a poor or good student. 

Analysis of the WS1 results shows that there is a close connection between the 

degree of understanding of the concept at a given level and the grades achieved 

in mathematics in school education. The degree of understanding of the concept 

at a given level increases with the semester grade in mathematics. For example, 

the degree of understanding of the Cartesian product at the generalization level 

was 27% among students from the good group, 15% in students from average 

group, and only 12% in students whose mathematics achievements are poor. In 

Figure 2 we present the summary of the results.  

 

Figure 2. The degree of understanding of the concept at levels UL1, UL2, and UL3 

released by WS1 among students with different learning outcomes in mathematics 
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Analyzing the students’ results presented in the graph (Fig. 2), we would like to 

note three more facts. Firstly, the degree of understanding of the concept at 

levels UL1 and UL2 in students from poor group is identical and is 46%. 

Undoubtedly, it would be worth to examine whether such a tendency is more 

general. Another interesting observation is that in each group of students with 

different learning outcomes in mathematics the degree of understanding of the 

concept at the local complication level UL2 is the same and is about 50%. What 

is more, it seems to be in this case independent of the degree of understanding 

of the concept at UL1. Both observations encourage us to propose further 

research hypotheses. But we will devote more attention to the third observation. 

Interesting for us is that up to a half of correct answers to problems related to 

UL3 level are given by students from the poor and average groups. 

The degree of understanding of the concept at UL3 disclosed by WS1 in 

students from the good group is indeed higher than the degree of understanding 

achieved by other examined. However, the fact that attempts to solve problems 

related to UL3 level have been taken by the students with poor results in 

mathematics and some were successful, fills us with optimism and has been 

recognized as interesting. 

Comparative analysis of the first and second stage of the research  

Comparing the results achieved by the students who take part in both stages of 

the research it appeared that in general all the students have achieved higher 

degree of understanding of the concept from WS2, at all levels. The numbers 

shown in the graph (Fig. 3) confirm it. 

 

Figure 3. Comparison chart of the degree of understanding (vertical axis) of a new 

concept diagnosed in all the students working on WS1 and WS2 
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Among all the answers given by the students the total degree of understanding 

of concepts at different levels was as follows:  

WS1 – 50% and WS2 – 71% (understanding at the definition level),  

WS1 – 50% and WS2 – 44% (understanding at the level of local complication),  

WS1 – 18% and WS2 – 42% (understanding at the level of generalization) 

It is not difficult to notice a significant increase in the number of correct answers 

in the levels UL1 and UL3 (respectively 21 and 24 percentage points). The only 

decrease was recorded in the number of answers investigating the understanding 

at the level of local complication, however it was relatively small – only 6 

percentage points.  

Does this increase in the degree of understanding of the concept at the second 

stage of the research is only incidental, associated with the specific concepts 

being considered or with idiosyncratic approach of the research subjects? 

It seems not. What is more, the students even stated during interviews that for 

them working on WS2 was more difficult than on WS1, and yet their results 

were better in their work on WS2.  Therefore, it appears that since the second 

concept was more difficult for students, their better results were due to 

experience which they previously acquired working on a similar sheet of WS1. 

Thus, the degree of understanding of the concept of complex number was found 

to be generally higher than the the degree of understanding of Cartesian product. 

We claim that more general and optimistic hypothesis can be made: regular 

work on similarly designed work sheets give the opportunity to improve 

students’ performances. 

Comparative analysis of the results of the second stage of the research – a 

student from good and poor group  

We selected a one girl from the good group and a one boy from the poor group 

to provide the comparative analysis of the results achieved by students from the 

groups of different performances in mathematics education. Having analyzed the 

results of their individual work we notice that their answers to problems from 

WS2 are almost identical at the first stage of work on WS2, i.e. individual work 

without any help from the experimenter. There are only two differences to sub-

tasks from UL2 and UL3 (student from the good group provided correct answers 

and the other wrong). We can summarize that both students reached the 

definition level of understanding of complex number, since the degree of 

understanding revealed during the work with WS2 was 100%. The results of 

both students revealed incomplete understanding of the complex number at the 

level of local complication: the degree of the poor student was 40% while of the 

good one – 60%. The first student as well as the second one made mistakes in 

deciding if the boundary examples were designatum of the concept or not. 

Understanding of the concept of complex number was revealed by these 
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students only through the ability to determine whether a given example, which 

was imposed on simple additional conditions, is the designatum of the concept 

or not. 

None of the students reached the level of generalization, however the good 

student achieved slightly better degree since he managed to cope with the 

geometric interpretation of complex number. Neither good nor poor student 

made the correct classification of real numbers as complex numbers. Poor 

student did not see any connection between these concepts and the good one 

identified a complex number with a real number. 

May heuristic hints contribute to a greater degree of understanding of the 

concept at given level? 

Answering this question, we analyze the correction of wrong answers made by 

the students after giving them heuristic hints. To better illustrate the process of 

making corrections by students the content of selected problems from the WS2 

is given below. Both students as a result of independent work gave incorrect 

answers to the problems referred to understanding at U2 level, among others 

incorrectly classifying the boundary example in the problem 3 (subproblem e, f): 

Problem 3.  

Among the examples given below underline those that in your opinion are the 

complex numbers. 

a) i5  b) i
3

2
3  c) 

6

4i
 d) i3  e) 7  f) 0 

Justify your answer: 

……………………………………………………………………………………. 

Both students under the influence of hints given to them by en experimenter 

improved their answers to the two examples, therefore, properly considered the 

boundary example. Below we present a conversation with the good student: 

Interviewer: Why did you decide that in the problem 3 the case “e” is not an 
example of a complex number? 

Student: Because when I looked at other examples in further tasks there was no 
similar one. But now I am wondering…that “e” is also an example 
of complex number. 

Interviewer: What is the reason of this change? 

Student: As I can see it now this real number could equal 7  and that…imaginary 
number could equal 0. 

Interviewer: How did you discover it? 

Student: I haven’t noticed that before, but y can equal any number, so if we put 
here 0 (student indicates y) and here 7  (student indicates x) we 
will have this number. So, yes! This is a complex number. 
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Interviewer: Does it change anything in your opinion in the case of the “f” or “g”? 

Student: Well, yes.. because now I can see that “f” will also be a complex number 
too. Only that here both x and y will equal 0. 

The poor student similarly discovered that numbers presented in sub problem 3e 

and 3f are complex numbers. He concludes that if y = 0 then: 

Student: Then we will have only x left, so this will be a complex number as well. 
Actually both of these examples (student points numbers 
exemplified in “e” and “f”) will be complex numbers! 

The poor student expressed more emotions discovering the correct answer and 

we have seen his enthusiasm when he spoke the words: "Sure! I have not 

thought of that!".  

In both cases students change their wrong answers to the problems related to 

UL2 level, which can be taken as a symptom of increased understanding of the 

concept of a complex number at the local complication level.  

Extremely interesting is the fact, that the poor student just after making the 

corrections of his answers to problems referred to the UL2 spontaneously 

expressed the need for adjustment of subsequent answers provided by him to the 

problems diagnosing understanding at the generalization level. In certain cases 

he even gave ready and correct answers to problems, while in others realized the 

need for a change of the previously used incorrect methods of solving. Once 

again we are illustrating this with an example. We use here the problem 5, which 

required from the student to determine the relationship between real numbers 

and complex numbers: 

Problem 5 

Review correctness of the following statements (underline the correct evaluation of 

each of the sentences). 

a) Every complex number is also a real number. TRUE / FALSE 

b) Every real number is also a complex number. TRUE / FALSE 

c) 
Only some of the complex numbers are also real 

numbers. 
TRUE / FALSE 

d) 
Only some of the real numbers are also complex 

numbers. 
TRUE / FALSE 

e) 
There is no connection between the real and 

complex numbers. 
TRUE / FALSE 

Justify your answer: 

……………………………………………………………………………………….. 

The poor student initially as a result of his independent work in each of the 

following points marked the answer "false" not recognizing thereby any 

connection between the real and complex numbers. However, the correction of 
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the previously mentioned answers to the problems 3e and 3f resulted in the 

spontaneous reaction of the student:  

Student: Here (student is talking about sentences from the task 5) I had a 
problem... I couldn’t make my decision. Well now I probably would 
have changed it. If a moment ago I pointed out the roots … it can be 
here that some real numbers can be complex ... and basically all of 
them! 

Interviewer: Could you tell me then, which of the answers would you change? 

Student: That one! (student is changing his incorrect evaluation of the second 
sentence in problem 5). But in that case I would probably change 
these next sentences as well... 

Interviewer: Which one? 

Student: Well now I can see that y can equal 0 and then there is only x left and x is 
real. That means that sentence “c” is true as well. 

The student not only noticed the fact that earlier had made a mistake in his 

reasoning, but also – almost immediately – he gave the correct answers to the 

next problems. We could observe a very similar reaction in the student after his 

having corrected the answer to the problem connected with the demonstration of 

the geometric interpretation of the complex number z=2+3i from the problem 6a 

(Fig. 4).  

Problem 6. 

Interpret all the complex numbers fulfilling the conditions given in the sub 

problems a - c in the following coordinate systems. Name the geometric figures 

received and label them under each of the coordinate systems. 

Figure 4. Problem 6a from WS 

The student firstly interpreted this complex number drawing half line with its 

initial point (2, 3) and parallel to the y-axis. After having reviewed his response 

and giving the correct answer, he spontaneously saw his error in the answer to a 

further embodiment of this problem 6b (Fig. 5). 
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Figure 5. Problem 6b from WS2 

Despite the fact that in this case he was not immediately able to provide the 

correct solution, he was aware of the error in his answer. The following part of 

the conversation shows this: 

Student: Probably case „b” is also wrong. I just do not know how to correct it. 

Interviewer: Try to do the same operation as you did a moment ago, that means try 
to introduce this number in the geometric form. Write it in a 
different way. 

Student: That will be the set of points? 

Interviewer: And what properties would this set of points have? 

Student: There will be x, and y will equal 5. But I do not know how to write it.. 

Interviewer: Well, just like you said. You suspect that it is a set of points. What 
coordinates would these points have? 

Student: y for sure will equal 5.. 

E: And what do we know about first coordinate? 

Student: Uhm.. 

Interviewer: Which number can x equal? 

Student: We know that x is contained in a set of real numbers (the student writes 
down the point which coordinates are equal x and 5). 

Interviewer: In that case try to draw a few points that have such coordinates. 

Student: That...that, and that! (the student drew three points). 

Interviewer: Are these three points the only ones? 

Student: No, no. There will be infinite number of them. 

Interviewer: If so, than try to draw a few others (the student shows with his pen a 
few other points). So can you tell me now what kind of figure all 
these points will form? 

Student: A straight line (student draws a straight line). 
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Interestingly, the good student's adjustment of the responses to the problem 

related to UL2 level and given heuristic hints or helping questions had no effect 

on an improvement her replies to the problems at UL3 level. 

In summary, it is poor student who expanded his understanding of the concept 

of complex number. He had reached high enough degree of understanding 

(83%) at the level of generalization, making only one mistake. His error was not 

to identify just one example correctly. 

The role of heuristic hints or helping questions on problems from the sheet WS2 

in the case study of selected students was threefold. These questions: 

1. resulted in providing improved answers to those problems for which they 

were targeted and caused spontaneously done improvement of the 

response to subsequent problems, 

2. resulted in improved answers to those tasks for which they were directed 

and in student’s awareness that other tasks were solved by him wrong, 

even though the student did not yet know how to solve them properly, 

3. resulted in correction of the selected answer but did not cause significant 

changes in the understanding of the concept. 

CONCLUSIONS 

1. The research revealed that understanding of a concept at the generalization 

level UL3 is qualitatively very different than understanding at two lower levels 

UL1 and UL2 for the following reasons. 

(a) It is the most difficult level for students. We observe a drastic decrease in 

students’ performances at this level. The revealed by WS1 degrees of 

understanding in students at the UL1 and UL2 levels were comparable, but the 

degree of understanding at UL3 was twice lower.  

(b) The students while solving the problems referred to this level make 

qualitatively different mistakes. The analysis of the replies to such kind of 

problems related to UL3 level indicated the need of introducing additional 

category of answer evaluation: incomplete answer, which is factually correct but 

does not take into account all possible cases. 

(c) Students often commit two types of errors: the first one of replacing whole 

class of designata of a concept by a part of it, the second one the opposite effect, 

i.e. skipping some (more or less important) conditions of a definition, which 

results in classifying a concept to a wider class of objects. (see also Dyrszlag, 

1972).  

2. On the basis of the questionnaire from the first part of the research the 

conclusion can be drawn that the overwhelming number of students are aware 
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that understanding of a concept at the generalization level is difficult for them 

(the opinion was expressed in total 62% of all students working on WS1).  

3. The answer to the question: if the degree of understanding of a mathematical 

concept at the level of generalization UL3 is associated with assessments of 

mathematics received by students at school – is interesting, complex and 

ambiguous at the same time. 

(a) The results of the first stage of the research showed a general trend of 

increased degree of understanding of a concept at a given level along with the 

better outcomes achieved in school education.  

(b) The degree of understanding of the concept at UL3 in students achieving 

good results in mathematics is indeed higher (in the case of WS1 up to twice 

higher) than the level reached by the other subjects, however, there are poor 

students, who solved the problems related to UL3 and good students, who were 

unable to solve them. 

 (c) At the same time qualitative analysis of the second stage of the research 

showed the disturbance of the tendency described in paragraph (a). It turned out 

that students who have obtained comparable results in the first part of the study 

– under the influence of the heuristic hints and questions asked – significantly 

changed their answers. The good student did not come out beyond the UL2 level 

at all, only reinforcing her understanding at this level, while the poor student has 

achieved a high degree of understanding of the concept at the generalization 

level. It can therefore hypothesize that the answer to this question also depends 

on the student way of working, and of course on student way of thinking. 

4. Sets of problems in WS1 and WS2 sheets turned out to be not only the 

diagnostic tool, but also a didactical one. The students achieved significantly 

better results in the work of WS2, although they considered the notion of a 

complex number difficult. In our opinion, the optimistic hypothesis can be 

formulated: allowing students to work on the similarly constructed sheets based 

on independent work on definitions of new concepts has a positive effect and 

gives the opportunity to improve students’ performance and achieve a higher 

level of understanding of other new concepts introduced in this way. This is the 

conclusion of significant educational implications. 

5. The results of our empirical research indicate the need for change in the 

theoretical conception formulated by Dyrszlag (1972). It is difficult to answer 

the question: what does it mean to achieve a certain level of understanding? It 

seems to us contradictory and awakening many inconsistencies statement: 

"Student X has reached the understanding of the concept at the Y level". Our 

empirical research suggests that the answer to this question depends on 

considered level of understanding. While achieving a UL1 level (and even UL2) 

can reasonably be conditioned by the solution of all problems related to these 

levels from the diagnostic set, the big questions arise in the context of the level 
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of generalization UL3. For example, if a student is able to place the concept on 

the background of parent and child concepts, which is resulted in solving at least 

one problem related to UL3 level, it should be recognized that his/her 

understanding of the concept has gone beyond the UL2 level, even though the 

UL3 is not fully, or 100% achieved. We therefore consider necessary to 

introduce an additional term: the degree of understanding of a concept at the 

given level which we define as the percentage of correct answers to all problems 

diagnosing understanding at this level. 

6. Another methodological question concerns the finding that achieving the next 

level of understanding of each concept is conditional on reaching the level of the 

previous one. The same doubt was also mentioned by Dyrszlag: 

Is it possible to obtain by a student the third level of understanding at once, without 

a thorough check on whether he obtained the lower levels? This case has not been 

investigated and is difficult to say about that. (…) I am inclined to suspect that both 

the L1 and L2 level cannot be entirely disregarded, if we want our average student 

to understand a concept at the generalization level. (Dyrszlag, 1972, pp. 62-63.) 

The results of our empirical research show that a lot of correct solutions to 

problems related to UL3 level were provided by those who had not reached 

100% degree of understanding of the concept at levels U1 and U2. This 

generates the negative answer to the mentioned question as to whether the 

achievement of each subsequent level of understanding of a concept conditioned 

by reaching the previous one. 
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GENERALIZATION 

 DO THE IT TOOLS ENABLE PROVOKING AND 

DEVELOPING STUDENTS' MATHEMATICAL ACTIVITIES? 

Edyta Juskowiak 

Adam Mickiewicz University, Poznań, Poland 

 

This paper presents an attempt to answer the question whether new technologies 

such as graphing calculators and computer programs allow the provocation and 

the formation of students' creative specific activity that is generalization. The 

paper contains a description of the pieces of research conducted for several 

years at various levels of education (gymnasium school, high school, teachers’ 

studies  on mathematician's direction ) to examine the student's way of working 

with graphing calculators Texas Instruments and Casio, and free computer 

programs such as GeoGebra and WinPlot. 

In the course of a professional career every person 

solving a task develops their personal style and 

individual methods. The strive for perfection in 

systematic use of those methods is often a slow and 

painful process, which ripens within years if it ever 

ripens. (Alan Schoenfeld) 

INTRODUCTION 

What are the expectations of a modern school of a Maths teacher? What is 

required from a student gaining knowledge of that subject? The above questions 

are essential when referred to curriculum and organizational change, which has 

been introduced in Polish schools for a few years. The idea of mass education, 

both at medium and higher levels
1
, a many year period of the lack of obligatory 

matura Maths examination, which results in the decrease of the number of 

students interested in studying Science, as well as at universities and polytechnic 

schools, all have caused the introduction of the new curriculum foundation and 

new work schedules for schools at all educational levels. 

Mathematics is a work tool for many professionals, it is a language describing 

almost all the phenomena surrounding us, it is the language which it is 

impossible to function without in everyday reality. General requirements, 

formulated in the new curriculum foundation, establish the main teaching goals 

for each subject to be taught. The ones referring to Maths focus mainly on 

teaching mathematical thinking and shaping activities peculiar to Maths.  

                                                 
1
 At present, 80% of the same year students attend schools ending with a matura examination (just a few years 

ago the number was about 50%), and the number of higher education students has increased five times 

(Marciniak 2011).  
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What should that mathematical activity rely on? Should it be the same at any 

stage of a student's intellectual and mathematical development? The answer to 

these questions is indispensible for the proper organization of the Maths 

teaching process by a teacher.  

Zofia Krygowska in one of her books writes:  

…are students active  when they diligently learn by heart the formulas, definitions, 

proofs  and schemes of solving typical problems they are given? That is definitely 

necessary to some extent. However, modern didactics exposes another kind of 

activity, creative activity, a conscious and active learner's contribution to 

discovering ideas, notions, formulas, theorems, proofs, to schematizing situations, 

to mathematizing them, generally, to solving extremely differentiated problems, 

covering the whole of the teaching material. (Krygowska, 1981)  

Later the author in the same work describes mathematical activity of a learner. 

Among six categories of activities typical of a Maths learner, she mentions a 

specifically creative activity, which consists of, among others, detecting and 

formulating problems, discovering, formulating and proving theorems, 

generalizing and specifying, problem solving in untypical situations, etc. The 

theory is still up-to-date and vividly supported by Maths didacticians, although it 

was created almost 30 years ago. 

Maths didacticians and school teachers are constantly looking for and mastering 

such mathematical content presentations, such work methods, such didactic 

tools, communication forms adequate to students, attitudes and exertions, that 

the most perfect and effective mathematical activities mentioned above are 

provoked and shaped in the students. 

In the article the attention is going to be focused on one of the specifically 

creative activity, that is on generalization, as well as on certain didactic means 

which enable provoking and developing that activity. The conclusions and 

remarks described below are the result of the author's 10-year-long research, the 

research aiming at, among others, observations of the work of students at 

gimnazjums, high schools as well as the students at teacher's colleges at Maths 

departments, while solving a group of untypical mathematical problems with the 

use of new didactic tools such as graphic calculators, emulators of graphic 

calculators and free software such as GeoGebra or WinPlot. 

GENERALIZING 

To achieve a student's full mathematical development, it is essential to activate 

and form mathematical activity, referring both to mastering basic knowledge 

and also gaining the skills indispensable for solving mathematical problems and 

evoking behavior typical of Mathematics. None of them performs by itself in the 

course of gaining basic information and skills. The latter is accessible only to the 

students who are particularly skilled and interested in Maths.  
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G. Polya , when answering the question: “How to solve it?” in his book under 

the same title, emphasizes how much the ability to generalize  can be helpful in 

problem solving; he also claims that „… The transition from a problem “with 

numbers” to a problem “with letters” offers us new opportunities…” (Polya, 

2009, p. 205). He characterizes  

generalization as a transition from analyzing one object to analyzing a set including 

that object, or a transition from analyzing a narrower set to analyzing a wider set, 

including our narrower. (Polya, 2009, p.203) 

Generalizing theorems is a process so typical of mathematical activity, that 

it is worth looking for didactic situations in which we will provoke that process 

in the student's mind (Krygowska3, 1977; p.113). Generalizing theorems may be 

performed in different way, however, it is essential to apply such didactic efforts 

that they will activate a student's mathematical thinking, also in different. Z. 

Krygowska describes, among others,  generalizing through noticing the law of 

recurrence (when we are able to perform reasoning and state that the condition 

is fulfilled for a specific case, for an initial element and it is also fulfilled 

between any two succeeding elements belonging to the same set), 

generalization through unification (when we unite formulas obtained as a 

result of reasoning performed for different cases in one, more convenient to 

apply, or arranging hitherto existing knowledge), generalizing theorems 

through generalizing reasoning (when reasoning performed in a particular 

case can be conducted for every other specific case and it will continue in the 

same way or only with little change, then a certain object can be substituted for 

with any other object  from a given set) and generalization of an inductive 

type (based on the analysis of a few specific case and looking for a common 

scheme for them, particular statements are substituted for with a general theorem 

including all the cases, whose rightness has to be tested and proven)  (after: 

Legutko, 2012). In the literature we find two suggestions how to perform the 

process of generalization of notions: as a discovery of a superiority relation 

between two known ideas or as constructing a superior notion for a well known 

idea. Not only statements are the objects to undergo generalization in 

mathematics.  Ideas, problems, methods, hypotheses, ways of reasoning and 

proofs can undergo that process, too.  

The activity of generalizing can be accessible to every student, the good 

organization of the teaching process may make it easier and more highly valued. 

GOALS, ORGANIZATION AND METHODOLOGY OF THE 

RESEARCH 

Below there is a presentation of a part of research whose general aim was to 

examine and describe the ways of applying new technologies by students of 

different educational levels and university students during the process of solving 

a certain group of problems. 
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Because of a limited content of the article I am going to focus on the research 

that was performed on gymnasium students and I will only mention the research 

referring to students of high schools and universities. 

Gymnasium 

In studies conducted at the third education level I have been looking especially 

for the answers to the following questions: 

What do the students use a graphic calculator for when they solve a problem? 

What are the students’ strategies
2
 in the course of solving tasks? 

What mathematical activities does the graphic calculator provoke? 

In the article I am going to concentrate on the answer to the third question, with 

an emphasis on the manifestations of provoking generalization activity by IT 

tools. 

The study was based on the students of grade one (14 years old) of a gymnasium 

in Bielsko-Biała, where mathematics was taught on the basis of the course book 

and syllabus called “Mathematics in gymnasium with a graphic calculator and a 

computer” („Matematyka w gimnazjum z kalkulatorem graficznym i 

komputerem”) (Kąkol; Wołodźko, 2002). The study was performed on the 

subject of “Functions”. Four students solved problems during weekly 45- 

minute, extra-schedule sessions, for four months. At every session the students 

were given the content of the task and a graphic calculator TI 83 Plus. The 

course of the session was recorded by the author with a cassette recorder. Every 

meeting finished with a conversation with a student about the method and the 

purpose of the student’s use of the calculator.   

The main research tool was a unique at that time calculator program
3
 enabling 

the work performed on the calculator to be recorded. The program made it 

possible to record the work of each student participating in the individual 

meetings. It is essential that the recording program enables succeeding screen 

views to be shown in a form of an accelerated movie, as well as it enables to 

scan the list of the buttons pressed by the student in the course of their work. 

The program allowed me to have an insight into each student’s thinking process 

and learn the exact sequence of their work stages on the task, not narrowing the 

analysis to merely the final record of the solution on the paper, or, as it happens 

most often, limiting it to the result itself. 

The tasks given to the students come from a course book and a collection of 

practice exercises called “Mathematics with a graphic calculator and a 

computer” („Matematyka w gymnasium z kalkulatorem graficznym 

i komputerem”), from a part devoted to Functions (Kąkol; Wołodźko, 2002). 

                                                 
2
 By strategy I understand the way of a student’s performance with the use of a graphic calculator leading to the 

solution of the problem.  
3
 prof. John Berry from the Plymouth University is the author of the program. 
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The curriculum of teaching mathematics with the use of the graphic calculator 

and the computer in grade one of the gymnasium assumed the performance of 

the following issues: the Cartesian coordinate system, geometrical figures in the 

coordinate system, the notion of function, the graph of a function, simple 

proportionality, the properties of the function f(x) = ax, linear function and its 

properties, linear equations with one unknown and inequalities with one 

unknown.  They were adapted to their skills connected with the use of a graphic 

calculator, as well as to their current mathematical knowledge. A few tasks 

“slightly outdistanced” their knowledge and skills in mathematics, however, 

they fitted in the “range of their nearest future development”, which was 

mentioned by Wygotski. The students solved 13 tasks during individual 

sessions. 

The group consisted of: Dorota (D), Monika (M), Janek (J) and Szymon (S). The 

survey they had filled in at the beginning of the study reveals that all of them 

had a positive attitude towards the graphic calculator and they were not afraid of 

using it. Those students acquainted with the tool for the first time at their math 

classes when they were in grade one of the gymnasium. For the initial six 

months of their work with a graphic calculator Dorota and Monika used it for 

readymade programs and for making auxiliary calculations, while Janek and 

Szymon wrote their programs in addition. 

All the students achieved good or very good results. Moreover, it can be 

assumed that Janek is the best one in the group, while Dorota is the weakest one. 

The analysis of the research results revealed the following mathematical 

activities of the students, which had been provoked by the use of the calculator: 

 empirical conclusions, 

 symbolic language usage, 

 generalization, 

 hypothesis formulation and verification,  

 formulation of new problems,  

 deduction. 

I am going to present below the content of the task in which using the calculator 

caused a particular mathematical activity and a copy of the student’s notes 

accompanied by a short commentary to the solution with his copy of the notes. 

Task 

For which “a” values the graphs of the f(x)=ax function will be perpendicular? 

The description of a student’s work 

1) He activates the Zsquare option from the Zoom menu. 
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2) In the “Y=” editor of the function formula he introduces the pairs of function 

formulae, next he draws their graphs: y=x*1 and y=x*3, y=x*1 and y=x*-1. 

(The student draws on the calculator screen any pair of graphs of functions of 

the form y = ax. After this attempt he draws straight lines which are 

perpendicular. The student admits in an interview that this was an example that 

appeared once in math class. Stating only by watching the student verbally 

states a hypothesis “the graphs will be mutually perpendicular, when the 

coefficient a of one of these functions is a number opposite to the coefficient a of 

the second function”.) 

3) (The student verifies the hypothesis)  

In the editor “Y=” he introduces the formulae of three pairs of functions:  

y=x*1 and y=x*-1, y=x*8 and y=x*-8, y=x*2 and y=x*-2,  

and he draws their graphs in the Zdecimal window. 

 

Figure 1 (for all the function pairs) 

(The student notices, that the rule does not work for other pairs of functions of 

the form y = ax and y =-ax, and that no matter how you format the display 

window. The student visually wagered just refuting the hypothesis. He knows, 

and informed me verbally that a greater number of cases is no need to change 

as a result of the verification process. He undertakes another way of solving the 

task.) 

4) He draws the graphs of the functions y=x*1 and y=x*-1 again. 

(The student returns to the example satisfying the conditions of the problem. 

Very long looks at the graphs of par of functions, he looking for some patterns, 

which enable him to find examples of other pairs of functions satisfying the 

conditions of the problem.) 

5) He draws the graph of the function y=x*2. 

6) He moves the free cursor over the screen. 

7) He stops it at the point with the co-ordinates (1,2). 

8) He moves the free cursor over the screen. 

9) Next he stops the cursor at the point (-2,1) and sets a point there. 
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Figure 2 

10) (He looks for the straight line crossing the point with the coefficients (-2,1) 

and the origin of the coordinates.) 

He draws the graphs of the pairs of straight lines: 

y = x*2 and y = x*1, y = x*2 and y = x*4, y = x*2 and y = x*-.5, 

(At the beginning of a randomly selected value of a coefficient of the second 

function, visually check whether the graphs of these functions are orthogonal. 

When this method of working is not effective, and states that after the second 

attempt, runs other mathematical tools. On a sheet of paper4 performs the 

appropriate transformations, computes the value coefficient “a” as a function 

y=ax with the coordinates of the point (-2,1).) 

In summary stage the student's reasoning contained in steps 4-10: 

The starting point to his reasoning was a graph of mutually perpendicular lines 

y = x and y =-x. The student noticed that the lines form four angles of the same 

measure, which means right angles. That enabled him to obtain the graph of one 

of the straight lines as the result of the rotation of another one by an angle of 90

regarding the origin of coordinates. The method, consequently, allowed him to 

find the image of a point belonging to the straight line on the line perpendicular 

to the first one. The student finished the reasoning with comparing the 

coordinates of the chosen point and its image. 

11) He draws the graphs of the succeeding pairs of straight lines: 

y=x*8 and y=x* -4, y=x*6 and y=x* -1/4, y=x*6 and y=x* -6/4, y=x*6 and 

y=x* -1/6.  

(The student looking for relationships between the coefficients of pairs of 

functions orthogonal graphs, he has two examples 1 and -1, 2, and -0.5. Only the 

fourth test is the correct one. Student exposed orally formulated rule, and then 

wrote it on paper. He could not write a rule using symbols.) 

 

 

 

 

                                                 
4 See the copy of Janek’s notes. 
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The copy of student’s notes
5
 

 

 

 

 

Commentary 

Working on that task Student has made 13 attempts. He found three examples of 

functions with graphs mutually perpendicular. He did not confine himself to 

merely give a few correct examples. He found a general rule in spite of the fact, 

that the instruction of the task does not directly say anything about formulating 

the rule (look at the copy of the notes) - the coefficient a of the second function 

has to be an opposite number to an inverse number of the coefficient of the first 

function. The student, concluding from a few examples whose correctness he 

estimated "by the looks" of reciprocal position of the graphs of the pairs of 

functions, formulated a hypothesis, which constituted a generalization of the 

obtained detailed results of his work on that task. The student felt a need to 

justify and prove his discovery not only in a so called "graphic way". He was not 

able to use the symbols properly but he perfectly managed to formulate the 

generalization in written words.  

Moreover, after having finished that stage of working on the task, he was 

tempted to continue his effort by using the objects, which had not occurred 

during the lesson before. Namely, he wondered if the rule he had just 

                                                 
5 Note the student has been commented on in steps of 10 and 11 student's job description. 

The a coefficient of the second function must be  

a number opposite to the converse number of the  

a coefficient of the first function. 
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discovered, would work for linear functions intersecting at another point, 

different from the origin of the coordinates. The student stated, only verbally, a 

problem more general than the one which had been formulated in the task 

instruction.  

Conclusions 

The student, with the use of a graphic calculator drew many correct graphs of a 

linear function in the form y = ax in a very short time. The calculator enabled 

him to concentrate on the main task, that is on finding the linear function 

formulas meeting given requirements, without the necessity to leave the task in 

order to draw many graphs thoroughly and correctly and to make auxiliary 

calculations. In order to discover specific cases fulfilling the conditions of the 

task, the student took an advantage of the opportunity to follow the coordinates 

of the points belonging to the tested graphs, to make changes to the setting of the 

drawing window, and to define a new drawing window. The use of the graphic 

calculator by the student contributed to coming up with an idea to solve the 

problem, to find specific cases fulfilling the requirements of the task, to 

generalize, and consequently, to extend the task and to formulate a more general 

problem. The analysis and testing a sequence of pair of graphs of simple 

proportionality activated the student's mathematical curiosity.  

Throughout the student's thought process we find elements of both inductive 

generalization, when a student requesting a number of examples that meet the 

conditions of the problem replaces them with a general statement, and a 

generalization of reasoning from example by verbal changing of the constants. 

Moving from words to the letter proved to be too difficult for a student starting 

first grade school, the general rule was formulated, both orally and written on a 

piece of paper. 

It is worth mentioning that three out of four students participating in the study 

were able to formulate a general rule, only two of them in the form of verbal and 

one also with the use of symbols. Undoubtedly on this stage of development, in 

a situation of independent work on a task- a problem, uncontrolled by either a 

teacher or a classmate, achieving the success was possible thanks to the 

contribution of a tool, that is the graphic calculator.  

Teacher study at mathematics department 

The study performed at the Department of Mathematics and Computer Science 

of Adam Mickiewicz University of Poznań refer particularly to the methods of 

solving untypical Maths problems with the use of the graphic calculator Casio, 

the emulator to the calculator and free software GeoGebra or WinPlot, by the 

students of the teacher department with the reference to the dominating 

cognition structure, that is the functional or the predicative ones and to study the 

attitudes of  Maths teachers-to-be towards those problems. The analysis focuses 
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on the same elements which have been described for the study of the students of 

gimnazjum (the goals of tool application, strategies, mathematical activities).   

For three years a group of nearly 10 students (on each year) who independently 

participate in the research program, has taken part in the study each year. 

Throughout the year they solve a set of a few tasks in two ways - a classical one, 

that is with the use of only "a pencil and a sheet of paper", and then with the use 

of modern technology (the students make their own choices as far as the tools 

go, depending on their needs). After the work on the problem has been 

completed, work evaluation takes place and the questions about the course of 

solving the problem are answered to. Similarly to the study of gymnasium 

students, here also a film recording of a student's work is made - if the student 

applies the emulator of the Casio calculator or the construction report in the case 

of working with the GeoGebra software. The students work unaided. 

Because of the editorial limitations the article lacks a detailed description of the 

examples as well as an extended didactical commentary. The results of the study 

will be discussed by me systematically at local didactician conferences, among 

others at the Szkoła Dydaktyki Matematyki (The School of Mathematical 

Didactics). Here I would like to state shortly that like in the case of the 

gymnasium students, the university students while working with the help of  IT 

were provoked by the wide range of opportunities that those tools offer - they 

generalize, which is not always observed during work with the classical method.  

High school 

In the last school year 2010/2011 a union project entitled The Śniadecki’s 

Collegium – an innovative curriculum for teaching Science
6
 was introduced in 

the area of the Wielkopolska Region. Its main goal was to increase high school 

students' interest in mathematical-scientific subjects through the inculcation of 

the teaching and in- advance learning method together with the intensive use of 

the educational platform into chosen high schools. One of the final results in the 

innovative work on Maths lessons should be provoking the students to active, 

unaided and effective work after school, as well as during Maths lessons. In the 

project we strive for shaping a mathematically aware high school student.   

Being one of the authors of teaching materials for primary school students 

(grade one), referring to the development of the notion of function, I decided to 

apply my past research experience
7
 concerning possible effects of students' work 

(at different ages) when solving mathematical problems, the untypical and 

difficult ones in particular, with the use of new technologies. When writing 

about the effects I mean provoking and developing mathematical activities, 

                                                 
6
 More information about the project can be  found on the website http://kolegiumsniadeckich.pl    

7
 More about it in the article which is going to be published in book IV of Współczesne Problemy Nauczania 

Matematyki; Edyta Juskowiak „Technologie informacyjne w kontekście innowacyjnej koncepcji nauczania 

wyprzedzającego - PROJEKT KOLEGIUM ŚNIADECKICH”. 
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including generalization, too.  The tool that I suggested for the students to apply 

was a free and easy to use computer program – GeoGebra. School work, based 

on the aforementioned materials, started in the current school year 2011/2012. 

So at this stage of work it is difficult to present the results, the partial ones will 

be available in the months to come. It seems, however, that new technologies, if 

applied properly, one more time will enable provoking and developing the 

students' mathematically proper behaviour in relation to the problems they face.  

CONCLUSIONS 

Piere M. Van Hiele in his works underlines the fact that students should learn 

Mathematics through acting, and not be just informed about it (after: Turnau, 

1990), as it happens in the course of the giving teaching. On the other hand, H. 

Freudenthal in his lectures and articles claimed that we are not allowed to teach 

children the things that they could discover by themselves, a child has to learn to 

discover mathematical structures (Kutzler, 2000; Freudenthal, 1976). New 

didactical tools and calculators and computers with mathematical software in 

particular, allow to introduce a change in the teaching methods, they grant it a 

problem character (Kąkol, 1991). They enable the students to experiment in 

many branches of Mathematics, allow to make numerous observations and to 

discover their "own Mathematics". As the research results show, IT  enables to 

provoke and develop many mathematical activities, including also the 

specifically creative ones, and among them, also generalization. Skillful 

application of new technologies, as one of many didactic tools, both by the 

students and the teachers, as well as the ability to make the students at the right 

moment face the task which help them develop certain mathematical activities is 

extremely important in the process of developing proper mathematical thinking 

of a young learner.  
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Fractions are one of the more complex mathematical concepts children 

encounter in their schooling. While the majority of existing research addressing 

fractions has focused mainly on students, leaving aside the teachers’ role and 

the importance of teachers’ knowledge in and for teaching, we focus on early 

years’ prospective teachers knowledge on fractions and the role of the whole 

and its (possible) impact in preventing pupils from achieving a full 

understanding of the topic.  

INTRODUCTION/SOME MOTIVATIONAL WORDS  

The International Summit on the Teaching Profession has addressed the 

challenge to equip all, instead of just some, teachers for effective learning in the 

21st century (OECD, 2011, p. 5). This requires an emphasis on, among many 

aspects, “the kind of initial education recruits obtain before they start their job” 

(ibid). Several studies have documented that teachers have a greater impact than 

any other factor on student achievement (e.g. class size, school size, or school 

system) (e.g., Nye, Konstantopoulos & Hedges, 2004). There has been an 

increasing amount of attention and focus laid on teachers’ knowledge, and on 

how gaps in such knowledge relate to limited treatment in subject courses 

prospective teachers’ receive in their education. Studies have shown that an 

exclusive focus on content knowledge, by increasing requirements for more 

advanced mathematical courses, has no positive effect on student’s 

achievements (Begle, 1972). Also, due to Shulman’s (1986) distinction between 

subject matter knowledge (SMK) and pedagogical content knowledge (PCK), 

the importance of teachers’ knowledge has received increasing attention.  

In mathematics education, Shulman’s ideas were developed further into 

a framework for teachers’ mathematical knowledge for teaching (MKT) by 

a group of researchers lead by Deborah Ball at the University of Michigan (e.g., 

Ball, Lubienski & Newborn, 2001; Ball, Thames & Phelps, 2008). The 

Michigan group has identified a number of specific challenges related to 

teaching mathematics, and it is assumed that these challenges (tasks of 
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teaching), are similar in different countries (Ball et al., 2008). Examples of tasks 

of teaching are recognizing what is involved in using a particular representation, 

and linking representations to underlying ideas and to other representations. 

To improve practice and teacher training at all educational levels, teacher 

education has to focus more on teachers’ knowledge, on the tasks involved in 

teaching, and on the mathematical critical situations and topics identified, which 

will contribute to a smoother transition of students between educational levels. 

One of these critical topics concerns fractions. Students struggle to understand 

both the mathematics embedded, and the different interpretations and 

representations fractions can assume, i.e. part-whole, quotients, measures, ratio, 

rate, and operators (Behr, Lesh, Post & Silver, 1983). For such an understanding 

it is of fundamental importance that a good understanding of the relationship of 

the parts and the whole, and the possible different “kinds of whole”, be acquired. 

Students’ limited understanding might be related to how their teachers’ 

understand and interpret fractions, and such limitations may result from the fact 

that this topic is not addressed explicitly and does not have the focus that is 

needed in teachers’ education. 

Teachers’ training has in certain respects been left behind in the research. We 

still know little about how (prospective) teachers’ knowledge of fractions 

influences students’ broader view of mathematics, and its connection and 

evolution within and along schooling. This has motivated our research. By 

calling attention to prospective teachers’ training and the role it has on teachers’ 

professional knowledge and development,
1
 we hope to better understand the 

(possible) impact such knowledge has on their (future) practices, and on their 

students’ achievement. With this in mind, we address the following research 

question: 

What kind of subject matter knowledge (in terms of MKT) is revealed about their 

interpretation of fractions and the role of the whole by early years prospective 

teachers’, and how can we characterize such knowledge in order to specify critical 

aspects to focus on teachers’ training? 

THEORETICAL FRAMEWORK 

Teachers’ knowledge can be perceived from different perspectives. Grounded in 

Shulman’s (1986) work, some new conceptualizations on mathematics teachers’ 

knowledge have emerged (e.g., Rowland, Huckstep and Thwaites, 2005; Davis 

& Simmt, 2006; Hill, Rowan & Ball, 2005). In our focus on teachers’ 

knowledge, we focus on the MKT conceptualization with its various sub-

domains (Ball et al., 2008). One reason for favoring this conceptualization of 

knowledge is that we perceive the sub-domains of MKT (see Ball et al., 2008) as 

                                                 
1
 We assume teachers’ professional development to start, explicitly, and in a formal way, in prospective teachers’ 

training and thus this is (for excellence) the starting point for discussing, promoting and elaborating teachers’ 

knowledge in order to allow them to teach with and for understanding. 
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a relevant starting point for designing tasks for the mathematical preparation of 

teachers, and for doing research on what inputs to teachers training shows 

effects on students and practices. Interestingly, the Michigan group has found a 

connection between teachers’ MKT, as measured by their MKT items, and 

students’ achievement in mathematics (e.g., Hill et al., 2005). 

The MKT conceptualization of teacher knowledge comprises Shulman’s 

domains (SMK and PCK) and considers each one of them as being composed of 

three sub-domains. We will here approach only the sub-domains concerning 

SMK. SMK comprises what is termed “common content knowledge” (CCK), 

“specialized content knowledge” (SCK), and “horizon content knowledge’ 

(HCK). CCK is knowledge that is used in the work of teaching, but also 

commonly used in other professions that use mathematics. It can be seen as an 

individual’s knowing the topic for themselves – e.g. knowing how to obtain the 

correct answer when multiplying fractions. Teachers (obviously) need to know 

how to do this, but it is also common knowledge within a variety of other 

professions. However, in order to give students’ opportunities to achieve 

a deeper understanding of the topics (here fractions), besides knowing how to 

perform the calculations (find the correct result or identify incorrect answers), 

teachers’ need to know the mathematical hows and whys behind such 

calculations. Such knowledge on the hows and whys related with fractions is 

a core knowledge in order to allow teachers’ to (amongst others) being able to 

explain it to students’, listen to their explanations, understand their work, and 

choose useful representations of fractions that can support students’ learning. 

This is knowledge that requires additional mathematical insight and 

understanding (Ball, Hill & Bass, 2005), and is considered SCK. The last 

sub-domain is termed HCK, which is described as “an awareness of how 

mathematical topics are related over the span of mathematics included in the 

curriculum” (Ball et al. 2008, p. 403), and is important for developing students’ 

connectedness in mathematical understanding along the schooling.  

Teachers’ knowledge and what concerns the specificity of the topic being 

approached (mathematics) is inter-related, it influence and is influenced by 

a large span of dimensions and aspects. Examples of these dimensions and 

aspects are teachers’ role, actions and goals (Ribeiro, Carrillo & Monteiro, 

Figure 1: Domains of MKT (Ball et al., 2008, p. 403) 
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2009). Teacher’s participation in professional development programs can 

contribute to an important part on their awareness of practice (Muñoz-Catalan, 

Carrillo & Climent, 2006). It also contributes to the development of their MKT 

and on their awareness of the role of teachers’ professional knowledge 

dimensions in practice (Ribeiro et al., 2009). We assume that teachers’ 

professional development starts, explicitly and in a formal way, in pre-service 

teachers’ education, and thus, this is (should be)
2
 the starting point for 

discussing, promoting and elaborating teachers’ knowledge allowing them to 

teach with and for understanding. 

Within the new Portuguese National Curriculum (Ponte et al., 2007), the 

understanding, representation and interpretation of fractions is transversal to all 

the first nine years of schooling. In this new curriculum, it is mentioned that the 

approach to rational numbers should start on the first two years of schooling, in 

an intuitive manner. Thereafter, one should progressively introduce the 

representation of fractions, using simple examples. In years three and four, the 

different interpretations of fractions should be deepen, starting from situations 

involving equitable sharing or measuring, refining the unit of measure – using 

discrete and continuous quantities.  

Discussing the importance of the role of the whole is a core element in allowing 

for understanding of all the different interpretations and representations of 

fractions (Kieren, 1976), and is perceived as a “prerequisite” for such 

understanding (Ribeiro, in preparation). 

Fractions are among the most complex mathematical concepts that children 

encounter in their years in primary education (Newstead & Murray, 1998). 

These difficulties can be originated from the fact that fractions comprise a 

multifaceted construct (e.g., Kieren, 1995) or they can be conceived as being 

grounded in the instructional approaches employed to teach fractions (Behr et 

al., 1993). These identified difficulties illustrate the importance of improving 

teachers’ initial training. A consequence of such an improvement will be 

increase students’ CCK concerning fractions, contributing to a new and better 

direction at all educational levels. 

METHODOLOGY AND CONTEXT 

This paper is grounded in data gathered from an exploratory study between sixty 

prospective early years’ mathematics teacher in Portugal. By combining a 

qualitative methodology and an instrumental case study, we focus on these 

prospective teachers’ MKT on fractions, and on their revealed understanding 

about the role of the whole. 

                                                 
2
 We consider that pre-service teachers’ training should start to assume a broader and important role in teachers 

training, as it is the first stage and contact with most of the aspects referred to in literature as being problematic 

and in need of a change. 
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Data is from a sequence of tasks assigned to these prospective teachers in the 

context of a course focusing on the SMK sub domains of MKT (with 28 hours 

of classes, meaning 2,5 ECTS). Fractions were one of many topics approached 

in the course. Tasks used in the assignment were taken from Monteiro and Pinto 

(2007), and then modified for implementation in teachers’ training
3
 and aligned 

with the Portuguese National Curriculum for the first nine years of schooling. 

Besides focusing on CCK, the aim was also to look into the different 

interpretations and representations of fractions, in particular the role of the 

whole. All tasks were discussed in groups of four or five prospective teachers, 

and at the end there was a large group discussion aiming to obtain a deeper 

understanding of their knowledge of fractions (SCK and HCK).  

The assigned set of tasks was designed with a specific goal to promote the 

development of prospective teachers SMK (Ribeiro, in preparation) on fractions. 

They were specifically related to the work of teaching mathematics and they 

were grounded in tasks of teaching (Ball et al., 2008). In this paper, we only 

present part of the first task: 

Teacher Maria wants to explore with her year one students some notions concerning 

fractions. For such she has prepared a sequence of tasks involving 5 chocolate bars. 

What amount of chocolate would 6 children get if we share the 5 bars equally 

among them? 

The prospective teachers were asked to solve the task with two different 

perspectives in mind: 1) as if they were year one students, and 2) giving their 

own answer as prospective teachers. In both answers they were supposed to 

describe and justify what they did and why they did it. 

In the analysis we focus on prospective teachers’ mathematical critical 

situations: their revealed gaps in knowledge, their different interpretations of 

fractions, and on the role of the whole. Our aim is to obtain a deeper 

understanding of the mathematical reasons why such gaps occur, in order to be 

able to design materials to improve teachers’ training and the ways in which we, 

as teacher educators, approach such training. 

SOME RESULTS AND DISCUSSION  

Here we present, analyze and discuss answers from some of the prospective 

teachers. All groups presented at least one numerically correct answer, 

frequently found by using different ways of dividing the chocolate bars aiming 

to express the final result as a sum of different numerical fractions. They 

commonly had difficulty in explaining the sense of the answers. 

                                                 
3
 In Ribeiro (in preparation) the nature of such tasks and of the specificities associated to the context in which 

they are aimed, are discussed. Part of such discussion concerns, also, the kind of necessary changes to be 

implemented to tasks prepared to be implemented with pupils/students, in order to contribute to develop teachers 

MKT in all its sub domains of SMK.   
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Many of these prospective teachers failed to consider the role of the whole when 

solving the task, they failed to consider how they would divide the chocolate 

bars (the whole) in order to “share the 5 bars equally”, and often they did not 

even consider the importance of finding the “exact” amount of chocolate each 

child would get. They used either exclusively pictorial representations or tried to 

represent in different ways (one of) the correct answers. When using exclusively 

pictorial representations the answers can be divided in two groups: (i) the whole 

is 5 chocolate bars isolated (simply pictorial answer); the prospective teachers’ 

then just draws the chocolate bars and divides each part they are obtaining (in 

each step) in halves and thirds (Pictures A and B); and (ii) the whole 

corresponds to a continuous unit compose by the 5 chocolate bars; the teacher 

then draws a representation of the 5 chocolate bars (as a whole) (Picture C).  

Picture A 

5 peaces 

 

Each child 

gets 5 

peaces 

Each child gets 

“each child gets a square of each 

chocolate, and thus they get 5 pieces”  

 

“5 chocolate pieces for each child” 

Picture B 

Picture C 

“Each child gets 2 big squares and one small square (2/3 of 

four chocolate bars and 1/6 of other)” 

 

 

Figure 2: Examples of student work using exclusively pictorial representations 
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When they tried to represent (one of) the correct answers in different ways, 

prospective teacher considers the whole to be the set of 5 chocolate bars, but 

seen as discrete “subunits”, and their focus was on obtaining the answer using 

different ways of dividing the 5 chocolate bars. Then, they tried to match the 

drawings with the numerical representation. For such, they tried to present the 

same answer throughout the matching of various hypothetical representations 

with formal fractions notations (Picture D). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Although they consider different ways of representing one of the correct 

answers (5/6), visually and algebraically, they did not pay any attention to the 

different whole in this situation, nor the different notion the whole could take. 

Their answer would typically be something like: “each student will get exactly 

5/6 of the total amount of chocolate or 5/6 of each chocolate bar”. 

The prospective teachers who presented different approaches to the answer 

(which occurred in more than half of the groups) frequently believed that the 

Picture D 

Figure 3: Examples of student work considering different ways of representing one 

of the correct answers  

Let’s consider the students A, 

B, C, D, E and F  

So, each one gets ½ of a 

bar and also 1/3 of other 

So, in this case, each student gets 

1/6 of each one of the five bars  

We conclude that, independently 

of how the chocolate bars are 

divided, each student gets 5/6 of 

the total, or 5/6 of each bar  
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reasoning would necessarily be different whenever their way of dividing and 

representing the solutions algebraically was different. From another point of 

view, they consider it to be the same to say that the pupil will get: 5 pieces of 

chocolate; one bar of chocolate (when collecting 1/6 of each bar and 

transforming it in one other bar with 5/6); or 5/6 of each chocolate bar. Such 

difficulties in understanding the role of the whole impeded them from being able 

to interpret, afterwards, different representations and interpretations of fractions 

in the subsequent tasks. 

SUMMARY AND IMPLICATIONS FOR MATHEMATICS TEACHERS’ 

TRAINING  

The subject matter knowledge revealed by these prospective teachers’ is aligned 

with the knowledge revealed by early years’ students (Monteiro, Pinto & 

Figueiredo, 2005). Their different ways of seeing a discrete whole, and giving 

answers involving fractions (and, necessarily, the impact of this on the 

interpretation of fractions) is problematic, because they show some of the same 

gaps in knowledge as the ones their (future) students are struggling with. 

These gaps in knowledge, which may be admissible at an early stage at primary 

school level, would make it impossible for them (at least at the time) to develop 

a broader understanding on the interpretations and representations of fractions. 

This would limit the learning opportunities they are able to provide to their 

students, the nature and richness of the tasks they would propose, and these gaps 

in knowledge should thus become an explicit focus of training.  

These results, in terms of the gaps in prospective teachers’ knowledge and the 

way(s) they consider the whole and, consequently, the notion(s) of fractions, 

appear problematic to us because the large amount of research being done on 

fractions (focusing on the students) seems to have had no significant impact in 

teachers’ training. This led us to problematize our own practice and the focus of 

the training we are offering, and we began to think differently about teachers’ 

training, primarily in the direction of reinforcing the primary role of the SMK 

sub-domains for improving training. This will allow prospective teachers to 

approach the topics with and for understanding, and with a sense of the 

possibilities of conceptualizing all the possible levels of generalization. Only 

through such a change will it be possible to allow students to achieve a global 

view and understanding of the mathematical topics, and on the ways they relate 

and evolve along schooling and the different connections between each of them. 

It will also allow them to generalize with sense and effective knowledge. 

Our final thoughts are introspective reflections as teachers and mathematics 

educators, informed with responsibility in teachers’ training (at all its different 

stages). The fact that these prospective teachers reveal gaps in fundamental 

knowledge is also our fault, and we have to really reflect on this and change 

both the nature and focus of our training and of the tasks we use in teachers’ 
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training. Such a change would make sense if it really takes consideration of an 

effective approach between theory and practice, focusing on the specialized 

knowledge for the mathematical topics, assuming such knowledge to be 

something that can be effectively taught (Hill & Ball, 2004). 
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Inductive reasoning is part of the discovery process, whereby the observation of 

special cases leads one to suspect very strongly (though not know with absolute 

logical certainty) that some general principle is true. It is used as a strategy in 

teaching basic mathematical concepts, as well as in problem solving situations. 

In the paper the results of the study on primary teacher students’ and 

mathematics teacher students’ competences in inductive reasoning are 

presented. The students were posed a mathematical problem which enabled 

them to use inductive reasoning in order to reach the solution and make 

generalizations. Their results were analysed from the perspective of the problem 

solving depth and from the perspective of the applied strategies. We also 

analysed the relationship between the depth and the strategy of problem solving 

and established that not all strategies were equally effective at searching for 

problem generalizations.  

INTRODUCTION 

In many cases the researchers related the inductive reasoning process to the 

problem solving context (e. g. Christou & Papageorgiou, 2007; Küchemann & 

Hoyles, 2005; Stacey, 1989). These examinations pay attention to the cognitive 

process, as well as to the general strategies, that students use to solve the posed 

problems. Problem solving fosters in mathematics education various kinds of 

reasoning, more specifically, inductive reasoning.  

In literature terminology of various kinds is used when addressing reasoning in 

mathematics: deductive reasoning, inductive reasoning, mathematical induction, 

inductive inferring, reasoning and proving. Deductive reasoning is unique in that 

it is the process of inferring conclusions from the known information (premises) 

based on formal logic rules, where conclusions are necessarily derived from the 

given information, and there is no need to validate them by experiments (Ayalon 

& Even, 2008).  Although there are also other accepted forms of mathematical 

proving, a deductive proof is still considered as the preferred tool in the 

mathematics community for verifying mathematical statements and showing 

their universality (Hanna, 1990; Mariotti, 2006; Yackel & Hanna, 2003). On the 

other hand, inductive reasoning is also a very prominent manner of scientific 

thinking, providing for mathematically valid truths on the basis of concrete 

cases. Pólya (1967) indicates that inductive reasoning is a method of discovering 
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properties from phenomena and of finding regularities in a logical way, whereby 

it is crucial to distinguish between inductive reasoning and mathematical 

induction. Mathematical induction (MI) is a formal method of proof based more 

on deductive than on inductive reasoning. Some processes of inductive 

reasoning are completed with MI, but this is not always the case (Canadas & 

Castro, 2007). Stylianides (2008, 2008a) uses the term reasoning-and-proving 

(RP) to describe the overarching activity that encompasses the following major 

activities that are frequently involved in the process of making sense of and in 

establishing mathematical knowledge: identifying patterns, making conjectures, 

providing non-proof arguments, and providing proofs. Given that RP is central 

to doing mathematics, many researchers and curriculum frameworks in different 

countries, especially in the United States, noted that a viable school mathematics 

curriculum should provide for the activities that comprise RP central to all 

students’ mathematical experiences, across all grade levels and content areas 

(Ball & Bass, 2003; Schoenfeld, 1994; Yackel & Hanna, 2003). 

INDUCTIVE REASONING  

As our research shall be dedicated to inductive reasoning, this will be specified 

from the perspectives of various theories and practices. Glaser and Pellegrino 

(1982, p. 200) identified inductive reasoning, as follows: »All inductive 

reasoning tasks have the same basic form or generic property requiring that the 

individual induces a rule governing a set of elements.«  Inductive reasoning 

tasks can be solved either by applying the analytic strategy or the heuristics 

strategy (Klauer & Phye, 2008). The former enables one to solve every kind of 

an inductive reasoning problem. Its basic core would be the comparison 

procedure. The objects (or, in case of correlations, the pairs, triples, etc., of 

objects) would be checked systematically, predicate by predicate (attribute by 

attribute or relation by relation), in order to establish commonalities and/or 

diversities. However, the solution seekers generally tend to resort to the 

heuristics strategy, at which a participant starts with a more global task 

inspection and constructs a hypothesis, which can then be tested, so that the 

solution might be found more quickly, depending of the quality of the 

hypothesis. We believe that problem solving in mathematics is based on both 

strategies, with pupils, who learn mathematics, as well with scientists, who can 

reach new cognitions by applying either the analytic strategy or the heuristics 

one.  

There are various theories as to the detailed identification of the stages of 

inductive reasoning. Pólya (1967) indicates four steps of the inductive reasoning 

process: observation of particular cases, conjecture formulation, based on 

previous particular cases, generalization and conjecture verification with new 

particular cases. Reid (2002) describes the following stages: observation of a 

pattern, the conjecturing (with doubt) that this pattern applies generally, the 

testing of the conjecture, and the generalization of the conjecture. Cañadas and 
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Castro (2007) consider seven stages of the inductive reasoning process: 

observation of particular cases, organization of particular cases, search and 

prediction of patterns, conjecture formulation,   conjecture validation, conjecture 

generalization, general conjectures justification. There are some commonalities 

among the mentioned classifications: Reid (2002) believes the process to 

complete with generalization, Polya adds the stage of  »conjecture verification«, 

as well as Cañadas and Castro (2007), who name the final stage “general 

conjectures justification”. In their opinions general conjecture is not enough to 

justify the generalization. It is necessary to give reasons that explain the 

conjecture with the intent to convince another person that the generalization is 

justified. Cañadas and Castro (2007) divided the Polya's stage of conjecture 

formulation into two stages: search and prediction of patterns and conjecture 

formulation.  

The above stages can be thought of as levels from particular cases to the general 

case beyond the inductive reasoning process. Not all these levels are necessarily 

present; there are a lot of factors involved in their reaching. Pólya also states that 

induction, analogy and generalization are very close to each other. By observing 

and investigating special cases we notice similarities, regularities based on 

analogy and finally we state that the observed, noticed regularity yields in 

general case too. 

EMPIRICAL PART 

Problem Definition and Methodology 

In the empirical part of the study conducted with primary teacher students and 

mathematics teacher students the aim was to explore their competences in 

inductive reasoning. In the early school years inductive reasoning is often used 

as a strategy to teach the basic mathematical concepts, as well as to solve 

problem situations. In the very research the focus was on the use of inductive 

reasoning at solving a mathematical problem. We believe that in mathematics 

only teachers who have competences in problem solving can create and deal 

with the situations in the classroom which contribute to the development of 

those competences in children. 

The empirical study was based on the descriptive, non-experimental method of 

pedagogical research. 

Research Questions 

The aim of the study was to answer the following research questions: 

1. Do the students possess adequate knowledge to solve the problem by 

applying the inductive reasoning strategy? 

2. How much do the students delve into problem solving, i.e. which step in 

the process of inductive reasoning do they manage to take? 
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3. Which strategies are used by the students at their search for problem 

generalizations? 

4. Is there any difference in the achieved problem solving depth and in 

applied strategies between primary teacher students and mathematics 

teacher students?  

5. Are all the applied strategies equally effective for making generalizations? 

Sample Description  

The study was conducted at the Faculty of Education, University of Ljubljana, 

Slovenia in May 2010. It encompassed 89 third-year students of the Primary 

Teacher Education and 72 first-year students of Mathematics Teacher Education 

programme.  

Data Processing Procedure  

The students were posed a mathematical problem which was provided for the 

use of inductive reasoning in order to reach a solution and make generalizations. 

The problem was, as follows: 

The students were solving the problem individually, they were simultaneously 

noting down their deliberations and findings, they were also aided with a blank 

square paper sheet of, so they could delve into the problem by drawing new 

spirals. 

The data gathered from solving the mathematical problem were statistically 

processed by employing descriptive statistical methods. The students' solutions 

were analysed from two different perspectives: from the perspective of the 

problem solving depth and from the perspective of the applied strategies. As 

some students tested various problem solving strategies, thus contributing more 

than one solution to the result analysis, the decision was made to use the number 

of the received solutions and not the number of the participating students as the 

basis for the analysis of the problem solving depth and of the strategies of 

solving. We received 95 solutions from primary teacher students and 76 

solutions from mathematics teacher students. Six primary teacher students and 

On the picture below the shaping of the spiral in the 

square of 4x4 is presented. Explore the problem of the 

spiral length in squares of different dimensions.  
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four mathematics teacher students contributed two different approaches to the 

problem solving task.  

Results and Interpretation 

In continuation the results are shown, which are analysed as to various 

observation aspects. 

a)  The problem solving depth 

The received solutions were classified into many levels, which were graded as to 

the achieved problem solving depth: 

Level 1: the record contains only the pictures of the spirals, 

Level 2: the record contains the drawn spirals and the corresponding 

calculations of the lengths of the spirals, 

Level 3: the record contains structured records of the lengths of the spirals, but 

only for those cases, that are graphically presented, 

Level 4: the record contains structured records of the lengths of the spirals and 

the prediction of the result for the case, which is not graphically presented, 

Level 5: the record contains also the prediction for the general case. 

As obvious the transformation of the problem from the geometric to the 

arithmetic one, and consequently operating with numbers and not only with 

pictures of the spirals is witnessed not until one has reached the level 2. Taking 

into account the stages in inductive reasoning (Polya, 1967, Reid, 2002, Canadas 

and Castro, 2007) we can also state that all the students at the levels from 1 to 5 

reached the stage »observation of particular cases«, yet they were not equally 

successful in the process of searching and predicting of patterns. Mere drawings 

of spirals and calculations of their lengths (the levels 1 and 2) did not provide 

for a deeper insight into the nature of the problem and for making a 

generalization for the spiral of any dimension. The level 3 may be considered a 

transitional stage. These students already knew that mere calculations would not 

suffice, so they tried to structure them, i.e. they analysed the calculated numbers, 

and tried to define a certain pattern and a rule, respectively. However, they 

considered this to be enough and did not try to make a rule for the “n”-number 

of times-steps. In these cases students were deliberating on a possible pattern 

just for the cases they were observing. In comparison with them the level 4 

students were already thinking about a possible pattern for a non-observing case, 

but they were still not thinking about applying their pattern to all cases. 

According to Reid (2002) the students at the level 4 reached the stage of 

conjecture (with doubt). They were convinced about the right of their conjecture 

for those specific cases, but not for other ones (see also Canadas and Castro, 

2007).  Only those students who achieved the level 5 can be considered to have 

reached the stage called »generalization of the conjecture« according to Reid 
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(2002). In the opinions of Canadas and Castro (2007) generalization is by no 

means the final stage in the inductive reasoning process. The final stage - 

general conjectures justification – includes a formal proof that guarantees the 

veracity of the conjecture, namely. Similar to the research conducted by 

Canadas and Castro (2007), also in our research none of the students recognised 

the necessity to justify the results. They interpreted the results as an evident 

consequence of particular cases, with no need of any additional justification to 

be convinced of its truth.  

Table 1 shows the distribution of responses regarding the achieved problem 

solving depth. »Other« group comprises the responses of students who were 

eliminated from further analysis of the problem solving procedures due to their 

non-understanding of the instructions. 

 Primary teacher students Mathematics teacher students 

Depth Number of 

responses 

Responses in 

percentage 

Number of 

responses 

Responses in 

percentage 

Level 1 6 6% 6 8% 

Level 2 19 20% 3 4% 

Level 3 24 25% 10 13% 

Level 4 11 12% 5 7% 

Level 5 32 34% 48 63% 

Other 3 3% 4 5% 

Total 95 100% 76 100% 

Table1: Distribution of the responses regarding the achieved problem solving depth. 

A closer comparison of primary teacher students’ and mathematics teacher 

students’ achievements shows some differences regarding the generalisation of 

the problem solving situations:    

- there were more primary teacher students in comparison to mathematics 

teacher students who did not notice any structure among the collected 

data, which prevented them from further exploration (level 2); 

- there were more mathematics teacher students (almost two thirds) in 

comparison to primary teacher students (one third) who achieved the 

highest level of generalisation (level 5). According to the presented results 

it could be concluded that the mathematics teacher students have better 

abilities to see the relations among the numbers, and have more 

knowledge for solving problems with inductive reasoning. 
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In addition, it is interesting to compare the percentages of the students who 

achieved the levels 3 and 4 (37 % of primary teacher students and 20 % of 

mathematics teacher students): they did notice the structure of the number 

pattern, but they were not able to develop the general form even it was explicitly 

noticeable. Most likely either they did not know how to write their findings in a 

general form or they did not feel the need to upgrade their concrete findings with 

a general form. Similar conclusion was made also by Cooper and Sakane (1986) 

who investigated 8
th
-grade students’ methods of generalising quadratic problems 

where most of the students could not explicitly recognise that particular cases 

should be examined for the general rule; some of them claimed that a pattern of 

numbers was sufficient rule in and of itself. Nevertheless, we think that the 

percentage of the primary teacher students who reached level 3 or 4 is quite 

high, and may reflect the orientation of primary teacher education focusing on 

dealing with concrete situations.  

b) Problem solving strategies. 

The analysis of the modes of reasoning that the students applied at their search 

for generalizations revealed that it was possible to perceive the posed problem 

from various perspectives. Various problem perception modes are addressed as 

various solving strategies in continuation, out of which the ones that were 

encountered among the students' solutions are presented in Table 2.  

Strategy  Strategy description Generalization record 

1 –  »squares« 

strategy 

It is observed that the 

values of the lengths are 

obtained by squaring the 

lengths of the consecutive 

square (e.g. 15 = 16 – 1) 

(n+1)
2
 - 1 

2 –  »product« 

strategy 

It is observed that the length 

of the spiral is equal to the 

product of two numbers that 

differ for 2 (e.g. 15 = 5x3) 

n(n+2) 

3 –  »binomial« 

strategy 

It is observed that the length 

of the spiral is calculated by 

adding the double length to 

the square of the square 

length (e.g. 15 = 3x3 + 2x3) 

n
2 
+ 2n 

4 –  

»difference« 

strategy 

When observing the 

differences among the 

lengths of the spirals, it is 

obvious that the result is the 

The difference between the spiral 

in the square with nxn 

dimensions and the consecutive 

spiral is 2n + 1 or in a recursive 
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sequence of odd numbers 

(e.g. from 1x1 square 

onwards the lengths of the 

spirals increase by 5, 7, 9, 

11, 13, 15…. 

manner: 

dnxn=  d (n-1) x(n-1)  + (d (n-1) x(n-1)- d 

(n-2) x(n-2) + 2), whereby the 

denotation dnxn stands for the 

length of the spiral in the square 

with nxn dimensions. 

5 – »sum« 

strategy 

It is observed that the length 

of the spiral can be 

presented as the sum of 

individual even sections of 

the spiral (e.g. 15 = 1 + 1 + 

2+ 2+ 3 + 3 + 3. 

3n + 2(n-1) – 2(n-2) …+ 2x2 + 

2x1 

6 -  

»quadrilateral«  

strategy 

It is observed that the length 

of the spiral equals four 

times the length of the 

square enlarged by the 

product of two numbers that 

differ for 2 (e.g. 15 = 4x3 + 

1x3) 

4n + n(n-2) 

7 –  

»transformation 

strategy« 

It is observed that in cases 

when the dimension of the 

square is an even number, 

spirals can be transformed 

in squares, the perimeters of 

which can be calculated. 

4n +4(n-2) + 4(n-4) ...+ 4x2; 

n=2k, k  N 

 

    

 
 

 
 

    

    

    

    

    

    

Table 2: Description of the applied problem solving strategies 

In continuation the students' selection of the strategies is presented. The strategy 

was evaluated only with the responses, achieving the depth of the levels 3, 4. or 

5., i.e. of those students, who noted the length of the spiral in a structured 

record, as it was possible to define the applied strategy and the mode of 

reasoning, respectively, only with this record.  

 Primary teacher students Mathematics teacher students 

Strategy Number of 

responses 

Responses in 

percentage 

Number of 

responses 

Responses in 

percentage 

1 – squares 2 2% 0 0% 
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2 – product 8 8% 3 4% 

3 – binomial 12 14% 4 5% 

4 – difference 28 29% 16 21% 

5 – sum 16 17% 38 50% 

6 – mixed 0 0% 1 1% 

7 – transformation 1 1% 0 0% 

Other 28 29% 14 19% 

Total 95 100% 76 100% 

Table 3: Distribution of the responses as regards the applied problem solving strategy 

Let us have a closer look of the results presented in Table 3.  

- Among the primary teacher students the strategy where the students 

focused on the difference between the lengths of the neighbouring spirals 

(29%) prevails whereas among the mathematics teacher students this was 

the sum strategy where students focused on adding the lengths of the 

individual even length sections of the spiral (50%).  

- Among the primary teacher students the distribution of the used strategies 

is wider then among mathematics teacher students (or in other words: the 

distribution of the used strategies is more steady for primary teacher 

students in comparison to the mathematics teacher students). We can see 

that the »product« and »binomial« strategies are more often used among 

primary teacher students.  Two primary teacher students also noticed that 

there was a correlation between the lengths of the spirals and the squares 

of the natural numbers which was not noticed among did the mathematics 

teacher students.  

-  In the »Other« column (Table 3) the responses were placed at which it 

was not possible to consider the selected strategy (all of the students who 

did not reach even the level 3).  

The analysis of the problem solving strategies helps us to make conclusions 

about the effectiveness of a particular strategy for creating generalisation. It is 

very important to realise that all strategies are not equally effective for making 

generalisation and that the context of the problem might (not) support 

generalisation (Amit and Neria 2008).  Therefore, further research question can 

be posed in analysing solving strategies, such as: were all the strategies equally 

effective when searching for generalizations? 

The following table provides for the answer to this question, clarifying the 

relation between the selected strategy and the problem solving depth. 



308 VIDA MANFREDA KOLAR, MARKO SLAPAR, TATJANA HODNIK ČADEŽ 

 Primary teacher students Mathematics teacher students 

Strategy Level 5 Total Percentage 

of responses 

at the level 5 

Level 5 Total Percentage of 

responses at 

the level 5 

1 – squares 2 2 100% 0 0 0% 

2 – product 5 8 63% 3 3 100% 

3 - binomial 10 12 83% 4 4 100% 

4 – difference 4 28 14% 5 16 31% 

5 – sum 11 16 69% 35 38 92% 

6 - mixed 0 0 0% 1 1 100% 

7–

transformation 

0 1 0% 0 0 0% 

Table 4: Problem solving depths in relation to the problem solving strategy  

The values in the last column for primary teacher students and in the last column 

for mathematics teacher students attest to the percentage of the responses 

pertaining to the selected strategy of those students who managed to reach the 

final level, i.e. the generalization.  

According to the results one of the applied strategies was substantially less 

effective than the others for the both groups of students, i.e. the strategy 4 – 

‘difference strategy’. Since it was most often used strategy among the primary 

education students (see table 3), a conclusion can be reached that the lower 

percentage of the achieved generalization among the primary teacher students 

compared to the mathematics teacher students was also due to the choice of the 

strategy. From this perspective some of the strategies (e.g. strategies 2, 3 and 5) 

were much more useful for creating general form than the other ones (strategy 

4). 

Let us have a more detailed examination of the strategy which was used by the 

most primary teacher students and gave the least correct generalisation – the 

‘difference strategy’. The reason for choosing that strategy by a lot of students 

might be that searching for the difference between consecutive numbers is a 

very basic and well known strategy for making a generalisation. It is not difficult 

to obtain a generalisation if we get a constant difference between consecutive 

numbers at the first level of difference in a number pattern. On the other hand, 

the generalisation on the basis of the difference between consecutive numbers 

can be much more difficult if it demands the generalisation by function of higher 

order (not linear). In our case, the generalisation of the number pattern in the 

presented problem with spirals is expressed as quadratic  function and this is in 
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our opinion the main reason for a low ratio of the students who succeeded in 

creating generalisation on the basis of ‘difference strategy’ (see table 4).   

 In addition, it is also worth analysing the most used strategy among the 

mathematics teacher students, i. e. the ‘sum strategy’.  This strategy was used by 

50 % of them and proved to be very effective for forming generalisation. The 

closer look at those generalisations gave us 4 levels of quality difference among 

the achieved generalisations. 

Level 1: Generalisation with an error. A student performs a generalisation in a 

recursive form as a sum of the even lengths of the spiral but does not determine 

the last article in a form (6 students)  

Level 2:  Generalisation in a recursive form as a sum of the even lengths of the 

spiral: (3n + 2(n-1) – 2(n-2) …+ 2x2 + 2x1) (24 students) 

Level 3: Generalisation with the sum symbol: 
1

1

23
n

k

kn  (3 students) 

Level 4: Simplifying the sum by transforming it into some of the records 

recognised in the strategies 1, 2or 3, i. e.: 3n + 2(n-1) – 2(n-2) …+ 2x2 + 2x1 = 

3n + 2((n-1) +(n-2)+...+2 +1) = 3n + 2n(n-1)/2 = n
2 
+ 2n (2 students) 

It is worth emphasising that all primary teacher students who used the ‘sum’ 

strategy and created generalisation (11 students) could be placed in level 2, i. e. 

generalisation in a recursive form as a sum of the even lengths of the spiral.   

What can we learn from these results? According to Steele and Johanning 

(2004) we could learn that the different quality levels of forming generalisation 

are the result of different schemas of the learners. They found out that the 

students whose schemas were partially formed could not consistently or clearly 

articulate the generalizations and had more recursive unclosed forms of 

symbolic generalizations (e.g. n+(n-1)-(n-1)+(n-2) and not 4n-4). If we compare 

their results with ours it could be concluded that only a few students (5%) who 

have chosen the ‘sum’ strategy, achieved the level of well-connected schema.  

SUMMARY 

In the course of their studies at the Faculty of Education one of the important 

competences to be developed with primary teacher students and mathematics 

teacher students is to qualify them to solve mathematical problems. We are 

aware of the fact that this field of expertise is often neglected in our primary 

schools, mostly in favour of consolidating the learning contents by calculations 

and attending to classical word problems. We believe that students – future 

teachers are the ones, to whom we should start to bring about changes of this 

mindset, and introduce the role of the problem situations as an indispensable 

part of mathematics lessons in elementary schools. The presented research 

provided us with some important responses as to the qualification of students for 
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problem solving by inductive reasoning. It was established that the majority of 

the students usually perceive the given situation as a problem, however, their 

abilities to delve into the problem are rather different: based on the stages of 

inductive reasoning according to Polya (1967), Reid (2002) and Castaneda and  

Castro (2007) it can be inferred that the students’ responses were mainly 

pertaining to the following three stages: observation of particular cases, 

searching for pattern and prediction, as well as generalization. We find it 

important to establish that the stage an individual student manages to reach is 

largely influenced by his strategy selection. Some strategies in the process 

solving proved to be more effective than the other ones, from the perspective of 

making generalizations. Participating students approached the problem situation 

in a creative manner, as they applied seven strategies of different quality, and 

they were highly motivated to deal with such problem situations; both facts 

seem to be extremely encouraging from the perspective of their later role as 

teachers of mathematics to the youngest children.  
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The paper presents an analysis of Greek primary school teachers’ problem 

solving methods, with a focus on the type of generalisations produced. Our 

results show that although most working groups have formulated some partial 

conclusions, they did not manage to reach a higher level of generalisation by 

some kind of ‘shift’ in their attention. Moreover, their works have demonstrated 

their reluctance in the use of mathematical notation in the form of variables and 

formulas.  

INTRODUCTION 

Generalisation is considered one of the most important processes involved in 

mathematics. Whether it is viewed as part of a higher level process, like 

abstraction (Dreyfus, 1991b) or as the core process involved in a particular 

mathematics field, like algebra (Mason, 1996), there seems to be an agreement 

on its significant role in advanced mathematical thinking. Moreover, significant 

curriculum documents, like NCTM’s Principles and Standards for School 

Mathematics (2000) state that: 

Students should enter the middle grades with the view that mathematics involves 

examining patterns and noting regularities, making conjectures about possible 

generalizations, and evaluating the conjectures. In grades 6-8 students should 

sharpen and extend their reasoning skills by deepening their evaluations of their 

assertions and conjectures and using inductive and deductive reasoning to formulate 

mathematical arguments. (p. 262) 

In accordance with the above, recent research has shown that even young 

children may engage in forms of generalisation (Lins & Kaput, 2004). 

Accepting that such processes can be introduced at an early age, it is vital to 

consider teachers’ education and how they should be prepared for initiating their 

students into algebraic reasoning.  Firstly, one can make a distinction between 

secondary and primary school teachers, based on the premise that the former are 

expected to having been involved in advanced mathematical processes during 

their university studies. Indeed, Van Dooren, Verschaffel and Onghema (2003) 

have shown the different problem solving strategies followed by future primary 

and secondary school teachers in Flanders and the reluctance of some of the 

former to use algebraic methods. Our research stems from a similar need: in the 

context of Greek primary school teacher education, we aimed to analyse the 
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student-teachers’ problem solving methods, in order to examine the extent of 

their use of generalisation, which were expected as a solution to the problem 

posed. Particularly, our research questions were the following: 

 How did the students interpret the task’s request for a (general) relation? 

 What were the basic characteristics of the solution processes followed by 

the students? 

 What form of representations did the students use to solve the problem 

and to present their answer? 

THEORETICAL FRAMEWORK 

According to Kaput (1999) algebraic thinking consists of: (a) the use of 

arithmetic as a domain for expressing and formalizing generalizations; (b) 

generalizing numerical patterns to describe functional relationships; (c) 

modelling as a domain for expressing and formalizing generalizations; and (d) 

generalizing about mathematical systems abstracted from computations and 

relations. The strong bonds between generalisation and mathematics (especially 

algebra) are quoted by numerous other researchers. Lee (1996) states that: 

… it is possible to make a case for introducing algebra through functions, and 

through modeling, and through problem solving, quite as honestly as it is to make 

the case that generalizing activities are the only way to initiate students into the 

algebraic culture. (p. 102, our emphasis) 

The various processes involved in generalisation have been identified by a 

number of researchers; Rivera and Becker (2008) in their literature review state 

that the initial stages in generalization involve: focusing on (or drawing attention 

to) a possible invariant property or relationship, ‘grasping’ a commonality or 

regularity and becoming aware of one’s own actions in relation to the 

phenomenon undergoing generalization. Mason (1996) offers an interpretive 

overview of these phases by seeing them as forming a spiralling helix, which 

contains: 

 manipulation (whether of physical, mental, or symbolic objects) provides the 

basis for getting a sense of patterns, relationships, generalities, and so on; 

 the struggle to bring these to articulation is an on-going one, and that as 

articulation develops, sense-of also changes; 

 as you become articulate, your relationship with the ideas changes; you 

experience an actual shift in the way you see things, that is, a shift in the 

form and structure of your attention; what was previously abstract becomes 

increasingly, confidently manipulable. (pp. 81-82) 

One of the basic tools that one has during generalising is visualization, i.e. a 

“process by which mental representations come into being” (Dreyfus, 1991b, p. 

31); however, its use is not unproblematic for students who may be likely to 
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create visual images but are unlikely to use them for analytical reasoning 

(Dreyfus, 1991a). Generally, from the point of view of students, coming to think 

algebraically is not an easy process. The ‘shift of attention’ mentioned by Mason 

(1996) is the activity that differentiates the professional mathematician from the 

novice. Thus, the transition from arithmetic to algebra is a challenging aim for 

teachers in the last classes of primary school and the first of secondary school; 

and ‘early algebra’ is now a commonly used term (Lins & Kaput, 2004), 

signifying the assumption that the initiation to algebraic thinking may start in 

primary school: 

… experiences in building and expressing mathematical generalizations – for us, the 

heart of algebra and algebraic thinking – should be a seamless process that begins at 

the start of formal schooling, not content for later grades for which elementary 

school children are “made ready”. (Blanton & Kaput, 2005, p. 35) 

In order to clarify the teachers’ role in that initiation, and its consequent 

implications for teachers’ education, we could adopt a situated view of learning 

(Lave and Wenger, 1991), in which learning is seen as changing participation 

and formation of identities within relevant communities of practice. To put it 

simply, teachers should be initiated into the practices that they will initiate their 

students (Borko et al., 2005). Additionally, we are in line with Cobb (1994) who 

stresses that learning “should be viewed as both a process of active individual 

construction and a process of enculturation” (p. 13). In other words, we do not 

want to ignore the importance of engaging students in activities that are 

expected to promote the construction of meaningful knowledge. Bearing all 

these in mind we have designed a whole-semester teacher preparation 

programme, which forms the basis of the research presented in the paper. 

CONTEXT OF THE STUDY AND METHODOLOGY 

The teacher preparation programme in focus took place in the spring semester of 

2011 at the Department of Primary Education of University of Ioannina in 

Greece. The participants of the course were 102 students in the third (out of 

four) year of their studies and both authors of the paper designed and realised 

the course. The course, entitled “Didactics of Mathematics I” is obligatory for 

all students and its intended aim is to provide the basic knowledge on 

contemporary theories for teaching and learning mathematics. Besides the 

lectures on the various approaches on mathematics education, the course 

included group-work activities, which aimed to improve our students’ basic 

mathematical competences (Niss, 2003), with a special focus on posing and 

solving mathematical problems and mathematical modelling (i.e. analysing and 

building models). Additionally, the students were initiated into a number of 

generalisation tasks, e.g. a variation of the ‘handshakes problem’ and the 
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matchsticks problem (e.g. Mason, 1996).
4
 The task presented here, taken from 

Dąbrowski (1993) aimed to further stimulate students’ mathematical 

investigations (Ponte, 2001) and eventually lead them to a generalisation; the 

type of the task called for visualisation, but in a simple form. An important 

characteristic of that task is that it can be implemented in differently aged 

students, allowing them to reach different levels of generalisation by observing 

and grouping the data. For example, primary school students are not necessarily 

required to reach a general formula for all the possible dimensions of the table. 

Concerning the way of working on the task Dąbrowski (1993) suggests group 

work as the optimum way, since it allows students to simultaneously consider 

different cases of the table’s dimensions. 

 

Figure 1. The billiard problem 

The problem is the following: In the billiard table shown we hit the ball from the 

bottom left hole at an angle of 45 degrees. The ball hits the table walls three 

times before it ends up in the top left hole. Thus, when the table’s dimensions 

are 3x2 the ball hits 3 times. What will happen if we hit the ball in the same way 

but in a table of different dimensions? Find the relationship between the table’s 

dimensions and the number of the ball hits. 

The task was presented in the class and the students were given the opportunity 

to ask for any clarifications. They were then asked to form groups of two to four 

and work on the problem for around an hour. Their working sheets were 

collected and they comprise our main source of data. 

The analysis of our data was done according to our research aim, i.e. to examine 

the generalisations reached by the students in their problem solving. Particularly, 

our data led us to focus on four aspects of the solutions, namely visualisation 

(C1), considered cases (C2), conclusions (C3) and formulas (C4). From these 

aspects, visualisation (C1) is the first part of the process of manipulation that we 

mentioned before, while the remaining three were informed by Mason’s (1996) 

view of generalisation as including variation, extension and pure generalisation. 

Particularly, the number and the type of considered cases (C2) were indicators 

                                                 
4
 It is important to note the big differences in our students’ level of mathematical knowledge which was mainly 

due to the Greek examination system which allows for students from different school specializations to enter the 

education university departments. 
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of the variety and the extent of students’ manipulations. The type of conclusions 

(C3) informed us on the extent of students’ articulations, while the type of 

formulas (C4) refers to the ‘shift of attention’ which is related to pure 

generalisation. These four aspects led us to the establishment of the following 

categories:  

Category C1: Visualisation. It refers to the type of visualisations used and 

contains the following subcategories: 

A. Orderly visualisation: contains the works in which the drawings were in 

some order, e.g. 4x3, 4x4, 4x5. 

B. Non-orderly visualisation: contains the works in which the drawings were 

not clearly related to each other, e.g. 3x2, 4x5. 

C. Multi cases visualisation: contains the works in which the considered 

situations were drawn on a single drawing. 

Category C2: Considered cases. It refers to the number and the type of the 

cased considered and contains the following subcategories: 

A. No (explicitly related) cases. 

B. One case considered, the one where the billiard has the same dimensions 

(it forms a square). 

C. The cases in which one dimension is constant, while the second 

dimension is changing. 

D. The cases in which both dimensions are changing, having a fixed relation 

between them (e.g. the one is twice the other or they are two consecutive 

numbers). 

E. The cases in which one dimension is an even (or an odd) number and the 

second dimension is changing. 

F. The cases in which both dimensions are even (or odd) numbers. 

G. The cases in which one dimension is an even and the other is an odd 

number. 

H. The cases including any dimensions. 

Category C3: Conclusions. It refers to the type of conclusions reached and 

contains the following subcategories: 

A. Lack of conclusions. 

B. Conclusion for a single case (I. correct, II. incorrect). 

C. Conclusions for some cases (I. correct, II. incorrect). 
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D. Conclusions for all possible cases; works in which a number of 

conclusions appeared which were related to all particular cases, e.g. if m, 

n are even then... (I. correct, II. incorrect). 

E. A general conclusion with some assumptions concerning the dimensions; 

works in which a general relation concerning the number of hits was 

provided, e.g. if m, n are the dimensions of the billiard table then the 

number of hits is described by the formula m+n-2 (I. correct, II. 

incorrect). 

Category C4: Formulas. It refers to the type of formulas reached and contains 

the following subcategories: 

A. Lack of formulas.  

B. Formulas for only some of the considered cases (I. correct, II. incorrect). 

C. Different formulas for all the considered cases (I. correct, II. incorrect). 

D. A general formula for all cases (I. correct, II. incorrect). 

A more detailed description on the implementation of this analytical frame is 

given in the next section, where we present the results of this analysis. 

RESULTS 

Table 1 provides an overview of the way that our data were assigned to the 

categories described in the previous section. Additionally to the data shown 

below we examined the use of variables for the table’s dimensions. The columns 

marked in grey represent the sub-categories which were not finally related to 

any data.  

 

C1 C2 C3 C4 

A B C A B C D E F G H A 
B C D E 

A 
B C D 

I II I II I II I II I II I II I II 

1                            

2                            

3                            

4                            

5                            

6                            

7                            

8                            

9                            

10 - - -                         

11 - - -                         

12 - - -                         

13                            

14                            

15                            

16                            
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17                            

18                            

19                            

20                            

21 - - -                         

22                            

23                            

24                            

25                            

26                            

27                            

28                            

29                            

30 - - -                         

31                            

32                            

33                            

34                            

Table 1. The initial data categorisation 

Table 1 can be read in two ways, horizontally and vertically. By looking it 

horizontally one can follow a particular group’s work, i.e. observe the processes 

of manipulation and articulation (C1, C2 and C3) and whether the group has 

reached the level of pure generalisation (C4). For example, Group #8 has 

provided orderly drawings of the billiard table and some of them were done in 

the same drawing. That group has considered the following cases: a) the billiard 

has the same dimensions (it forms a square), b) one dimension is constant (equal 

to 2 and then to 3), while the second is changing (1, 2, 3, 4, ...), c) both 

dimensions are changing, having a fixed relation between them (the one is twice 

the other and then three times the other). For these cases – which do not account 

for all possible cases – the group has provided some correct conclusions, 

without the use of any formula. By looking at Table 1 vertically one can observe 

the strategies chosen by the students (C1 and C2) as well as the number of 

groups that formulated (correct) conclusions (C3) and formulas (C4). For 

example, by looking at the columns related to C4 we can notice that 26 groups 

did not formulate any formula (C4-A), while only one group formulated a 

formula for all cases, which was incorrect (C4-DII). 

Sample analyses 

An interesting result on the use of visualisations was that five groups did not 

make a single drawing (or they did not put it on their working sheet). In two of 

these cases it was apparent that the students did not make any drawing and this 

resulted in their solution process. A characteristic example is the work shown in 

Image 1, where the students suggest the use of proportions in order to calculate 

the number of hits of the ball. Particularly, we can see that the students are 
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initially calculating the area of the table in order to calculate the number of hits 

(“6 m
2
→3 hits”). They then work on two cases (4x2 and 5x2) and after 

calculating the relevant number of hits by the use of proportions they write their 

first conclusion: “when the length is changing, the number of hits is the same 

with the length”. Then they examine the case of 3x3, which leads them to 4,5 (!) 

hits. The peculiarity of the non-natural number of hits does not prevent them 

from formulating their second conclusion that “the width is changing and 

defines the number of hits according to if it is even or odd number”.  

 

Image 1. Work #11 

The majority of student groups (19) have considered the cases in which one 

dimension is constant and the other is changing (Category C2-C). With the 

exception of one group, this led them to a conclusion at least for one case 

(Category C3-B). A characteristic example of a work belonging only to the C2-

C category is shown in Image 2: 
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Image 2. Work #27 

In the work above we see that the students have made their drawings in a single 

figure (C1-C) and they extended the table by one dimension each time. In their 

work we read: “If I increase the length of the large (side)” (and they consider the 

cases 3x2, 4x2, etc.) and then “If I increase the length of the small (side)” (and 

they consider the cases 3x3, 3x4, etc.). Their conclusions are written in the 

frame:  

I observe that: 

i) in an odd number for the length of the side the hits are equal to the length of 

the increasing side 
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ii) in an even number for the length of the side the only correlation is that the 

more the length of the side is being increased to the next even number, the 

more is incr... [the sentence is unfinished] 

In the same category (C2) we can see that 10 groups have considered cases 

which were not explicitly related to each other (C2-A). Half of them did not 

manage to reach any conclusion; from the remaining five groups, four have 

reached incorrect conclusions (Works #11, 14, 20, 21). For example, in Work 

#14 the students have considered the cases 5x2, 4x2, 4x3 and 9x6 and their 

conclusion was that: “The more we increase the length of the billiard, the less 

the number of hits become”. 

Another quite common solution found in 11 groups consisted of cases in which 

both dimensions were changing, but having a fixed relation between them 

(Category C2-D). The most frequent relation considered was that the dimensions 

are two consecutive numbers, e.g. 2x3, 3x4, 4x5, etc. In most cases that 

consideration led the students to correct conclusions, like the ones provided in 

Work #3: 

When one dimension is double from the other, it makes one (1) hit. 

When the dimensions are the same, it makes zero (0) hits. 

When the dimensions are even and their difference is 2 we have as many hits as the 

smaller dimension minus 1. For example, 4x2→1, 4x6→3, 6x8→5, 8x10→7 

When they are odd and their difference is 2 we have as many hits as the smaller 

dimension times 2 (x2). For example, 5x7→10 (2x5=10), 3x5→6 (2x3=6) 

When their difference is 1, i.e. when one is odd and the other even, the hits will be 

the double of the smaller dimension minus 1. For example, 3x2→3 ((2 2)-1=4-1=3), 

4x3→5 ((3 2)-1=6-1=5), 7x8→13 (7 2)-1=14-1=13) 

It is noteworthy that only two groups provided more general cases for the table’s 

dimensions; particularly, one group (#34) considered all the possible cases for 

odd and even dimensions (Categories C2-F, C2-G) and another group (#29) 

considered the case for all possible numbers (Category C2-H). The work of the 

former of these groups is partially shown in Image 3. We have to note that apart 

from the worksheet with the printed version of the task, the particular group 

provided two more pages including more drawings and the relevant calculations 

which led them to their conclusions: 
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Image 3. Work #34 

In the worksheet shown in Image 3 the conclusions are written in the top left and 

right sides and they quote that: 

When x-even and y-odd then in each y+1 the ball will hit 2 times less 

When x-odd and y-even in each y+2 then the hits are y+1 with the exception of the 

multiples of y where the hits will be (assuming that z is the multiple)  

When x-odd and y-even the hits are y+1 

Although, as we already mentioned, the particular group has performed several 

calculations based on their drawings, their conclusions are all wrong; this could 

have been avoided by a process of verification. 
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The same was the situation concerning the use of variables and formulas 

(Category C4). Particularly, only eight groups used variables in their 

conclusions
5
, only five of them created some kind of formula and among them 

only one formula was correct, namely the formula (n/2)-1 provided by Group 

#22 for one dimension equal to 2 and the second dimension being an even 

number. An interesting case was Work #29 (Image 4 shows the main page in a 

total of three pages), which contains a ‘formula’ with two ‘variables’, for the 

length and the width: “For any number > width, hits = length+(width -1)”. Here 

the group miscalculated the actual number of hits by one, since the ‘formula’ 

hits = length+width-2 is true if the greatest common divisor of the length and 

the width equals to one. 

 

Image 4. Work #29 

In the above work we read from the top to the bottom: 

where ν the dimensions of the length 

if ν multiple of 2 then v/2 

                                                 
5
 Note that the use of variables is not presented in Table 1. 
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if ν odd hits = ν +1 

if multiple of 3 hits = v/3 

any other number = ν +2 

only for ν =1 → 3 

if multiple 4 → hits = v/4 

other number → hits = ν +3 

except ν =1 → 4 hits 

  ν =2 → 2 hits 

Inside the frame we read:  

so for square hits = length/2 

For any number > width 

hits = length+(width-1) 

Finally, we have to note that no group reached the formula which represents the 

number of the ball hits for any table dimensions, which is: 

[(n+m)/GCD(n,m)] - 2, where n, m stand for the table’s dimensions and 

GCD(n,m) is the Greatest Common Divisor of n, m. 

CONCLUSIONS 

The study presented and the chosen task aimed to examine our pre-service 

teachers’ ability to generalise. Concerning our research questions, initially we 

may say that the students were much engaged in the task and all of them 

provided an answer to the question posed. During the process we had to explain 

to some of the students that they have to consider the number of hits for any 

dimensions. Finally, most groups provided the answer for the case of a square 

table; additionally, many groups provided a solution for one fixed and the 

second dimension of the table changing.  

However, it seems that the expected shift in the form and structure of attention 

did not take place in most cases. This could be attributed to the students’ 

interpretation of the task; in other words, for some groups their ‘partial’ 

solutions were adequate, since they handed their worksheets quite early. In 

Mason’s (1996) words: “Generality is not a single notion, but rather is relative to 

an individual’s domain of confidence and facility. What is symbolic or abstract 

to one may be concrete to another” (p. 74). Thus, our students were not fully 

able to stress the important aspects and ignore the unimportant aspects of their 

data; this in turn may be attributed to the nature of the task’s data: in a first look 

the students were faced with a sequence of increasing and decreasing number of 

hits, not following an ‘obvious’ pattern. 

Concerning the solution processes followed we may note that most of them were 

based on the following scheme: visualisation (drawings of related cases), 
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observation and articulation of regularities, and, finally, articulation of a 

conclusion. It is noteworthy that we have not seen in any paper a table for 

gathering the data, thus making it easier to study. What was also missing – or 

not provided in the worksheets – was any process of verification. The students 

seemed rather ‘easily’ (i.e. after examining very few cases) convinced on the 

validity of their statements and this eventually led some of them to wrong 

conclusions.  

Apart from the drawings made as part of the initial phase of the solution, the 

students showed a clear preference on written descriptions of their considered 

cases, usually accompanied by mathematical expressions. In their conclusions, 

as we already noted, there was a clear lack of mathematical notation in the form 

of variables and formulas. We consider this an indication of our students’ 

mathematical background, which hindered them from the articulation of a ‘pure’ 

mathematical expression.  

All the above call for a need for a more focused approach to generalisation in 

teachers’ education, preferably in the form of tasks that require not only a 

variety of manipulations but also some decision making by the students on the 

handling and interpreting data. 
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GENERALIZATIONS GEOMETRY IN ART ENVIRONMENT 

 

Ivona Grzegorczyk 

California State University Channel Islands, USA 

 

In this paper we describe activities leading to different types of generalizations 

of properties of polygons and symmetric patterns. Data shows that explorations 

and generalizations improve students’ learning and knowledge retention as well 

as their overall attitudes towards mathematics. 

INTRODUCTION 

Many recent studies demonstrate the power of explorations that integrate art and 

elementary mathematics. Loeb’s visual mathematics curriculum (Loeb, 1993), 

the “Escher World” project (Shaffer, 1997), and our earlier work (Grzegorczyk, 

Stylianou, 2005) show that mathematics learning was very effective in the 

context of arts-based lessons, and led to generalizations and abstraction on 

various levels. The National Council of Teachers of Mathematics (2000) also 

supports the introduction of extended projects, group work, and discussions to 

integrate mathematics across the curriculum.  

In this study we presented three instructor-initiated explorations and discussion- 

based group activities leading to generalizations. Instead of starting with 

theoretical concepts, we introduced simple geometric examples to serve as 

a starting point to more complex, mathematical relationships. Students worked 

both individually and as a group and used art drawing and image-manipulation 

programs. The results of the study supported the main goal of this research, 

which was to show participants’ understanding of the generalized concepts and 

their strong knowledge retention. Additionally, we have observed increased 

positive attitudes towards mathematics. 

METHODOLOGY 

This study was conducted during the Mathematics and Fine Arts course in the 

arts studio environment with 21 students. The mathematical content of the 

course included the generation and analysis of artistic patterns, and the 

properties of polygons. During this study, students participated in three one-hour 

activities conducted during three 2-hour class sessions (the remaining time was 

used for testing, surveys and other issues not related to this study). Most of the 

participants had high-school level knowledge of mathematics, hence familiarity 

with algebraic formulas and geometric figures. Since the coursework involved 

the creation of artistic designs and patterns, the majority of participants were 

interested in fine arts. Table 1 below summarizes the initial characteristics of the 

participants. Note that participants majoring in Liberal Studies were prospective 
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elementary school teachers, while mathematics majors were prospective 

secondary school teachers. 

 

Interested in   Number of Major      Liked Art Liked Mathematics  

Art 7 7          1 

Liberal Studies 7 5          2 

Mathematics 7 5          7 

TOTAL 21 17         10 

Table 1: Initial description of participants. 

This study was done as an introduction to tilings, tessellations and 

crystallographic groups. The following three-questions, 15-minute pre-test was 

given at the beginning of the first session to assess students’ initial knowledge. 

P 1:  What is the sum of the angles in a decagon? 

P 2: How many diagonals does a decagon have? Justify your answer. 

P 3: Draw a design that has a rotation by 120 degrees and at least one reflection. 

 

Table 2 below summarizes the results of the pre-test for the group. 

Question  Correct answer      Correct Picture Justification 

P 1 (21) 4 9          4 

P 2 (21) 3 14          0 

P 3 (21) 4 4          1 

Table 2: Pre-test results. 

Note that only math majors gave correct answers on the pre-test.  All sketches 

drawn to answer question P1 used a regular decagon subdivided into identical 

(central) triangles, which were later used for angle calculations. In P2 all 

students simply counted the diagonals. 

The first two activities are based on the properties of polygons included in a 

typical high-school geometry course. However, they are presented as shortcut 

formulas for calculations, rather than used for building generalizing skills in 

students (Grzegorczyk, 2000). The first activity stresses recursive thinking and 

the second generalizes a counting algorithm. The third activity requires transfer 

of geometric properties (symmetries in this case) to non-mathematical objects 

(artistic images). 

Discussion-Explorations-Generalization structure was used in all three activities. 

Instructor kept students focused on the following tasks. 
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1. Introduction of an initial problem.  

2. Group discussion of the problem and possible generalizations. 

3. Individual explorations of slightly generalized cases. 

4. Group discussion of exploration results, methodologies and cases.  

5. Verbalization of further generalization of the initial problem. 

6. Individual explorations of generalized problem.  

7. Group discussion of the proposed solutions and testing.  

8. Verbalizing of the final generalized statement and further testing. 

9. Justifications  (proofs) of the statement (theorem). 

First Activity – The sum of the interior angles of a polygon. 

1. Initial problem: What is of the sum of angles in a triangle? All students knew 

this sum is 180 degrees, but they could not justify. Instructor introduced the 

geometric proof represented graphically in Figure 2. 

 

Figure 3. Angels in a triangle add up to a straight line. 

2. Students discussed the proof and decided the argument would work for all 

triangles. Then the question was raised about quadrilaterals. Students agreed that 

the sum of the angles should be 360 degree based on their knowledge of 

rectangles. But they were not sure about other quadrilaterals. 

3. First generalized problem:  What is of the sum of angles in a quadrilateral? 

Students explored special cases: rhombus, parallelogram, and trapezoid. They 

generalized the triangle construction to quadrilaterals with two parallel sides.  

4. Further discussion led to the idea of ‘cutting’ a quadrilateral into triangles and 

adding the angles, as shown in Figure 4. The case of non-convex quadrilaterals 

was raised and resolved. Hence, the solution to the first generalized question 

was established.  
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Figure 4. A quadrilateral can be divided into two triangles. 

5.  Further generalization: What is of the sum of angles in a pentagon?  

6.  Students tried to apply the idea of suitable cutting of polygons into triangles. 

Discussion led to systematic division of each pentagon into three triangles 

meeting at one vertex (that worked well for convex cases), see Figure 5. Suitable 

diagonal cuts always gave three triangles regardless of the shape of the 

pentagon. Students established the answer as 540 degrees.  

 

Figure 5. Systematic subdivision of a pentagon into triangles. 

7.  Discussion led to further generalizations: What is of the sum of angles in a 

hexagon, heptagon, and octagon? Students figured out the answers to be 720, 

900, 1080 degrees respectively. Instructor summarized their results as follows. 

 

Polygon Number of sides Sum of angles 

Triangle 3 180 

Quadrilateral  4 360 

Pentagon 5 540 

Hexagon 6 720 

Heptagon 7 900 

Octagon 8 1080 

Table 6. Angle sums for polygons.   
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 8.  Students noticed that the sum increases by 180, as there is one more triangle 

in the next step. They compared the number of sides to the number of triangles 

in each polygon (in each case getting 2 less). Their generalized statement: The 

sum of the angles in an n-gon is 180(n-2). They tested on various cases (the sum 

of angles in 102-gon is 18,000!). 

9. All students thought that the formula does not require proof (because 

‘construction shows it is true’). Instructor used Mathematical Induction to prove 

the statement. While all the students actively participated in the first 8 steps of 

this activity, only 9 (including all math majors) were interested in the proof. 

Note that this activity requires recursive thinking. Students have discovered a 

universal truth (a theorem) about all polygons (even the ones that they did not 

consider in their explorations).  

Second Activity – The number of diagonals in a polygon. 

For simplicity students concentrated only on convex polygons in this activity. 

1. Initial problem: What is the number of diagonals in a (convex) hexagon? All 

students could draw a hexagon and calculate diagonals as in Figure 7. Most of 

them colored them while counting. 

 

Figure 7. Diagonals in a hexagon. 

2.  First generalization: Calculate diagonals in pentagons, quadrilaterals and 

triangles.  

3. Discussion led to general questions of heptagons and octagons. All students 

calculated 14 and 20 diagonals respectively. 

4. Discussion of various counting methods led to a generalized question: Is there a connection 

between the number of sides and the number of diagonals?    

5. The group decided that since diagonals connect vertices, the number of sides 

is important. They collected their results in Table 8 below. Is there a connection 

between the number of vertices and the number of diagonals?   
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Polygon Number of sides Number of vertices Diagonals?  

Triangle 3 3 0 

Quadrilateral  4 4 2 

Pentagon 5 5 5 

Hexagon 6 6 9 

Heptagon 7 7 14 

Octagon 8 8 20 

Table 8. Vertices and diagonals in an n-gon.  

7. Students looked for patterns in the table, a systematic way to express the 

relationship between the numbers of sides, vertices and diagonals. They noticed 

that sides already connect some vertices; hence only n-3 diagonals start at each 

vertex. They conjectured that there are n(n-3) diagonals. Testing showed that 

they were overestimating. They noticed double counting, as each diagonal was 

counted for two vertices. 

8. General statement was formulated as: n-gon has n(n-3)/2 diagonals. Students 

tested it on previous results. They calculated the number of diagonals in a 

nonagon, decagon, and some other polygons.  

9.  Students justified their formula as follows: Each n-gon has n corners and 

there are (n-3) diagonals starting at each corner. Since each diagonal starts at 

two corners, it gets counted twice while we count corner by corner. Therefore 

there are n(n-3)/2 diagonals. 

Note that in this activity students had to generalize their counting method. The final statement 

was based on the invented systematic counting procedure. 

Activity 3 – Classifying small artistic designs using symmetries. 

This activity was conducted after students were familiar with reflections and 

rotations. They used software that generated images with various symmetries. 

1. Initial Problem: Describe symmetries (reflections and rotations) of a square. 

Students sketched the picture representing the symmetries (see Figure 9).  

 

Figure 9. Symmetries of a square {m1, m2, m3, m4, r90, r180, r270, id}. 
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2. Slightly generalized problem: Describe all symmetries an equilateral triangle, 

a regular hexagon and a regular octagon.  

3. Students worked on lists of symmetries for each figure and searched for 

patterns. They decided on two generalizations below. 

4. Generalization 1: n-sided regular polygon has exactly n different reflections. 

Student tested a regular octagon and other polygons to confirm their claim. 

5. Generalization 2:  n-sided regular polygon has rotations generated by 360/n 

degrees and confirmed that by checking on sketched figures.  

6. Student worked individually with a pattern generating software to analyze 

symmetries of images. Figure 10 below shows an example of an image that was 

analyzed. 

 

Figure 10. A pattern with 12 reflections and a rotation by 30 degrees. 

7. Discussion led to grouping of the images with polygons that had similar 

symmetries. 

8. Students decided that images could be classified by their symmetries. 

Generalization statement: There are infinitely many types of (small) images 

depending on number of reflections D0, D1, D2, …Dn, and the polygons 

represent each type depending on number of reflections. (Note these symmetries 

form dihedral groups in abstract algebra). 

9.  Instructor and the students tried to justify the classification statement. 

In this activity students had to generalize the classification system to include 

non-mathematical objects. They applied the language of mathematics to 

describe properties of artistic designs. 

DATA COLLECTION AND ANALYSIS OF RESULTS 

A week after each activity (at the beginning of the next session), students were 

given two post-test questions. Their answers were evaluated for correctness of 

the response, properness of the images used, and the quality of their 

justification. The following tables display the questions as well as the number of 

credits given to each group of students for correct answers. Note that questions 
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1, 2, 3 correspond to pre-test questions P1, P2 and P3. Paired T-test for pre- and 

post-test questions 1, 2 and 3 showed (statistically) significant improvement of 

students’ knowledge. Questions 1a, 2a, 3a were modified questions 1, 2, and 3. 

T-test comparison with corresponding pre-test questions shows significant 

improvement as well. Hence the activities used were an effective learning 

method. 

Question 1:  What is the sum of the angles in a regular twelve-sided polygon? 

Major Correct answer      Correct Picture Justification 

Art (7) 6 7          6  

Lib. Studies (7) 7 6          5 

Mathematics(7) 

TOTAL (21) 

7 

20 

7 

20 

         7 

      18 

All students used the formula from the first activity. One student miscalculated, 

one did not have a picture. Justifications explained derivation of the formula. 

Overall the group was very successful answering this question, ca 95% correct. 

Question 2: Two identical regular pentagons were glued along one of the sides. 

What is the sum of the angles of this new polygon?   

Major Correct answer      Correct Picture Justification 

Art (7) 6 7          6  

Lib. Studies (7) 6 7          5 

Mathematics(7) 

TOTAL (21) 

7 

19 

7 

21 

         6 

       18 

All of the students could picture the situation, but some were confused by the 

fact that the octagon was not convex. They subdivided the figure into triangles, 

and most of them calculated angles of the triangles and added them rather than 

using the formula. Justifications explained this addition process. 

Question 3: How many diagonals does a decagon have? Justify your answer. 

Major Correct answer      Correct Picture Justification 

Art (7) 5 6          3 

Lib. Studies (7) 6 5          4 

Mathematics(7) 

TOTAL (21) 

7 

19 

6 

17 

         7 

       14 

Four students did not provide pictures at all. All the math majors used the 

formula from Activity 2. Two Art and two Lib. Studies students counted the 
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diagonals, but did not provide justification. All correct justifications explained 

the formula. 

Question 4: All diagonals of a decagon were colored blue except for the all the 

diagonals starting at one given vertex that were colored red. How many diagonals 

were colored blue? Justify your answer. 

Major Correct Answer      Correct Picture  Justification 

Art (7) 5 4          3 

Lib. Studies (7) 5 5          4 

Mathematics(7) 

TOTAL (21) 

7 

17 

6 

15 

         6 

         13 

Six students did not provide a correct picture and as a consequence had errors in 

their calculations. The majority of students used the formula to calculate all 

diagonals and subtracted the red ones. All justifications included the formula. 

Four math majors introduced an algebraic formula for calculations. Over 80% of 

students were correct and close to 60% could justify their answers. 

Question 5: Use letter P to create a design that has 4 reflections. Explain how to 

create this type of design, D4. 

Major Correct Answer      Correct Picture Justification 

Art (7) 7 6          3 

Lib. Studies (7) 5 5          3 

Mathematics(7) 

TOTAL (21) 

7 

19 

7 

18 

         6 

        12 

Two students sketched wrong designs, but one more did not show the lines of 

reflections on the correct picture. 10 pictures included a square in the 

background. In justification 8 students noted that ‘lines of reflections are like in 

a square’ and 4 said ‘mirror lines have to intersect at 45-degrees’.  

Question 6: Use letter P to create a design that has a rotation by 60 degrees and at 

least one reflection. 

Major Correct answer      Correct Picture Justification 

Art (7) 4 4          2  

Lib. Studies (7) 3 3          2 

Mathematics(7) 

TOTAL (21) 

6 

13 

5 

12 

         5 

         9 
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This question confused many students, as some of them tried to create a design 

with one reflection and the 60-degree rotation, which is impossible. 

Justifications included statements like ‘the design has to be like hexagon’, ‘the 

design has to have 6 reflections’. 11 students did not justify, while one art major 

with a correct design just said ‘since the angles are 60 degrees – it works’. 

Attitude evaluation 

At the end of the study, students re-evaluated their attitudes towards 

mathematics. Below is a summary of their responses. Note that the positive 

attitude towards mathematics increased from less than 50%  (see Table 1) to 

over 70%. Almost all students had a positive experience with the software and 

over 85% liked the explorations. Interestingly, one math major was not happy 

with the activities. 

Do you like Graphing software      Explorations Mathematics  ? 

Art (7) 7 6          4 

Lib. Studies (7) 7 6          4 

Mathematics(7) 

TOTAL (21) 

6 

20 

6 

18 

         7 

         15      

 

CONCLUSIONS 

The results of this study show that students of various interests and backgrounds 

can successfully be involved in mathematical explorations and generalizations. 

This particular group of students was able to think recursively, invent a counting 

method and transfer the classification criteria from simple geometric objects to 

an uncountable amount of designs. The numerical results show an improvement 

of students’ knowledge, more frequent use of formulas, and their ability to 

recover and verbalize the methods used to discover them. Additionally, almost 

the entire group liked the art-studio environment and graphics as a basis of 

learning. We observed an improvement of the general attitude towards 

mathematics among students with various interests. Students also commented 

that they enjoyed discussions, explorations and social ways of learning untypical 

in mathematics courses. Since the mathematical content of these activities is 

accessible to many younger students some modification or simplification of 

these explorations and generalizations activities may be successful in earlier 

grades. 
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