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INTRODUCTION

From all processes involved in mathematics, generalization is considered one of
the most important ones. For some researchers, generalization is what
mathematics is about. Thus, whether it is viewed as part of a higher level
process, like abstraction or as the core process involved in a particular
mathematics field, like algebra, there seems to be an agreement on its significant
role in advanced mathematical thinking. This is also acknowledged by most
significant curriculum documents, which make an explicit reference on
processes related to generalization.

The need for focusing on generalization might be also justified by the
development of mathematics as a scientific discipline; this means that arithmetic
and computational skills are not enough for the students to ‘grasp’ the deeper
underlying structure of mathematics. The teachers should be well informed on
that and should be prepared to create opportunities for their students to detect
patterns, identify similarities and link analogous facts. But generalization does
not appear just by performing the previous activities; to use John Mason’s terms,
a shift of attention should take place or, in other words, a shift in the way one
sees things.

Contrary to what most people might think, generalization can be even observed
in young children; such observations are signified by terms such as ‘early
algebra’, which have recently appeared in the relevant literature.

This volume presents various approaches on how generalization is or should be
treated in the mathematics classroom. The five parts offer only one way of
differentiating between the views presented. Among them the reader may find
chapters focused on the theoretical foundations of generalization, but also
chapters focused mostly on the implementation of approaches based on
generalization, e.g. by pattern recognition. There is a part dedicated to early
generalization, in line with the current trends in research that we have
mentioned, and another part focused on teachers’ skills in generalizing.

According to John Mason generalization is the life-blood, the heart of
mathematics; being aware of that fact and being able to accordingly adapt the
classroom practices is a highly important aim of mathematics education. We
hope that the present volume can offer to mathematics educators and researchers
a means to a deeper understanding of the many possibilities existing within the
approaches that highlight the role of generalization at all educational levels.

Rzeszow, June 2012
The Editors






Generalization from theoretical
points of view






"TO GENERALISE, OR NOT TO GENERALISE, THAT IS

THE QUESTION"
(WITH APOLOGIES TO HAMLET AND WILLIAM SHAKESPEARE)

Anne D. Cockburn
University of East Anglia, U.K.

From a very early age an ability to generalise makes our lives easier in many
respects. Indeed, developing an awareness of pattern is an important step in
becoming a proficient mathematician. Over the years as a researcher and
teacher educator, however, | have observed many cases of 2 — 60 year-olds
generalising when it is inappropriate to do so. Here | explore some of these and
the possible reasons behind them. | then discuss some recent research on less
successful teachers and how we might enhance their professional practice in
order to capitalise on the rewards of generalising effectively.

INTRODUCTION

We all generalise in our everyday lives. We probably do it considerably more
often than we realise. It usually saves time and it tends to make life easier but it
is not always the best approach. | begin by considering examples of how and
why we generalise. My particular focus is mathematics education in the earliest
years of formal schooling. | will start with the children — the principal players —
followed by their teachers. | will then discuss some fundamental groundwork |
think is required — but frequently overlooked — before some teachers are able to
move forward and begin contemplating enhancing their professional practice in
the early years’ mathematics classroom. Finally I will present some suggestions
as to how teachers might use generalisation to their advantage and the wider
implications arising from the question, to generalise, or not to generalise.

As a psychologist who happens to be interested in young children and their
education | hope that my perspective will offer you new insights into some of
the many challenges, and possible ways forward, in the pursuit of mathematics
education of the highest quality.

THE YOUNG CHILD’S PERSPECTIVE

Research suggests that the average six-year-old has a vocabulary of 8,000 to
14,000 words (Woolfolk, Hughes and Walkup, 2008) and, indeed, Berger (2003)
estimated that in the early school years children learn up to 20 words a day.
Whether you favour behavioural (e.g. Skinner, 1957), nativist (e.g. Chomsky,
1957), social-interactionist (e.g. Bruner, 1983 and Piaget, 1969) or other
language development theories, observation suggests that children generalise as
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they learn to talk and, although they make mistakes such as ‘I go, I goed’ rather
than ‘I go, I went,” generalisation tends to prove effective and efficient.

On arrival in the early years’ classroom life becomes potentially more confusing
as the young child encounters further inconsistencies. For example in English
some of the words they learn in the home, take on completely different
meanings when children begin school such as ‘check’, ‘take away’ and
‘difference’ (Cockburn, 1999).

In some languages we further complicate matters by being inconsistent in our
counting. Thus, for example, in English we say twenty-seven which we write in
the same order as we say it, ‘27°, but seventeen which, adopting the same
principle, one would expect to be ‘71°. The French describe ‘50° and ‘60 as
cinquante and soixante - which suggests a pattern in their counting system - but
‘80’ Is quatre-vingts which can be translated as four twenties.

Our various languages are not the only potential source of difficulty for
children’s later generalising. How often, for example, have you heard someone
say to a child, ‘I will be with you in a second’ and yet it is 60, or even 120
seconds, before they turn their attention to the child?

Very early on in my career | came to the conclusion that young children tend to
have a very powerful inclination to try and make sense of their experiences and
hence to generalise from them. For example, one of the kindergarten teachers |
was researching found it hard to believe that her class of five-year-olds were
unsure about why we use numbers so she initiated the following conversation:

Teacher: Why do we do these numbers?

Michelle: So that we can spell things.

Teacher: Spell things with numbers?

Antoinette: So we can count properly.

Teacher: What kind of things do we need to count?
Antoinette: You need to count the numbers.
Simon: We need to draw the numbers.

Teacher: Why do we need to draw the numbers?
Lisa: So we can copy them.

Teacher: But why do we need the numbers at all?
Lisa: So we can colour them in.

(Adapted from Desforges and Cockburn, 1987, p. 100)

One does not need to look very far — a quick trip to a classroom or a paper on
mathematical misconceptions — to find children doing seemingly surprising
things in mathematics. Although some of them may be amusing, adopting
a child’s perspective, there are two important factors we need to consider. The
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first is that mathematics is potentially very confusing. The second is that, almost
invariably, what the child has done makes sense to them and it is important that
we recognise and accept that. One of the consequences of these combined
factors being as Jordan, Kaplan, Olah and Locuniak (2006) point out, ‘Some
children gradually learn to avoid all things involving math’ (p. 153). Indeed,
Margaret Brown and her colleagues (2008) went even further entitling a paper,
‘I would rather die’: reasons given by 16-year-olds for not continuing their
study of mathematics.

To summarise, generalising can serve young children extremely well but it can
give rise to confusion. As educators our challenge is to capitalise on their
propensity to generalise but to reduce the extent to which they do so
inappropriately. As discussed below this does not necessarily mean avoidance
but rather encouragement to question and challenge.

THE EARLY YEARS’ MATHEMATICS TEACHERS’ PERSPECTIVE

From the outset | want to emphasise that my aim is to understand behaviour
rather than to pass judgement on dedicated practitioners as they endeavour to

give of their best day in day out. Indeed I am a firm believer of William James’
(1899) view that,

The worst thing that can happen to a good teacher is to get a bad conscience about
her profession...our teachers are overworked already...A bad conscience increases
the weight of every other burden...(pp. 13-14)

Throughout my career | have been extremely impressed by the dedication and
quality of the early years’ teachers | have encountered. One of the factors which
have impressed me most has been their almost universal desire to ensure that
each and every one of the children in their care realised their full potential.
Indeed early on in my life as a doctoral student | noted that the seven teachers |
worked with put,

...considerable thought into their work, were anxious to promote their pupils’
mathematical progress and had considerable insight into how their classrooms
operated. (Cockburn, 1986, p. 253)

The strategies successful teachers need to adopt has been well recognised for
over 100 years with William James (1899) advocating that they should,

v’ Capture the child’s interest

v" Build on what they know

v" Teach and assess for understanding

v" Provide plenty of oral and practical experience
v Adopt a varied approach

v" Foster children’s confidence in their mathematical abilities
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The last of these seemed to be particularly prominent when | began my career as
a researcher with Mrs T explaining,

If they (i.e. children) get hung up about anything when they are five years old, what
will they be like later? (Cockburn, 1986, p. 215)

The maintenance of pupil confidence continued to be a priority among early
years’ mathematics teachers in U.K. when we worked with them in 2005
(Cockburn and lannone) and | have no reason to believe that their views have
changed markedly since then.

In mathematics classrooms around the world I am confident that you can see
many outstanding examples of teachers making effective use of generalisation.
The repetition which is an integral part of the number system opening up a wide
range of possibilities. Such activities can be very satisfying and confidence
boosting as young children often display a great sense of achievement on
realising the pattern 0, 1, 2...10, 11, 12...20, 21, 22.

Here, however, | want to focus on three examples where some teachers
generalise without appreciating that it may be inappropriate.

The first arises when early years’ practitioners do not have a thorough
understanding of some fundamental mathematical concepts. In the past | do not
think that this was perceived as an issue as, until recently in England for
example, working with young children was perceived as a low status occupation
requiring few formal qualifications. A common misconception among some
carly years’ teachers is that zero (0) means nothing rather than the absence of
something (Cockburn and Parslow-Williams, 2008). This can result in much
confusion when their pupils endeavour to unravel the patterns of place value.

The second example of a generalisation seems to occur when teachers wish to
simplify something for their pupils. This may be for a variety of reasons
including pressure to get through a syllabus and children finding it difficult to
grasp a new concept. A classic case in the early years’ classroom is when
subtraction is only taught as ‘taking away’ and pupils are encouraged to

generalise by, ‘always taking away the smaller number from the bigger one’
(Cockburn, 1999).

The final example does not relate to mathematics specifically but rather to some
teachers’ tendency to generalise children’s ability by putting them into groups
for teaching purposes. This, in turn, can result in some unfortunate self-fulfilling
prophecies (Rosenthal and Jacobson, 1968) and, in the later years of schooling,
RHINOS or, in other words, children who are ‘Really Here in Name Only’ (e.g.
Nardi and Steward, 2003).
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PRELIMINARY GROUNDWORK

Before we can consider how we might encourage appropriate generalisations in
carly years’ mathematics classrooms, | would argue that there may be
a considerable amount of fundamental groundwork to be done.

In this section | will refer to a variety of sources. Initially, however, unless
otherwise stated, | will reflect exclusively on data collected as part of a study
funded by the Nuffield Foundation® for | think it provides some valuable
insights as to where we should start. By way of background: this was a small
scale — as yet unpublished - study designed to develop of understanding of less
successful teachers. It involved 12 semi-structured interviews (Robson, 1993)
with experienced head teachers and yielded a wealth of material which extended
far beyond my original remit.

When discussing how to develop their colleagues’ professional practice the head
teachers explained that there were several issues which had to be attended to
before any progress was likely. These are overlapping and interconnecting but,
in essence, they involve,

Focusing on attitudes

Bob? explained of early years’ teachers in general, *...a lot of them come in with
their own baggage, don’t they?’ (592-593). This was echoed by Hannah who, on
describing the attitudes of her staff to mathematics said, ‘I still think as a culture
we don’t do maths terribly well. So easily people say “I’m not very good’ (672-
673).

It was clear that in some schools changing teachers’ attitudes was not enough
for, as Jean explained, ‘If we don’t work with the parents, there is no way we
can get those children because it just isn’t important’ (475-476).

Building trust

Some of the head teachers | spoke to were aware that not all of their colleagues
trusted them making it difficult to move forward. Clare, for example, recounted
that,

... the trouble was that very often it (the teacher’s planning) looked very good on
paper, but actually it didn’t translate like that into the classroom. And when I had
supply teachers going in to cover for her, they said: ‘I can’t do all this’ and then
they felt like failures. And she would be telling her colleagues that, actually, she
was doing it all. So they all thought, gosh, that she’s this wonder woman. When, in
fact — in reality — she wasn’t. (Clare 268-273, brackets added)

! The author gratefully acknowledges financial support from the Nuffield Foundation (project # 39039)
2 All of the participants’ names have been changed.
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Developing teachers’ confidence

As with children (James, 1899) it is also important to foster some teachers’
confidence in themselves. David reflected on the progress he was making with
‘a worrier’,
...we just want her to be a little bit more....braver. She will probably feel
uncomfortable doing these things but...a lot of the new things that she feels
uncomfortable about are the new initiatives that we’ve been driving through.
Because they are new initiatives to everybody, she knows that everybody, you

know, she knows that everybody else has similar anxieties so it has helped her.
(David, 182-187)

Focusing attention

Clare succinctly explained that sometimes she has encountered teachers who,
‘...are extremely industrious but they are focusing on the wrong things’ (88-89).

Recognising a need

The head teachers explained that there were a range of reasons why some people
do not appreciate that there is a need to change their professional practice. The
two, which are of particular relevance here, are sometimes related.

The first is that, on the face of it, a teacher may appear to be doing a good job
with a beautifully organised classroom, contented pupils and complimentary
parents. Closer examination, however, can reveal that the children may be
significantly underperforming as Debra explained when she took over the
headship of a middle class school, ‘The kids were getting the equivalent of
national expectations but they were bright kids who should have been far, far
above that’ (222).

A second obstacle to teachers appreciating that there may be a need to amend
their practice is that, because their pupils are performing well in mathematics,
they are unaware that they may be creating problems for the future. This became
particularly apparent during a European project funded by the British Academy?®.
When the equals sign (=) was discussed it was clear that some of the early years’
teachers thought of it in terms of an operator rather than a symbol of equivalence
and that this significantly restricted the way they used it in their classrooms
(Parslow-Williams and Cockburn, 2008). This observation prompted Marchini
and colleagues to examine undergraduates’ understanding of equality and
discovered that, in some cases, it was significantly lacking (Marchini et al,
2009).

Uncovering any other underlying problems

In addition to the above, the head teachers explained that some extra support
might be required from time to time as in the following cases:

® The author gratefully acknowledges financial support the British Academy (LRG-42447)
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... there were occasions where | think she was physically and emotionally and
mentally a bit tired and sort of, you know — not cruising to retirement, because she
was too conscientious for that — but she had lost that kind of real spark (Maggie,
396-398)

... teachers go through all sorts of difficult things in their lives and that can affect
how you perform at school. So, if suddenly a teacher has been... well, suddenly
they have a family to care for and therefore their priorities can change. (Clare, 44-
46)

In some cases, however, head teachers taking up a new post encountered
colleagues who appeared to be doing an adequate job but, ‘They are sitting very
comfortably ...in too much of a comfort zone.” (David, 100)

MOVING FORWARD

Once the groundwork is underway in early years’ settings focusing on
mathematics — let alone something as specific as generalisation — is not
necessarily as straight-forward as one might imagine. Indeed the head teachers
indicated that there were several further factors to take into consideration before
they could make substantial progress. The following were discussed in the
context of committed and experienced teachers although, you will note, that
there are several similarities the examples | have already presented for their less
successful colleagues.

Approaching professional development in a non threatening manner

In my experience I have often found that the very best early year’s teachers
often lack confidence in their abilities. Indeed Hannah remarked, ‘The more
self-critical people are generally the better I find them as teachers’ (24-25).
Accordingly she tends to work to people’s strengths,

There’s all that sense of ‘we’re not very good...” the two teachers who are really
good in school they are both passionate about literature so what we are trying to say
is ‘well, what is it you do, in teaching literacy that we can transfer to teaching
mathematics? (672-676)

Ellen, recognising that teachers appreciate the opportunity to buy new
equipment, invited them to bring their catalogues to the staffroom as this proved
to be,

...a good way in because it meant that my Deputy could see...what they were
planning to do and say ‘If you are doing money then perhaps we could get this, you
know, this equipment’ and ‘Had you thought of doing’ ‘Oh, we could do a shop’ or
‘We could do this, that and the other’ and feed in ideas and appropriate equipment
for the children to play with. So, that was a wonderful way in for Maths. (585, 589-
594)
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Building on teachers’ interests

In discussion with the head teachers they were very honest about how they had
acquired many of the techniques they used through trial and error. Thus, for
example, Jean recalled how she had observed that the same topic could be
presented to her staff in a number of different ways with varying degrees of
success. By way of illustration she said,

| think the key thing about them is that on pedagogy they are very, very strong and
if we sit down and...look at it... with a pedagogical focus...they can go ‘yes,
actually, you’re right’... Whereas if I started from saying like ‘I’'m not happy with
your planning — do it like this’ they would probably say ‘no, I don’t think I want to
do it like that.” But if you can say, ‘Look, this is the outcome. This is how ....how
is that child learning within this?’ they will go ‘yeah, yes, | can see what you are
saying. (184-190)

Maggie simply recounted, ‘I think, as a whole, people took it on board, you
know, very willingly because they could see the sense in it.” (633-634)

Working across age phases
Debra found working as a whole school team proved effective,

It’s actually getting them to really know their children and create the culture of team
effort within the school and not, for example, to say ‘Well, actually, the year 6
results belong to year 6°. Year 6 results belong to the whole school. And, all the
time, looking for trends in things so, for example, if it’s Maths, and you say ‘well,
you know, we dipped this year in our Year 6 SATS (national tests). Let’s analyse all
the SATS papers and see where they went wrong.” And ‘OK, it’s subtraction.’
Right, the whole school, then, is going to have a push on subtraction. And let’s
have some staff training on that. Let’s gets our targets in sight of what we are going
to do with our kids as far as subtraction is concerned. And let’s look at the
difficulties, let’s model to each other, let the whole school talk about how we are
going to teach subtraction in different ways. Get different teachers to lead staff
developments and then evaluate what the kids have done better. (149-165, brackets
added)

Poised for action?

In some schools the above are likely to be much easier to achieve if you have an
enthusiastic and able nucleus of staff such as,

| have a superb Maths subject leader who gees (i.e. encourages and inspires) us all
up and makes sure that we do Maths a great service (Janice, 347-348, brackets
added)

It would be naive to suggest, however, that all schools are ready to move
forward even if their head teacher is outstanding. Bob described how,

...with both schools where I’ve been a Head ...there’s been...you know a bell
curve, you know, you’ve got some at each end and the majority are in the middle
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and it’s being able to move the majority in the middle in the direction in which you
want to go is...is the difficult part. (125-128)

Later he elaborated,

| think one of the keys to it is actually getting the balance in the staff
between...shifting the balance, shifting the core dynamic within the staff room
away from the negative, you know ‘we’ve done that before’ and ‘that hasn’t
worked’ ... and you start to appoint staff. (Bob, 282-286)

THE ROLE OF INITIAL TEACHER EDUCATION

Over the years | hope | have been increasingly successful in preparing newly
qualified teachers for Bob and his colleagues to appoint. In essence | have found
much of my role has been similar to that described by the head teachers above.
At the University of East Anglia we work hard to develop our students’
mathematical understanding and confidence. Much of this is done through
modelling and encouraging a range of techniques. Thus, for example, we
introduce Haylock’s model (Haylock and Cockburn, 1989) and invite
prospective teachers to examine their understanding of a concept in terms of real
objects, pictures, mathematical symbols and mathematical language. We work
on developing students’ mathematical knowledge, urging them to seek
generalisations and, on finding them, to hunt for counter examples. Recently the
work of Milan Hejny and his associates has proved particularly useful (see, for
example, Hejny and Slezakova, 2007; Hejny, 2008; Littler and Jirotkova, 2008)
in demonstrating how learners can build up their conceptual understanding. This
process may be summarised thus:

Individual experiences — generalisation — generic model — abstraction —
abstract knowledge

CONCLUDING REMARKS

Almost without exception young children have a great capacity for learning and
they generally embark on their earliest years’ of schooling with energy and
enthusiasm: the potential is all there and our task is to capitalise on it,

Bob, one of the head teachers | interviewed, said an expert teacher is someone
who, ‘...is open to new ideas and fresh challenges’ (40). Fortunately there are
many such individuals in the profession. We know a considerable amount about
them as they tend to be the teachers who volunteer to take part in research
studies. In this paper | have concentrated rather more on their less confident and
mediocre colleagues for we know far less about them and yet | believe that
many of them have the potential to be considerably more effective mathematics
educators than they currently believe. As a research community | would suggest
that we still have much to learn about such individuals and how best to enhance
their practice. We cannot ignore them for, as | have illustrated above, their
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capacity to generalise inappropriately has the potential to create considerable
damage in the mathematics classroom and beyond.

So, to return to my original question: to generalise or not to generalise? My
answer is ‘yes’ but only if you know what you are doing!
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GENERALIZATIONS IN EVERYDAY THOUGHT
PROCESSES AND IN MATHEMATICAL CONTEXTS
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Hebrew University of Jerusalem, Ben Gurion University of the Negev
and Achva College of Education, Israel

Generalizations are the engine which forms concepts in all domains and claims
about almost any subject. It seems that it is possible to claim that
generalizations are kind of a cognitive drive (if we use Freudian terminology) or
cognitive need (if we prefer the terminology of Maslow). If we like to use
evolutionary psychology it will be easy to point at the evolutionary advantage of
generalizations. Namely, when we were still hunters in the wilderness,
generalizations helped us to survive. The talk will point at the thought processes
which lead to generalizations. All that is true about non-technical situations.
Things are different in mathematical thinking. Here the ultimate goal is that the
student will acquire the desirable mathematical behavior. Namely, in
mathematical contexts we are supposed to train our mind to form concepts by
relying on formal definitions and to establish claims by relying on proofs. This
contradicts the spontaneous nature of thinking. Thus, some mathematics
educators, in order to facilitate the learning of mathematics, offer to the students
strategies which are supposed to imitate the assumed spontaneous way of
forming generalizations. They do it by presenting to the students examples which
will lead them to the correct generalizations. The talk will focus on the role of
examples in everyday thought processes and in mathematical contexts.

1. INTRODUCTION

What | am presenting here is not a research report. It is an essay. In essays it is
allowed to reflect, to speculate and, hopefully, to stimulate. Also, | consider it a
mathematics education essay, the way | see mathematics education. Namely, as
a discipline which is designed to help mathematics teachers and mathematics
teacher trainers to understand aspects of learning and teaching mathematics. It is
not designed, according to the way | conceive it, to come up with innovations in
cognitive psychology, brain research, philosophy of mathematics or sociology.
On the other hand, since | came to it from mathematical research, my way of
looking at things is influenced by my mathematical background. Namely, in the
back of my mind always sits a deductive theory in which there are concepts (or
notions if you wish) and claims about these concepts and some inference rules
by means of which we derive new claims (theorems, if you wish), from claims
already assumed to be true or to be proven. | am absolutely aware that in
a domain like mathematics education, as well as in other domains in behavioral
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sciences, there are different ways to establish various claims. However, pointing
at the differences is quite often very helpful.

2. GENERALIZATIONS

| am not going to define here the notion of generalization. | consider it as a
primary notion in the sense of primary notions in a deductive system (this is
a reference to deductive systems which | mentioned earlier).

Before going on | would like to clarify the distinction between a notion and
a concept the way | use these words. A notion is a lingual entity. It can be
aword or a combination of words (written or pronounced); it can also be
a symbol. A concept is the meaning associated in our mind with a notion. It is
an idea in our mind. Thus, a notion is a concept name. There might be concepts
without names and for sure there are meaningless notions, but discussing them
requires subtleties which are absolutely irrelevant to this context. In many
discussions people do not bother to distinguish between notions and concepts
and thus the word "notion" becomes ambiguous. The ambiguity is easily
resolved by the context.

So, back to generalizations: If we reflect about people's thought processes we
realize that there is a tendency there to generalize. Here is a small sample of
accidental generalizations: 1. Little children are cute. 2. Women are gentle.
3. Men prefer to watch football on TV than to have a conversation with their
wives. 4. Trains in my country are always late (when | say my country it is not
necessarily my country, it can be anybody's country). | am not claiming that
these generalizations are true. | present them in order to support my claim about
the tendency of human beings to generalize. Instead of the word "tendency"
I would like to use a technical notion borrowed from the domain of psychology.
The notion | have chosen is borrowed from the Freudian psychology. Freud
spoke about drives (Trieb in German). He spoke about the sex drive and about
the death drive. However, the notion of drive can be related to many more
actions in our behavior. We can speak about the drive to protect, a drive to
discover, aggression drive, competition drive, sadistic or masochistic drives etc..
A drive which is relevant to the theme of our conference, is the drive to
generalize or, in short, the generalization drive'. One major outcome of
generalizations is concepts. Another major outcome of generalizations is
universal claims of the kind | mentioned earlier.

Before dealing with these two outcomes in details | would like to say few words
about the origin of drives. The common approach to drives in evolutionary
psychology is not to ask about the origin of our different drives or about our
certain abilities. It is assumed that they were formed accidently during the
course of evolution. However, these drives gave the creatures that had them
an evolutionary advantage. For instance, the ability and the drive to generalize
helped us to survive million years ago, when we were still primitive beings
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wandering in the wilderness. While wandering in the wilderness, when noticing
a certain creature coming up against us we were supposed to decide very fast
whether this creature is an enemy or a friend. In case it was an enemy we were
supposed to decide immediately whether to fight or to flight. Our ability and
drive to generalize form in our mind the concept of enemy. The ability to
identify a specific enemy and to determine what should be the appropriate action
at a given situation was critical for our survival. A more detailed discussion of
this issue can be found in Goleman (1995, Chapter 2).

3. GENERALIZATIONS AND CONCEPT FORMATION

| would like to discuss now in a more detailed way the generalizations which are
related to concept formation. Let us consider little children learning to speak.
How do we teach them, for instance, the concept of chair? The common practice
IS to point at various chairs in various contexts and to say: ‘chair’. Amazingly
enough, after some repetitions, the children understand that the word ‘chair’ is
supposed to be related to chairs, which occur to them in their daily experience,
and when being asked ‘what is this?’ they understand that they are expected to
say: ‘chair’. Later on, they will imitate the entire ritual on their own initiative.
They will point at chairs and say: ‘chair’. | would like to make a theoretical
claim here by saying that, seemingly, they have constructed in their mind the
class of all possible chairs. Namely, a concept is formed in their mind, and
whenever a concrete object is presented to them, they will be able to decide
whether it is a chair or not. Of course, some mistakes can occur in that concept
formation process. It is because in this process two cognitive mechanisms are
involved. The first mechanism is the one that identifies similarities. The mind
distinguishes that one particular chair presented to the child is similar to some
particular chairs presented to her or him in the past. The second mechanism is
the one which distinguishes differences. The mind distinguishes that a certain
object is not similar to the chairs which were presented to the child in the past
and, therefore, the child is not supposed to say ‘chair’ when an object that is not
a chair is presented to him or her by the adult. Mistakes about the acquired
concept might occur because of two reasons. An object, which is not a chair (say
a small table), appears to the child (or even to an adult) like a chair. In this case,
the object will be considered as an element of the class of all chairs while, in
fact, it is not an element of this class. The second reason for mistakes is that an
object that is really a chair will not be identified as a chair because of its weird
shape. Thus an object which was supposed to be an element of the class is
excluded from it. More examples of this type are the following: sometimes,
children consider dogs as cats and vice versa. These are intelligent mistakes
because there are some similarities between dogs and cats. They are both
animals; sometimes they even have similar size (in the case of small dogs) and
SO on.
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The above process which leads, in our mind, to the construction of the set of all
possible objects to which the concept name can be applied is a kind of
generalization. Thus, generalizations are involved in the formation of any given
concept. Therefore concepts can be considered as generalizations.

The actions by means of which we try to teach children concepts of chair are
called ostensive definitions. Of course, only narrow class of concepts can be
acquired by means of ostensive definitions. Other concepts are acquired by
means of explanations which can be considered at this stage as definitions.
Among these concepts | can point, for instance, at a forest, a school, work,
hunger and so on. When | say definitions at this stage | do not mean definitions
which are similar, or even seemingly similar to rigorous mathematical
definitions. The only restriction on these definitions is that familiar concepts will
be used in order to explain a non-familiar concept. Otherwise, the explanation is
useless. (This restriction, by the way, holds also for mathematical definitions,
where new concepts are defined by means of previously defined concepts or by
primary concepts). In definitions which we use in non-technical context in order
to teach concepts we can use examples. For instance, in order to define furniture
we can say: A chair is furniture, a bed is furniture, tables, desks, and couches are
furniture.

The description | have just given deals with the primary stage of concept
formation. However, concept formation in ordinary language is by far more
complicated and very often, contrary to the mathematical language, ends up in
a vague notion. Take, for instance again, the notion of furniture. The child, when
facing an object which was not previously introduced to him or to her as
furniture, should decide whether this object is furniture or not. He or she may
face difficulties doing it. Also adults might have similar difficulties. I myself
have difficulties with the notion of recyclable items. Usually, they are defined
by general notions like glass, plastic, aluminium or paper. In some countries you
can see pictures of recyclable items which are placed on recycling containers.
Well, are milk cartons recyclable? Are thin plastic bags recyclable? Are cottage
cheese cups recyclable? | keep asking these questions the recycling department
in my town and | do not get clear answers.

This is only one example out of many which demonstrates the complexity of
concept formation in the child's mind as well as in the adult's mind. | have not
mentioned yet the concept formations of abstract nouns, adjectives, verbs and
adverbs. Nevertheless, despite that complexity, the majority of the children
acquire language at an impressive level by the age of six (an elementary level is
acquired already at the age of three). The cognitive processes associated with
the child's acquisition of language are discussed in details in cognitive
psychology, linguistics and philosophy of language. One illuminating source
which is relevant to this issue is Quine's (1964) "Word and object." However,
a detailed discussion of these processes is not within the scope of this lecture.
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In addition to the language acquisition the child acquires also broad knowledge
about the world. He or she knows that when it rains it is cloudy, they know that
dogs bark and so on and so forth. In short, they know infinitely many other facts
about their environment. And again, it is obtained in a miraculous way,
smoothly without any apparent difficulties. Things, however, become awkward
when it gets to mathematics.

4. THINKING IN MATHEMATICAL CONTEXTS, SYSTEM | AND
SYSTEM II.

One possible reason for things becoming awkward in mathematics is that, in
many cases, mathematical thinking is essentially different from the natural
intuitive mode of thinking according to which the child's intellectual
development takes place. The major problem is that mathematical thinking is
shaped by rigorous rules and in order to think mathematically children, as well
as adults, should be aware of these rules while thinking in mathematical
contexts. This requires awareness. It requires the ability to reflect and to be
analytical. In short, it requires thought control. Thought control has a negative
connotation because of George Orwell's 1984, especially in countries which
were under a communist regime. However, in the context of mathematical
thinking and also in the broader context of rational thinking it should have
a positive connotation.

Psychologists, now a day, speak about two cognitive systems which they call
System | and system Il. It sounds as if there are different parts in our brain
which produce different kinds of thinking. However, this interpretation is
wrong. The correct way to look at system | and system Il is to consider them as
thinking modes. This is summarized very clearly in Stanovitch (1999, p.145).
System | is characterized there by the following adjectives: associative, tacit,
implicit, inflexible, relatively fast, holistic and automatic. System Il is
characterized by: analytical, explicit, rational, controlled and relatively slow.
Thus, notions that were used by mathematics educators can be related now to
system | or system Il and therefore this terminology is richer than the previously
suggested notions. Fischbein (1987) spoke about intuition and this can be
considered as system I. Skemp (1979) spoke about two systems which he called
delta-one and delta-two which can be considered as intuitive and reflective, or
using the new terminology, system | and system Il, respectively. I myself
(Vinner, 1997) have used the notions pseudo-analytical and pseudo-conceptual
which can be considered as system |.

In mathematical contexts the required thinking mode is that of system Il. This
requirement presents some serious difficulties to many people (children and
adults) since, most of the time, thought processes are carried out within system 1.
Also, in many people, because of various reasons, system Il has not been
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developed to the extent which is required for mathematical thinking in particular
and for rational thinking in general.

5. CONCEPTS AND GENERALIZATIONS; TWO ADDITIONAL
EXAMPLES AND SOME PROBLEMS

Consider the formation of notions in different languages. Some actions occurred
in a given culture. People, let us say, danced. Various dances were formed. At
a certain stage, the people who were involved identified certain similarities
between some dances. Identifying similarities is the first stage of
a generalization. A concept has been formed. Then, somehow, a name was given
to this concept - the concept name; the notion. Think for instance of the valse
(waltz, in German). It is quite reasonable to assume that people used this notion
to describe the occurrences of this dance before a formal definition was given to
it. At a certain stage, when the question "what a valse is?" was introduced, an
explanation (or a definition if you wish) should have been given. If you look for
such an explanation now a day in various dictionaries you may find something
which is similar to the following: a ballroom dance in triple time with a strong
accent on the first beat. Any of a variety of social dances performed by couples
in a ballroom. The Webster's Ninth New Collegiate Dictionary (1986) claims
that official use of the verb "waltz" in German started in 1712, but only in 1781
the official use of "waltz" as a noun was started. This, by the way, supports
Quine's claim (1964) that nouns were developed from verbs by a process which
is called reification. In English, the noun "valse" appeared in 1796. If you listen
to a valse by Johann Strauss you immediately get the impression that it is
a ballroom dance in triple time with a strong accent on the first beat. On the
other hand, if you listen to a valse by Frederic Chopin you can hardly say that it
is a ballroom dance. It is not at all similar to the valse by Johann Strauss and
many other well known valses which are quite similar to the valses by Strauss.
So, why did Chopin choose the notion of valse as a title for his compositions?
Well, | do not want to get into musicological discussions here, but by doing this
Chopin extended the notion of valse to a bigger set of musical compositions.
The authors of the above Merriam Webster dictionary were aware of that and
they noted an additional meaning to this notion: a concert waltz. This example
beautifully illustrates a development of a concept from a narrow set of examples
to a broader set. We can find similar processes of concept development also in
mathematics. So, the next example will be a mathematical example. Consider
the concept of polygon. Again, it is reasonable to assume that already in ancient
days people (not necessarily mathematicians) were aware of certain polygons.
They dealt with all kind of triangles, with various sorts of quadrangles, with
regular and irregular pentagons, hexagons etc. Then, similarities between these
geometrical shapes were noticed and thus the first stage of generalization took
place. A concept was formed. In order to discuss it a name was required. The
word polygon was suggested by Greek mathematicians sometime in the fifth
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century B.C. When being asked what a polygon was, the answer could be:
Aclosed plane figure bounded by straight lines (the above Webster's
dictionary). It is reasonable to assume (although I cannot point at any historical
document which can support it) that at the very beginning of the polygon
concept people thought mainly about convex polygons. However, the above
definition should accept also concave polygons as members of the polygon club.
Later on, a refinement of the above polygon definition was formed. It started
with the notion of a connected sequence of line segments. A polygon is
a connected sequence of line segments such that the second endpoint of the last
segment is identical with the first endpoint of the first segment. Note that this
definition presents higher cognitive demands on the learner than the first one.
Also, this definition should accept as members of the polygon club polygons
which intersect themselves. When this was realized some mathematicians
decided to be concerned only with polygons which do not self-intersect and thus
the notion of simple polygons was formed. On the other hand, other
mathematicians decided to study polygons that do self-intersect and thus the
domain of star-polygons was introduced. According to the Wikipedia, the
mathematician who started to study the star-polygons in depth was the English
scholar Thomas Bradwardine (about 1290-1349). The Wikipedia also claims
that only the regular star-polygon have been studied in any depth and it adds that
star polygons in general appear not to have been formally defined. So, here is a
mathematical concept that does not have a definition. It can be illustrated by the
following picture:

And here is a picture of some other polygons which was downloaded from
a Wikipedia page:
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6. GENERALIZATIONS RELATED TO BELIEFS ABOUT CONCEPTS

The moment a concept is formed also some beliefs are formed about it. These
beliefs can be formulated as universal statements. For instance, consider again
a child who acquired the concept of dog. He or she knows that dog barks.
Hence, there is an implicit claim here about dogs which is: All dogs bark. Some
children experience a fearful event with a dog. This may lead them to the
implicit belief that all dogs are dangerous. As a consequence of this belief they
try to stay away from any dog they see. In an early work of mine (Vinner, 1983)
| suggested to call the set all the concept examples in a certain person's mind
together with all the beliefs about them the concept image of that person.
Usually, the beliefs are generalizations formed by the generalization drive.
Therefore, in most cases, there are products of the above system I. They are
formed very fast, sometimes, relying only on a sample of a single element. If
system Il were involved the path from a statement about a single element to
a universal statement should pass through the following statements: There is at
least one element about which the predicate P is true. There are some elements
about which P is true. There are quite many elements about which P is true.
There are many elements about which P is true. P is true for almost every
element. P is true for all elements under consideration. Thus, system Il is
supposed to stop at several stations before reaching, if at all, the final
conclusion: P is true for all elements under consideration. However, the
spontaneous tendency of our mind is to move fast and to reach a final conclusion
in relatively short time. Therefore, quite often, we observe generalizations based
only on a single example.

Before mentioning some wrong generalizations about mathematical concepts |
would like to illustrate this point by mentioning generalizations made in
everyday contexts. "Mathematicians are arrogant”, some people claim. Well,
there is at least one mathematician who is arrogant (I myself met one). Are they
quite many arrogant mathematicians? Are there many? Are all mathematicians
arrogant? A careful analysis by system Il won't allow us to reach such
a conclusion. However, there are people who believe that mathematicians are
arrogant. Among them you will find victims of school mathematics. Their hatred
to mathematics is a strong motivation for them to adopt negative views about
mathematicians.

Another example: "Men are male Chauvinists"”, claim some feminists. It is true
that quite many men are male Chauvinists, but is it true that all men are male
Chauvinists? There are some feminists who believe in it. Among them you may
find women who had a terrible experience with one man and as a result they
developed hatred to all men. The view that all men are male Chauvinists is
supported by their hatred to all men. Hence, we see from the last two examples
that, in some cases, also emotions are involved in shaping concept images.
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The last example is really a male Chauvinist generalization. The reason | present
it here is that a wonderful music is associated with it, the famous aria from
Verdi's Rigoletto. | should emphasize that, to the best of my knowledge, neither
the libretto author, Francesco Maria Piave, nor the author of the play on which
the libretto is based, Victor Hugo, can be considered as male Chauvinists. On
the contrary and my claim is supported by the fact that the man who sings this
aria, the Duke, is presented in the opera as a morally corrupted disgusting
person. Here it is:

Woman is flighty

Like a feather in the wind,

She changes her voice — and her mind.
Always sweet, Pretty face,

In tears or in laughter, — she is always lying.
Always miserable

Is he who trusts her,

He who confides in her — his unwary heart!
Yet one never feels

Fully happy
Who on that bosom — does not drink love!

My claim about system | generalizations in everyday thought processes holds
also for generalizations in mathematical contexts. Therefore, in mathematical
contexts, quite often, we find concept images which are not coherent with the
concept definitions. Among them one can mention the following: multiplication
increases; the altitude in a triangle falls always inside the triangle and it cannot
be a side of the triangle; the elements of an infinite sequence which has a limit
can never reach the limit; a function should be given by an algebraic formula.

If developing system Il in our students would be one of the goals of mathematics
education then discussions about the above misconceptions should be part of the
mathematics classes. Reflections about contradictions between concept images
and concept definitions should be integrated in our lesson planning.
Unfortunately, since almost the only goal of mathematics education now a day is
to prepare our students for the crucial exams, system Il will remain quite
neglected.

7. GENERALIZATIONS AND EDUCATIONAL VALUES

Since | have recommended in various occasions in the past that educational
values should be integrated in mathematics classes as a by the way habit | would
like to demonstrate it also in the context of this presentation, the context of
generalizations.
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Dealing with educational values starts very often with the Golden Rule. The
golden rule has many versions in different religions and cultures. For the sake of
this discussion | have chosen one of the Jewish versions related to Hillel,
an ancient Jewish scholar (first century, B.C.).

It says: What you hate — do not do to your friend. One can argue about it by
saying that the rule should be: Do not do to your friend what he hates.
A possible answer to this claim can be: How can we know what our friend
hates? Hillel's suggestion is to generalize from what you hate to other people.
Thus, here is a generalization based on a single element sample about the entire
population of human beings. Surely, such a generalization must be wrong.
However, in this context it is recommended because it tells you how to behave.
Without it you will never know how to start.

8. DIFFICULTIES IN OVERCOMING WRONG GENERALIZATIONS

| mentioned in section 5 that if developing system Il in our students were one of
the goals of mathematics education then discussions about misconceptions
should be part of the mathematics classes. A necessary condition for doing that
is the student's capability of reflective thinking. According to Piaget and
Inhelder (1958) this capability is acquired at the age of formal operations,
namely, at the age of adolescence. The adolescent's theory construction (it is
said there, p. 342) shows that he (the adolescent) has become capable of
reflective thinking. This implies that reflective discussions with our students
about their misconceptions are pointless before they reach the junior high level.
Even if we do not accept all the theoretical claims of Piaget, reflective
discussions are quite problematic at any age. They require from the teacher
special skills of discussion management. They also require the students'
cooperation. Usually, discussion management is not part of teacher training at
any stage and usually students are not used to listen to each other and to reflect.
Also, very often reflective thinking leads to cognitive conflicts. Piaget believed
that cognitive conflicts will end up with appropriate accommodation. However,
experience shows that this is not always the case. Thus, my recommendation to
develop system Il in mathematics classes is more of a vision than a practical
advice. Nevertheless, I would like to elaborate a little about the desirable
mathematical thinking” and the challenges it presents to children and
mathematics educators. For children who only start studying mathematics at the
elementary school with thinking habits that they acquired in their early age,
desirable mathematical thinking is not a simple challenge. For instance, in
kindergarten, they learned about some geometrical shapes as squares, rectangles,
triangles and more. They understood that rectangles and squares have different
shapes (in rectangles the adjacent sides are not congruent). All of a sudden, their
third grade teacher tells them that a square is also a rectangle. When it happens,
it is a kind of a cognitive conflict and it requires a conceptual change.
Unfortunately, quite often, the desired conceptual changes do not occur. The
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task of the third grade teacher, whose mathematical background, sometimes, is
not satisfactory, is to explain to the children why they should, from this point on,
consider squares as rectangles. Later on, or at the same stage, they are required
to consider rectangles as parallelograms, while their concept images tell them
that parallelograms do not have right angles. In situations like this children may
start developing ambivalent attitudes toward mathematics. I am not going to
point at more situations in which ambivalent attitudes toward mathematics can
develop. Also, I am not suggesting here cures to the problem. My only
recommendation to handle conflicts between concept images and concept
definitions is to borrow some advice from the relatively new social science
discipline - conflict management. The advice is that while interacting with
people with whom you have a conflict, try to focus, if possible, on issues about
which it is relatively easy to achieve an agreement, and try to avoid, as long as
possible, dealing with issues that are extremely hard to solve. | believe that at
the school stages of learning mathematics, especially at the elementary level, it
IS quite possible to apply this advice.

Let us deal now with some conflict situations at the junior high level. At this
age, in many countries, the students study some chapters in Euclidean geometry.
In this context, definitions are indispensible since very often new notions are
introduced to the students, such as median, altitude, perpendicular bisector and
more. Also, some familiar notions, such as angles or parallel lines, for which the
students have concept images, require certain clarifications. With new notions,
there is no potential conflict between concept images and concept definitions.
However, taking into account the fact that the students’ mind (as well as our
mind) tends to rely on concept images and not on concept definitions in thought
processes, we should do our best to form the correct concept images in the
students’ mind. For instance, if we teach the concept of a median we should
present it to the students in all kinds of triangle positions and not mainly in
triangles in which one side is horizontal and the median is drawn to the
horizontal side. If we use the practice of drawing the median only to the
horizontal side of the triangle, we may find out that after a while, when the
concept definition is forgotten or has become inactive, the students will find
difficulties in identifying or drawing medians in triangles that do not have
a horizontal side.

Anyhow, geometry at the junior high level is probably the best context to teach
the role of definitions in a deductive structure. Here, students are expected to
understand that the meaning of a concept is determined by its formal definition
and it does not matter what their previous views about the concept were. They
are expected to play the game of mathematics as deductive structure according
to its rules. They are expected to follow the rules of the game. Some students
may like it, others may dislike it. Here, individual differences play a critical role.
It is similar to the fact that some people like the basketball game and others
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prefer football. We should respect individual differences and it is a pedagogical
mistake to force changes in taste and inclinations. The differences have
psychological reasons; some of them are structural, while some of them are
acquired. As long as we are not concerned with moral issues, there is no
justification for imposing on our students games they do not like to play. We
should be especially sensitive since mathematics, to a certain extent, is an
obligatory discipline for all school students. Sometimes, for the sake of
‘““mathematical integrity’’, the curriculum includes topics for which the students
do not have mathematical maturity or solid mathematical background. For
instance, the case of irrational numbers Some curriculums insist on introducing
this concept to the students at the end of the elementary level or in the beginning
of the junior high level. Usually the following definition is suggested: an
irrational number is a number that cannot be expressed as a ratio between two
integers. A lot of mathematical ideas are required to understand this concept.
The curriculum does not have the time to elaborate on it. The practice is to
mention some irrational numbers, and the simplest practice at the junior high
level is to mention ©t. Thus, © becomes part of the concept image of irrational
numbers. On the other hand, at an earlier stage, in some countries, the students
are told that: m ~ 22/7. The symbol "~" means approximately equal. Since,
system | tends to ignore seemingly small differences the "approximately equal
becomes "equal" and " ~ 22/7" becomes "m = 22/7." At this stage, the equality
7 = 22/7 becomes a part of the concept image of 7. At a later stage, surprisingly
enough, some students and some elementary teachers when asked to give an
example of an irrational number, point at 22/7. The explanation is quite clear.
Consulting definitions is a system Il project. The definition of irrational numbers
was, probably, too difficult to understand. Hence, it was forgotten or ignored
and when being asked about irrational numbers, the students' concept image
became active and an example, which obviously contradicts the concept of an
irrational number, was given.

With regard to algebra and calculus at the senior high level, my advice is to
maintain an informal way of teaching. This was the way that mathematics was
taught at the elementary level also at the junior high level. Changing this, all of
a sudden, causes a discontinuity in the learning process. Generally speaking,
discontinuities are not desirable since, as | claimed above, they require
a conceptual change. Such changes may, unnecessarily, cause more students to
become victims of mathematical difficulties. A partial list of central concepts in
algebra and calculus at the senior high level may include function, limit,
derivative, continuity and more. These concepts can be introduced by means of
examples, which can be followed by general explanations. Indeed, this approach
may face some difficulties at certain intersections. If you do not introduce the
Bourbaki definition of a function to the students, then they might not be able to
deal with all kinds of weird functions presented to them in the curriculum.
However, there is no need, in my opinion, to present to them all these weird
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functions. These weird functions will be presented to some students with special
talent for mathematics at the university, in case they decide to be mathematics
majors. If you do not present to the students, the €, n definition for a limit of
a sequence, they might have some difficulties with the question whether
a constant sequence a, = ¢ has a limit. Nevertheless, there are ways to smooth
out this difficulty without presenting to the students the €, n definition of the
limit of a sequence. For example, one can simply say that mathematicians
decided that the limit of the sequence a, = c is ¢ and the reason for that decision
is usually presented in more advanced mathematics courses. Similar advice can
be given about the definition of a limit of a function. It is true that if the ¢, &
definition were introduced, it will be easier to explain various cases of limits of
functions. However, as in the case of the sequence, there are ways to smooth out
the difficulties that can arise. Moreover, it is much easier to cope with these
difficulties than with the conceptual difficulties caused by the need to
understand the ¢, & definition of a limit of a function. Last, but not least, the
continuity of a function can be characterized by its graph (a function is
continuous if its graph can be drawn without lifting the pen from the paper).
Although this is not an accurate definition (and there are continuous functions
the graphs of which cannot be drawn at all), it is better to leave all the weird
functions to the mathematics majors at the university level. There, they are
supposed to be exposed to the ultimate rigor of mathematics. This kind of rigor
IS not suitable for high school students, even to those who study mathematics at
the highest high school level. We should remember that only few of them will
choose to be mathematics majors at the university level. Very often when
rigorous proofs are discussed in mathematical education forums, it is
recommended that they are not suitable for the majority of high school
mathematics students. | would like to suggest that rigorous definitions are also
not recommended for the decisive majority of high school students.

9. GENERALIZATION SKILLS AS TOPIC IN MATHEMATICS
CLASSES

In the beginning of my presentation | spoke about the drive to generalize and
| claimed that in spontaneous thinking the generalizations are formed by system
I. Contemporary mathematics education undertook the task of teaching
mathematics students generalization skills. Now, there is a huge difference
between everyday situations which spontaneously lead to generalizations and
artificial situations used as an invitation to generalize. Such situations are
supposed to activate system Il. Technological developments have given us the
options of doing it elegantly. Thus, it has become a practice in the learning of
mathematics to use computers as a means to trigger students to form
generalizations (see for instance Schwartz et al., 1993; Perkins et al., 1995). | do
not know to what extent this practice is common in my country or in other
countries. Namely, I do not know the percentage of students who are exposed to
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this kind of activity. Also, I am not familiar with the particular micro-worlds
provided by the many softwares used in different places. Therefore, | would like
to make only a short comment about a potential misconception that might be
caused by the use of these technologies. Sometimes, the procedure that is used
by the software is like the following: the students are asked to examine some
examples of a well-known mathematical theorem (about which they never heard
in the past). After that, they are asked to make a generalization. A better notion
for this context is "conjecture.” The conjecture should turn out to be
a mathematical theorem. The next stage is to ask the students to prove the
theorem. However, since for many students the proof is only a ritual that occurs
in the framework of mathematics (Vinner, 2007), but quite dispensable when we
are out of this framework, then the conclusion about establishing generalizations
might be the following: it is quite sufficient to examine some particular
examples. If these examples lead us to a certain generalization then this
generalization is necessarily true. 1 myself notice this line of thought in my
mathematics education courses for elementary mathematics teachers in a master
program. For instance, | asked my students about the number of all sets which
are subsets of a set that has n elements. We counted them together for
n=1,2,3,4,5. The class came to the conclusion that for any n, this number is 2".
Then | asked my students whether they had any idea how we can prove it.
| noticed a surprise expression on their faces. The eldest student, a 59 year old
man who switched to mathematics education from an insurance company said:
Aren't the examples that we considered enough to establish the generalization.
Is it possible that this generalization is not true? So, between the two of us, isn't
the proof an unnecessary formality? | was grateful to this student about his
comment. His age and his past as an insurance agent gave him a lot of self
confidence to express these thoughts. | distinguished some other students who
nodded their heads in order to indicate that they agree with his view.

In order to avoid such misconceptions, it is quite desirable to present to the
students ‘micro-worlds’ in which a set of particular examples supports a certain
generalization, however, the generalization is false. For instance, in the context
of quadratic equations, one can lead the students to think that the solutions of
a quadratic equation of the form x*+bx+c=0, where b and c are integers, should
be divisors of c. There are infinitely many examples which support this
conjecture. However, it is trivial to point at counterexamples. Thus, if we let
students form a generalization and then let them realize that the generalization
they formed is false, then they might understand why it is necessary to establish
the validity of a generalization in the context of mathematics, as well as in other
contexts.

10. A CONCLUDING REMARK

Since | do not want to end my presentation on generalizations in a pessimistic
mood | decided to relate in my concluding remark to an old male Chauvinistic
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generalization from the days of Mozart and Da Ponte. It is the main theme of
their opera Cosi Fan Tutte (Thus do they all). As a matter of fact, at least the two
women in the opera, Fiordiligi and Dorabella, are counter examples to Don
Alfonso's claim: Thus do they all. The two men in the opera, Ferrando and
Guglielmo, were convinced by Don Alfonso to examine their belief that their
brides are counter examples to above male Chauvinistic claim. This caused them
to be involved in extremely unpleasant situations. Fortunately, there is a happy
end to the enormous complications and it is summarized by the following lyrics:

Happy is the man who look

At everything on the right side

And through trials and tribulations
Makes reason his guide

What always makes another weep
Will be for him a cause of mirth
And amid the tempests of this world
He will find sweet peace.

Just notice the lines: "Happy is the man who ... through trials and Tribulations,
makes reason his guide™. Isn't this a message sent to us by Mozart and Da Ponte,
from the end of the eighteen century to use system Il in the twenty first century,
and by using it to achieve sweet peace?

Endnotes

1. The American psychologist Abraham Maslow (1908-1970) uses the term "need" in his motivation theory.
Because of his disagreement with Freud's theory he suggested an alternative notion — "need." However, if we try
to bridge between Freud's theory and Maslow's theory (Maslow, probably, won't approve this) | believe that a
need and a drive are somehow equivalent. Here is a quotation from Maslow which is relevant to our discussion
about generalizations: ‘Curiosity, cognitive impulses, the needs to know and to understand, the desires to
organize, to analyze, to look for relations and meanings as an essential part of the human nature.” (Maslow,
1970). The notions impulses, needs, and desires are clearly related to the notion of drive.

2. Desirable mathematical thinking includes, among other things, training our mind as well as our student's mind
to form concepts by relying on formal definitions and to establish claims by relying on proofs.
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GENERALIZATION IN THE PROCESS OF DEFINING
A CONCEPT AND EXPLORING IT BY STUDENTS

Marianna Ciosek
Institute of Mathematics, Pedagogical University of Cracow, Poland

Generalization is one of the most important processes that occurs in the
construction of mathematical concepts, discovering theorems, and solving math
problems. This process can be analyzed from two different viewpoints:

1. the cognitive theory,

2. the mathematical activity of individuals.

Both these aspects will be taken into account. In the first part of the paper I will
present in outline two theoretical issues, namely Ddérfler’s theory of
generalization (Dérfler, 1991) and Krygowska’s types of generalizations of
theorems (Krygowska, 1979).

The second part will include an analysis of examples of generalization activity
disclosed in my research on solving math problems by students at different
levels of mathematical knowledge and experience (Ciosek, 2005, 2010).

GENERALIZING FROM EPISTEMOLOGICAL PERSPECTIVE

1. Dorfler’s theory of generalization

In the work entitled Forms and means of generalizations (1991) W. Dorfler
gives the following explanation of generalizing:

| understand generalizing as a social-cognitive process which leads to something
general (or more general) and whose product consequently refers to an actual or
potential manifold (collection, set, variety) in a certain way. (Dorfler, 1991, p. 63)

The author differentiates two forms of generalization: empirical and theoretical.

The basic process in empirical generalization is to find a common quality or
property among several or many objects or situations and to notice and record
these qualities as being common and general to these objects or situations. The
common quality is found by comparing the objects and situations, with regard to
their outward appearance, isolated mentally, and detached from the objects and
situations.

In contradistinction to this form Dorfler introduces another one - called
theoretical generalization — and describes it with the help of a theoretical
model for processes of abstraction and generalization which can often lead to the
genuinely mathematical concepts (propositions, proofs, etc.). Here is this model
(Figure 1).
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system of actions in
the starting situation

/ \

reflection of the symbolizing the elements of
system of actions the actions and/or the action

constructive abstraction

stating invariant symbolic description
relations of the invariants

—

variations of the system of
actions

extensional generalization

I
symbols as objects
(concrete variables with object character)

general structure
intensional generalization
]

extension of the range
of reference

extensional generalization

Figure 1. Dorfler’s model of theoretical generalization.

Let us concentrate now on the upper part of this model — labelled constructive
abstraction, as an opening stage for the process of generalizing. Dorfler
characterizes it as follows.

- The starting point is an action or system of actions (material, imagined or
symbolic). Elements of this action are certain objects (material or ideal).

- Course of this action direct one’s attention to some relation between the
elements of the actions. This relation proves to be steady when the actions
are repeated. They are called invariant (or schema) of the action.

- Stating invariants need a symbolic description; one has to introduce
symbols for the elements of the actions, and then describe invariants
stated by means of these symbols. This stating of invariants and their



40 MARIANNA CIOSEK

symbolic description have the character of a process of abstraction. It is
constructive abstraction because what is abstracted is constituted by the
action.

I will use this model to analyze students’ generalization activity further.
2. Types of generalization of statements by Krygowska
Generalization through induction

A formula f(n) for natural n is to be found. One first finds f(1), f(2), f(3) and
notices that the results can be obtained when applying a general rule. This rule is
a conjecture only. Though being naive, it’s often an important step toward the
solution.

Generalization through generalizing the reasoning

One notices that the reasoning carried out in a single case will remain correct in
a different setting or minor modifications will be needed only to get a more
general result. This often happens as the result of “variation of constants” or
spontaneously resulting in the analysis of the proof.

Generalization through unifying specific cases

A bunch of statements, each referring to one case of a setting, proves able to be
replaced by one general statement, the original ones being its special cases. E.g.,
Pythagoras theorem, formulas for acute-angled, obtuse-angled, and “flat”
triangle can all be generalized to the so called cosine formula.

Generalization through perceiving recurrence

As in the case of generalization through induction, a formula f(n) for natural n is
to be found. But in this case, f(2) is obtained using f(1), f(3) using f(2), and
a regular way is noticed to pass to the next n: the recurrence rule. Applying it
backwards one obtains the sought formula.

Illustrations of the first three types will be shown further while presenting
examples of students’ activity. Now I explain the last type of generalization
with the help of the following problem:

PROBLEM 1

How many common points at most can have n lines in the plane?

(A common point here is meant as an intersection point of two different lines.)

We start from a concretization. Two different lines can have one common point
at most (Figure 2).
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Figure 2
Three different lines have no more than 3 common points (Figure 3).

Figure 3

We can ask how to draw the fourth line so as the number of common points be
maximum. Of course, it should cross each of the previous lines but not pass
through any of their intersections. This is possible as shown in Figure 4.

Figure 4
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Next we must draw the fifth line so as to cross the four and so on. We become
aware of the recurrence: to know the number of common points of some number
of lines we need to know that of the less by one number of lines.

If L(n) is the required number of common points of n different lines, then
L(2) =1,
L(3)=L(2) + 2,
L(4) =L(3) + 3,

L(n) = L(n-1)+(n-1).

Of course, finding the compact formula for L(n) is also possible:
L(nN)=1+2+3+..+(n-1)=n(n-1)/2.

EXAMPLES OF STUDENTS’ GENERALIZATION ACTIVITY

During the last two decades, research on the activity of generalization focused
on the phenomenon of noticing by the learner regularities in special-type
contexts (e.g. Garcia-Cruz, Martinon, 1997; Iwasaki, Yamaguchi, 2008;
Legutko, 2010; Pytlak, 2006, 2007; Stacey, 1989; Zargba, 2004, 2006).

The student was shown, for example, a series of pictures drawn according to
a certain rule. The student's task was to discover that rule. As a help, some tasks
were given:

e draw one or a few subsequent pictures conforming to the given series

e find a number characteristic for the pictures (e.g. find the number of some
elements)

o represent algebraically the number characteristic for picture number n.
A representative of this kind of problems is the following:

PROBLEM 2 (a modification of PISA problem, 2003)

A farmer plants apple trees in the square garden. In order to protect them
against the wind he plants coniferous all trees around the orchard. Here is a
scheme that illustrates the situation. It presents the pattern of apple trees and
coniferous trees when there is n rows of apple trees. (Figure 5)
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A farmer plants apple frees in a square pattesn. In order 1o protect the apple trees
against the wind he plants conifer treas all around the orchard.

Here you see a diagram of this situation where you can see the pattern of apple trees
and conifer trees for any number (n) of rows of apple trees:

n=19 n=sz2 n=.3 n=d
XXX XX XXX X XX XXX XX XXX XX XX
xeX e 98X e » X xe [ ] e 80X
XX X x X X X X X
xe e X e » X Xxe [ ] e 08X
XX XXX X X X X
e L » X e L ] L ] [ -
. XK KK XXX X X
X = conifer tree xXe ® @# #X
@ = apple ree XX X X XK XXX
Figure 5. Problem 2
Task 1.
Fill out the table.
N Nr of apple trees Nr of coniferous trees
1
2
3
4
5
10
25
Task 2.

Try to write the numbers of apple trees and coniferous trees for an orchard in
which there are n rows of apple trees.

I'll discuss now two approaches to these tasks: by one lower secondary and one
upper secondary students®. The analysis of paths leading to the solution indicates
clearly the differences in the thought processes toward a generalization required
in Task 2.

Example 1 — Reasoning by Adriana (9th grade)

Adriana fills the first four rows of the table for the apple trees. She counts the
circles in each picture and puts down the number. Then she similarly fills the
second column for n 1 to 4.

* The observations on solving the task have been made by a student preparing a Master’s thesis under my
supervision: P. Matras, Generalizing theorems of elementary geometry by secondary school students, IM,
Pedagogical University of Cracow, 2012.
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Next, she concentrates on filling the remaining boxes in the apple trees column.
She says: “For n=5 there will be 10 times 10 or 100, and for n=25 there will be
25 times 25” (she puts down 625).

Pytanie 1:
Uzupemmij tabelke:
n | Liczha jablonek Liczba drzew iglastych
1 1 B
2 4 G |
4 Vi L]
-] o G
10 e, f:'
28 b ~L0
{I:__-{_ -}."':L‘-\-ﬂ--
Pytamnie 2:
Czy potrafisz uogdlni¢ liczbe jablonek | liczbe drzew iglastych dla n rzedow jabtonek?
| ":Ii i
|'rﬁ| [ ¥l 'I ?

Figure 6. Adriana’s work

She announces to start dealing with the coniferous trees. She points the row for
n=5 in the right hand side column and, after a while of watching consecutive
numbers in that column, she says: “then here 40”. Asked why she explains:
“because 8+8=16, 16+8=24, 24+8 makes 32, and 32+8 is 40.” She continues:
“And for n=10 we should put down 80 as 80 is 40 times 2; for n=25 it will be 40
times 5 or 200.”

After this Adriana passes to Task 2. She is thinking for a while watching the
pictures, then she writes: in the left column » - n as the number of apple trees
and » - 8 as the number of coniferous trees.

Example 2 — Reasoning of Asia (12th grade)

Asia fills the first four rows like Adriana, i.e. as the result of counting crosses
and circles on the pictures. She puts down in each row both the number of apple
trees and the number of coniferous trees. For n=5 she writes 25 as the number of
apple trees explaining that it's 5 times 5. She fills the right column up to the end.
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n=1 n=2 n=3 n=4
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Figure 7. Asia’s work (part 1)

The student announces the intention of drawing the garden nr. 5 to correctly
reckon the number of coniferous trees. She begins with putting the circles as
shown below, then looking at the given pictures she completes her scheme with
crosses. Pointing at the left hand side of the scheme Asia says:

There will be 5 coniferous trees adjacent to apple trees (she applies 5 crosses) and 6
more between the apple trees, and 2 at the corners. There will be 11 altogether or 2 -
5+ 1. It will be same here (she points the right hand side vertical row on the
scheme). On one of the remaining sides (pointing a horizontal row) there will be
less by 2, so 9. The number of all coniferous trees for n =5 will be 40.

c,00 00 OO0 QQOQ

g 24
:.‘: g 2 A
< 0
’Ec o | ¢
"o 0 ) S
i@ J
" ©
b o
0 o
ljtoo00opDoCo B
*

Bhl+rf=9)

99 4 =49

Figure 8. Asia’s work (part 2)

Asia draws a fragment of the garden's scheme for n=10 writing next to it
numbers 21, 21, 19, 19, then putting down the number of coniferous trees in the
10th row. For n=25 she so calculates the number of coniferous trees:
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25-2+1=51
25+24 =49

then adds up the results and multiplies the outcome by 2. In the table she writes
200.

As the answer to Task 2 Asia writes
n - n —the number of apple trees
n-2+1)-2+(n+n-1)- 2—the number of coniferous trees (Figure 9).

Pytanle 2:
Czy potrafisz uogdinit liczbe jablonek i liczbe drzew iglastych dla n rzediw jablonek?

r\"\ ne | '[“ ~lTJ’\t‘i )]
’ '| Nt n- N L

Figure 9. Asia’s work (part 3)
Comparison of performances by Adriana and Asia

Generalization by the lower secondary student Adriana was of the induction
type. The student was concerned about relations between the numbers that
quantitatively characterized considered objects, separately for each one
(numbers of apple trees in relation to n, and numbers of coniferous trees in
relation to n).

The upper secondary student Asia was interested in mutual relationships
between objects of the two kinds. We can say that she discovered the “structure
of the orchard”, the arrangement of one species of the trees with respect to the
other one. One example made her aware of the structure of the orchard. She
reproduced what she noticed in this example in one more picture, for another n. |
think that her reasoning illustrates the type of generalization called by
Krygowska generalization through varying a constant.

In mathematical point of view the problem consists in finding formulas for two
functions f(n), g(n) when their values for four consecutive natural numbers are
given. The solution requires some generalization acts. To compare the thinking
processes of both students Dorfler's model can be applied. To do so, the
examined subjects' actions should be identified as well as invariants they found.
Finding the formula for f was easy for both students, but more difficult for g.
With respect to the function g generalization made by both students was
essentially different.

Here are the actions taken by the students and the invariants they had noticed.
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Adriana's actions

Al. Counting both kinds of elements in figures 1 to 4 (writing results in the
tables)

A2. Finding the relationship "+8" among numbers in subsequent rows and its
application to find g(5).

A3. Finding the relation between the object nr. n ("orchard" in the picture) and
the number of its elements (*coniferous trees" - crosses), that is the formula g(n)
in terms of n.

Scheme of the invariant resulting from Adriana's action: g(n) = n-8.
Asia’'s actions

Al. - same as Adriana’s.

A2. Sketching the considered object (fragment of the orchard for n = 5).

A3. Finding a way of mutual disposition of two kinds of elements for the object
nb 5 (for n=5).

A4. Application of the discovered disposition to objects nb 5, 10, and 25, that is
calculating g(5), g(10), and g(25).

Ab5. Imagining object nr. n.

A6. Finding the relation between the object's number the number n of its
elements, that is the formula g(n) in terms of n.

Scheme of the invariant resulting from Asia's action:
gn)=(@m-2+1)-2+(n+n-1) -2.

The question could be asked if Adriana really found the invariant of actions in
the set of considered objects or rather a "candidate” for such an invariant. Asia
doubtlessly found such an invariant. So we can say that - differently than
Ariadna - Asia accomplished a generalization, which in Dorfler's model is called
intentional generalization as she discovered and described a general structure
of considered objects. In my opinion none of the two students made the
extensional generalization because variables are referred by them to one kind of
objects only.

| think that the analyzed model of generalization presents first of all the scheme
of thinking processes that may lead to the formation of a mathematical concept.
The process of such generalization is long lasting. All elements indicated by the
model should occur in it. In the process of generalization that a researcher (or
teacher) initiates with a problem for "finding a regularity” thinking often
consists in reflective abstraction only.

Interesting observations concerning elementary school students' attitude with
respect to Problem 2 are reported in (Pytlak, 2006, 2010).
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Example 3 — Reasoning of Michal

Michat - students of the 4th elementary grade were assigned to find the sum of
all integers form 1 to 100. The teacher suggested the possibility of using the
following table (Table 1):

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

o1 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

Table 1. Table of numbers 1 - 100

A student used that table in the following way. He decided to add numbers in
each row and add up the results. So he added the first row in memory getting 55.
Then he calculated the sum in the second row using the column algorithm,
getting 155. Both results he put down in the table. After some reflection he
wrote, without any calculations, numbers 255, 355,... up to 995 as the remaining
row sums. Asked why he knew that the other sums would be so he explained:

Every number in the second row is by 10 greater than the one in the first row above
it as the units digit is the same and the tens digit in the second one is greater by one.
So the sum of the numbers in the second row is by 10 times 10 or 100 greater than
55. The same will be with rows 2 and 3. When we move down one row we add one
hundred...

It's worth noticing that in the student's reasoning a generalisation occurred,
which was not of the induction (empiric) character. Referring to Déorfler's model
we can say that the student (12 years old), the first two operations having been
done, recognised the invariant of going one row down: increase of the sum by
100. He saw that it results from the structure of the table. Though he did not
formalise it, it was — in my view — an important element of the process of
reflective abstraction.

Example 4 — Reasoning of Dominika
Dominika (aged 15) - 2nd class of the lower secondary solving Problem 3
PROBLEM 3
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Examine the truth of the sentence:

If a natural number n can be presented as the sum of the squares of two natural
numbers then the number 2n can also be presented as the sum of two natural
numbers.

Having read the problem, Dominika wrote:
n= XZ + y2
n=7+r>?

Then she made a few sums of the squares of two numbers (Figure 10).
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Figure 10. Dominika’s work (part 1)
Next to each of the calculated sums she put its double:

n =1%+2%=5 2n=10
n=3%+4?=25 2n=50
n=5%+6°=61 2n=122
n =7°+8°=113 2n=226

She tried to present each of the doubles as the sum of two squares. As to the
numbers 10 and 50, she said they are the sums of two squares, because 10 is 3% +
1% while 50 is 7% + 12. She said that 122 is not likely to be so presented, because
she failed to do it in her memory calculations. In a while she changed her mind
and wrote 122=11?+1?=121+1. Then she said: ,,For a number n which is the sum
of two consecutive numbers, number 2n will also be the sum of squares. It will
be so:
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2n = (x+y)*+ 1%

After this the student checked on an example if the devised way of presenting
number 2n as the sum of two squares works in examples where n is the sum of
two non-consecutive numbers. She considered the case of n = 5* + 7% She
calculated: (5+7)* + 17 getting 145, and not — as she supposed — 148. She
decided that number 2(5% + 7%) cannot be presented as (5° + 7°) + 1% (Figure 11).
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Figure 11. Dominika’s work (part 2)
After a while she added: “But in this case number 2n can be presented as
(5% + 7%) + 2% A bit later she noted:
“| know already how it is going to be. If n = x*+ y* then 2n=(x+y)* + (x-y)*"
Dominika decided that having uttered the last sentence she finished her work on
the problem. Only after the observer’s remark: “Explain please why you think

that number 2n that you have put down equals 2(x* + y?)” caused her to
transform the sum of squares of (x + y) and (x — y) to the form 2(x* + y?).

Analysis of Dominika’s work
In the Dominica’s work 3 acts of generalization can be discerned.

The first begins at the moment when Dominika has checked that the sentence
being examined is true for four natural numbers chosen for n, each being the
sum of squares of two consecutive numbers. She is looking at these examples
seeking their common property. She wants to find a relationship between X, y
and z, r. She puts down her observation as:
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2n = (x +y)* + 1.

She does not treat this representation of 2n as a hypothesis; seemingly she has
no doubts that it will hold for every n being the sum of two consecutive natural
numbers. This kind of generalization is called by Krygowska inductive
generalization.

The second act begins with Dominika’s questioning herself if the way of
selecting numbers z and r invented in the previous case cannot be applied to
anumber n, for whom x and y are no longer consecutive numbers. This
behaviour shows that the girl is treating the relationship found as a hypothesis,
now concerning an arbitrary number n. She verifies the hypothesis with
examples and rejects it. She notices another possibility of representing the
double of n:

If n=5%+7%then2n= (5 + 7)? + 22.

She realizes that 2 is the difference of 7 and 5. Probably here the next
(induction) generalization act is taking place and — worth noticing — based on
one example only. This time it is related to numbers n such that their difference
equals 2; Dominika does not express it in words nor in writing, she is just
thinking.

The third and last generalization act results from juxtaposing the form of the
number 2n with the subsequently considered cases: y =x + 1,y = x + 2. Again,
based on the two examples the student formulates and puts down in the general
form the way of representing numbers z, r using X, y. Again she makes
a generalization in the induction way.

It is worth noticing that Dominika was applying the strategy of considering
special cases in a — say — model way. The special cases considered were not
taken at random but from among a special type. It was a systematic choice of
examples (according to Mason at al., 2005), and this probably helped her to
guess the relationship which proved to be conclusive for the solution. Yet, she
did not spontaneously undertake any algebraic verification of the conjecture to
make sure it always works.

Example 5 — Reasoning of Beata

Beata — 3rd year of mathematics for teacher students. Solving Dominika’s
problem 3.

The student also starts by considering examples (Figure 12):
n=13 4+9=22+432; 2-13=26=12+52
25 = 16+9=42+52; 50=12 +72.
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Figure 12, Beata s work (part 1)
Then she says: “Let’s look at the examples." After a while she adds:
“Letn=a?+ b? Isitso that 2n = 1* + (a + b)* 2

Now she transforms the latter equation to an equivalent form:
(a—b)? —1(F|gure 13)
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F1gure 13 Beata S work (part 2)

The last result can so be conceived:

We already know that if n is the sum of squares of two consecutive natural numbers
a, b (a greater than b) then 2n can also be written as the sum of two consecutive
natural numbers, namely the square of 1 and the square of the difference of numbers
aand b.

She carries on:
What would happen if the difference of a and b were different than 1?
Let us assume that n = a® + b%. May be 2n = (a— b)* + (a + b)*? (Figure 14).



Generalization in the process of defining a concept 53

4 | £ _!.._|._:._E._r
{1 4 - 1 I = N U Pe—h b
I.' r : : | — £ _._!__r—.l — }
ri & } } ¥ | +—4—
I 1T&FFT [ 111 | _ L (1] L]
S T S T bl Ll A D O
|t | T ey [ stagpae T
| ! 1 | ! | i
+ = _-__;._-&_t;—l—- __.!.-.- é.jﬁ.-;_l-| _!_.. _I__ S=E= = _!_|_.. .I I I_|_ sy

i . q.-' - | Pl |
Jl_g = aER .p.ﬂ_l_mr.f..'r.ré_, l 11 AL S

Beata transforms the last equation using the assumption on n and known
formulas, arriving at the identity

2a°+ 20 = 2a° + 20,
To finish up she concludes:

The sentence occurring in the problem is true because if a number is the sum of the
squares of two natural numbers we can sort out two numbers whose sum of squares
equals the doubled initial number.

After a short while Beata reflects:

Of course, it must be verified that those two numbers are natural. ... But they are so
as for natural a, b, a+b and a-b are natural.

(In the last expression she commits an error; she may have thought that a is
greater than b which needn’t be so.)

Analysis of Beata’s work

In Beata's reasoning two generalization acts take place. The first stage of her
work on the problem is analogical with Dominika's one. Beata analysed
examples of the same type. But, otherwise than Dominika, the condition for
2n resulting from her empiric generalization was treated by her as a hypothesis
to be verified with algebraic calculus.

The next generalization act which led to a new hypothesis concerning the
decomposition of 2n, now without an additional assumption concerning n, she
most probably formulated as a result of reasoning and also verified with algebra.
This independent undertaking of verification of hypotheses and the way it was
carried out differentiates her reasoning from that of the lower secondary student.

If the two reasonings are referred to the Dorfler's model, we can say that the two
persons, who undertook similar actions at the initial stage of work, verbalized
and formulated in the algebraic language the same invariants (Domika's was
rather a "candidate” for an invariant). If in both cases for the invariant the status
of theorem for the special class of n such that ... with b=a+1 was acknowledged



54 MARIANNA CIOSEK

we could say that both students accomplished the extensional generalization as
they referred the thesis of the formerly found theorem - with a certain
modification - to all cases of considered objects. So they accomplished an
extension of the reference range.

CONCLUSIONS

In all the examples analyzed here generalization acts were taking place during
the solution of the problem, within the short time of observation by the
researcher. Indeed, it proved that with each of the problems taken into account
identifying some regularity was associated.

The differences among the considered problems consist in the following. In
some of them examples of objects to be analyzed were imposed from above
(Problem 2), while in the remaining ones the solver was to select them according
to the problem situation. This choice may essentially influence the
generalization process.

There are other situations associated with generalization. | mean processes that
go on out of the observer's (researcher's, teacher's) reach where generalization
results from many experiences of the learner, during a long learning period, and
are false. We can say that those are hidden generalizations, happening in the
background. They can come out to light unexpectedly or remain undisclosed
forever. Of this character are false convictions such as "multiplication increases,
division decreases", "raising to power increases, taking the root decreases" etc.
Such false convictions result from unjustified extension of the reference range of
mathematical operations and their results, from the domain of natural numbers

to a wider domain of integer, rational or real numbers.

False convictions have also become the object of research in Mathematics
Education. Interesting reports can be found in (Howe, 1999; Pawlik, 2003, 2004;
Tirosh, Graeber, 1989; Zeromska, 2010).
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GENERALIZATION PROCESSES IN THE
TEACHING/LEARNING OF ALGEBRA:
STUDENTS BEHAVIOURS AND TEACHER ROLE

Nicolina A. Malara
University of Modena and Reggio Emilia, Italy

We give an overview of the literature on generalization with particular
reference to the studies about the students’ ways of thinking in the development
of generalization in algebra. We discuss the teacher’s role in guiding students to
face algebraic generalizations and we report on our methods and tools to
improve teachers’competence in teaching this kind of tasks in a socio-
constructive perspective.

To learn mathematics involves learning to think
mathematically... The essence of thinking
mathematically is recognition, appreciation,
eXpression, and manipulation of generality. ...

The future of Arithmetics and Algebra teaching
lies in teacher awareness of the fundamental
mathematical thinking processes, most
particularly, generalization. (J. Mason, 1996a)

1. THEORETICAL ASPECTS ON GENERALIZATION

A metacognitive teaching practice is necessary to give mathematics strength and
meaning as a subject. In this type of teaching practice, the main tasks of the
teacher are to lead the students to reflect upon how meaningful the procedures
they choose are in front of the various situations, to make verbally explicit the
strategies they implement, to compare them, to distinguish what is common and
essential from what is not, to check the effectiveness of the representations they
use. The aim of all this is to help the students focus on the unifying elements
that emerge from the activity, getting to incorporate a variety of cases or
situations in one single vision, to consider the strength of representations and to
become aware of the process - object dynamics (Sfard, 1991) which governs the
reification of mathematical objects.

Basic elements of this type of teaching are generalization processes. By
‘generalization process’ we mean, briefly, a sequence of acts of thinking which
lead a subject to recognize, by analyzing individual cases, the occurrence of
common peculiar elements; to shift attention from individual cases to the totality



58 NICOLINA A. MALARA

of possible cases and extend to that totality the common features previously
identified.

Detecting patterns, identifying similarities, linking analogous facts are all at the
base of generalization processes; the key element in these processes is not the
detection of similarities between cases, but rather the shift of attention from
individual cases to all the possible ones, as well as the extension and adaptation
of the model to any of them.

Generalization processes are natural: they emerge from our way of looking at
things, of capturing them and of elaborating the products of our observations
and experiences. They pervade human activities, although they are peculiar of
the mathematical activity. Enriques (1942), writing as Giannini, discussing on
the role of the error in the development of knowledge, writes:

The path of the human mind is essentially inductive: that is to say, it goes from the
real to the abstract. The understanding of the general should be conquered as
a higher degree of something already known and easier, that is to say as
a ‘generalization’. On the other hand, the example has a clarifying property and, so,
it is a strong instrument in scientific research and, at the same time, an invaluable
tool for verifying and correcting theories. ... The heuristic value of examples is even
more evident, because everyone knows that the comparison between two different
cases in which something in common appears is able to suggest to our mind the
most beautiful generalizations and to show to us the best positions of problems ...

It is also possible to generalize from the examination of one single case, when,
regardless of its peculiar features, one sees it as representative of a whole area.
The case is ‘exemplary’, i.e. it exemplifies the totality of cases. As in Hilbert’s
renowned aphorism

The art of doing mathematics is finding that special case that contains all the germs
of generality.

Mason (1996a, 1996b) claims that ‘generalization is the heartbeat of
mathematics’ and that in the teaching of mathematics the students have to be
brought to gain a double awareness: of ‘seeing the particular in the general’ and
of ‘seeing the general through the particular’. As to the latter, he states the
importance of the experience of ‘examplehood’, which brings the students to
become aware of how a multitude of details can be subsumed under one
generality. He writes (19964, p. 21):

One of the fundamental forms or experiences of a shift in the locus, focus, or
structure of attention is the sense of ‘examplehood’: suddenly seeing something as
‘merely’ an example of some greater generality. To experience examplehood, in
which what was previously disparate are now seen as examples of something more
general, has an effect like cristallization or condensation (Freudenthal 1978

1 Freudenthal, H. (1978) Weeding and Sowing: Preface to a Science of Mathematics Education, Reidel,
Dordrecht.
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p. 272): it is releases energy and reduces the amount of attention required to deal
with similar situations.

Mason underlines that the students’ recognition of a thing as an example
requires that they grasp the sense of what the example expresses, the
enhancement of the features which makes it ‘exemplar’ and the shading of the
features which make it particular. Moreover he says that if the teacher is, at
present, unaware of what makes exemplary the example, (s)he may not provide
students with adequate support to appreciate the examplehood being offered.

Without disclaiming the efficacy of generalization as a didactical instrument,
with reference to the inference of mathematical facts from the observation of
few examples, Radford (1996a p. 107-109) poses the problem of the logical
validity of the assumptions that come from that generalization®. He deplores the
abuse of generalization in teaching, since the students may get the idea that the
fact that a regularity occurs in few cases is enough to claim that it is valid as
a ‘general rule’. It is therefore necessary to spend time working towards the
recognition of the limitations of generalization, to distinguish between inductive
and deductive processes and to become aware that the validity of an inductively
inferred sentence can only be established through a proof.

However, it should be noticed that generalization processes in mathematics not
only concern particular mathematical contents; they also involve meta-aspects,
linked with the organization and structuring of the gradually acquired
knowledge.

Harel & Tall (1991) reflect upon the modalities in which students, progressing
in their studies, link together pieces of knowledge and enlarge their horizons.
They detect how these moments of reorganization depend on the features of the
students’ mental constructions and on the type of understanding (relational or
instrumental) which underlies their knowledge. They distinguish between three
types of generalization: 1) expansive generalization in which one extends his or
her scheme without reconstructing it; 2) reconstructive generalization when
a subject reconstructs an existing schema in order to widen its applicability
range; 3) disjunctive generalization when, on moving from a familiar context to
a new one, the subject constructs a new, disjoint, schema to deal with the new
context and adds it to the array of schemas available.

They underline that expansive generalization is more frequent and easy to apply
than reconstructive generalization, that the latter is delicate and subjective but
also more effective, that disjunctive generalization is cognitively poor and turns

2 Radford introduces the issue by making reference to a renowned scene of ‘La cantatrice chauve’ (usually
translated as The Bald Soprano) by Ionesco: at the Smiths’ they ring at the door, Mrs Smith opens but she
doesn’t find anyone; the same happens at the second and third doorbell, at the fourth one she blurts with her
husband, making a nonsensical inference, generalization of the previous cases “Do not send me to open the door!
You have seen that it is useless! Experience has shown us that when we hear the doorbell, it implies that no one
is here”.
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out to be a real ‘recipe for failure’ for weak students: they are not able to see
linking schemes and are helplessly submerged by the amount of notions.

Dorfler (1989, 1991) is interested in the modalities of construction of knowledge
in the students, and he theorizes on the processes of generalization. He sees the
generalization as a combination of cognitive processes at a double level: the
subjective-psychological one, related to the individual-reflective dimension and
the objective-epistemological one, related to the social dimension (sharing,
communication and use of language). He considers knowledge as the result of
the structuring and the organization of one’s own experience and he views it as
stemming from appropriate actions on certain objects through reflection upon
both actions and transformations produced in the objects. In order to consolidate
knowledge, he considers crucial the representation of a process ‘by the use of
perceiveable objects, like written signs, of the characteristic and stages, steps
and outcomes of the actions’. In this way a protocol of actions is generated
which allows for a cognitive reconstruction and conceptualization of the process
itself.

On these premises he develops a “model of the processes of abstraction and
generalization” (Dorfler 1991). This model has its roots in Piaget’s construct of
‘reflective abstraction’, a process where the actions are seen as genetic source of
the (mathematical) concepts, but Dorfler enlarges the meaning of ‘action’
including also the symbolic actions. Two phases can be distinguished in the
model: the first one, which leads to the emerging of invariants as well as the
birth of representations for them; the second one, more meaningful from the
mathematical point of view, where the focus is on the representations: through
a reflection on them, the way of viewing them evolves and this leads to the
reification of new mathematical objects.

More in details, the starting point of this model is an action or a system of
actions (which are material, imagined or symbolic) upon certain (material or
ideal) objects. In these actions one’s attention is directed to some relations and
connections between elements of actions. In many cases the actions combine the
original elements in a certain and invariant way; when, repeating the actions (as
often as one likes), the relations prove to be steady, these combinations and
basic transformations emerge as “invariants of actions”, defining the “schema”
(of actions). Dorfler underlines: “the emergence of the invariants needs a certain
symbolic description™. This is a key point for the model. Symbols are used for
the elements of actions or for quantities relevant for them, and for
transformations or combinations on the objects induced by the actions. This
representation of the invariants may include variable elements related to objects
on which actions are carried out. The symbols (of verbal, iconic, geometric or
algebraic nature) initially play a purely descriptive role: they represent either
actions or transformations. This first phase can be summarized as one moment
of constructive abstraction, where the original elements are substituted by
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prototypes, which better highlight properties or relationships we want to focus
on (they gain meaning and ‘existence’ via the actions). The second phase
develops through other two important moments:

One moment of extensional generalizations, when the use of prototypes leads to
determine the domain of variability of the patterns, which enhances the
interchangeability of the objects with respect to the actions upon them. At this
point the symbols lose their initial meaning of generic representatives and they
acquire that of variables with properties of substitution.

One moment of intensional generalization, when by reflecting upon the
symbolic representations of the invariants, the used symbols lose their meaning
of representatives (of variable elements of the actions), and they become
elements of the action themselves and ‘carriers’ of the invariants: at this point
symbols are detached from their range of reference and acquire a new meaning,
intrinsically connected to the invariants, of variables with the feature of objects:
S0, a new mathematical object is born.

Dorfler claims that once a generality of this type is constructed, it becomes the
basis for further generalization. He stresses that his model is a ‘theoretical
generalization’ model, juxtaposed to ‘empirical generalization’ (EG), that is the
Aristotelian basic process of finding a common quality or property among
several objects or situations from sense perceptions. He states that EG does not
contribute to the construction of the meaning of the concepts because it is
mainly a recognition process, he criticises the use of EG in mathematics
teaching and the fact that usually the ability to recognize the generality is
postulated.’

Dorfler offers also an interesting sequence of examples of his model from both
elementary and advanced mathematics. In these examples, however, the focus is
uniquely on the mathematical contents, without specific reference to either the
students or the teacher.

On the contrary, Dorfler explicitly does not take into account the problem of
what the appropriate starting situations for the students may be, and he devolves
their choice to the teacher, since, he says, “it is only she who knows the students
and their interests”.

Later, Hejny (2003) proposes a model of construction and structuring of
knowledge organized in six stages (see the table below) where generalization is
viewed as a basic element, but still at a lower level than abstraction and
functional to this. Hejny, referring to what Sierpinska® thought about the
development of mathematical understanding, considers her vision as reductive,

3 As to this Dorfler considers the derivative concept and the ‘examples’, such as velocity, gradient, density,
usually used to show the derivative as their common structure but- he stresses- this structure is not developed by
the students themselves.

4 Sierpinska, A. 1994, Understanding in mathematics, London & NewYork: The Falmer press
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and he claims to agree with her, only if abstraction® is juxtaposed to
generalization. An original element in Hejny’s model is the fact that the
student’s motivation is seen as the first step of the process.

Comparing Hejny’s model to Dorfler’s one a first important difference can be
noticed: Dorfler does not make a distinction between generalization and
abstraction, he rather describes processes of generalization with moments of
abstraction; on the contrary Hejny states that generalization is prior to
abstraction.

The stages of development and structuring of knowledge in Hejny’s model

1. Motivation. By motivation we mean a tension, which appears in a student's mind as
a consequence of the contradiction between | do not know and I would like to know.
This tension steers the student's interest towards a particular mathematical problem,
situation, idea, concept, fact, scheme,...

2. Stage of isolated (mental) models. The acquisition of an initial set of experiences. At
first, these experiences are stored as isolated events, or images. Later on, it might be
expected that some linkage between them occurs.

3. Stage of generalisation. The obtained isolated models are mutually compared,
organised, and put into hierarchies to create a structure. A possibility of a transfer
between the models appears and a scheme that generalizes all these models is
discovered. The process of generalisation does not change the level of the abstraction
of thinking.

4. Stage of universal (mental) model(s). A general overview of the already existing
isolated models develops. It gives the first insight into the community of models. At
the same time, it is a tool for dealing with new, more demanding isolated models. If
stage 2 is the collecting of new experiences, stages 3 and 4 mean organising this set
into a structure. The role of such a generalising scheme is frequently played by one of
the isolated models.

5. Stage of abstraction. The construction of a new, deeper and more abstract concept,
process or scheme which brings a new insight into the piece of knowledge.

6. Stage of abstract knowledge. The new piece of knowledge is housed in the already
existing cognitive network, thus giving rise to new connections. Sometimes it ends up
in the reorganisation of either the mathematical structure or a part of it.

A second difference concerns the role of representations. In Hejny’s model the
representation issue does not even appear, while for Dorfler it is essential, since
the role played by symbols in the representation of invariants and the
progressive change of meanings associated with them allows for the reification
of mathematical objects. Another element of difference in the work of the two
authors concerns the nature of the examples given for their model. While
Dorfler presents examples focused on the mathematical content, with no
reference to the subjects involved in the process, Hejny analytically shows the

5 Hejny (2003) writes: “In her analysis of the act of understanding, Sierpinska considers four basic mental
operations: identification, discrimination, generalisation and synthesis. ‘All four operations are important in any
process of understanding. But in understanding mathematics, generalisation has a particular role to play. Isn’t
mathematics, above all, an art of generalisation? L’art de donner le méme nom a des choses différentes, as
Poincare used to say?’ Sierpinska (1994, p. 59). We agree with this statement provided that ‘donner’ covers both
our terms generalisation and abstraction”.
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ongoing process of construction of knowledge through excerpts from the
students’ activities and dialogues which testify the moments when
generalizations and abstractions are generated. In this sense, drawing on Sfard’s
(2005) classification on the time periods that mark the evolution of mathematics
education research, Dorfler’s study can be placed in the ‘content’s era’ whereas
Hejny’s research is fully placed in the student’s era.

Regarding students, a broad and interesting piece of research is due to Ellis
(2007), a teacher-researcher. The research object is the identification of
students’ key behaviours in the generation of generalizations. Ellis starts from
the analysis of studies in mathematics education dealing with students’
processes of generalization and she identifies three categories of actions that are
typical of generalization: (a) the development of a rule that serves as a statement
about relations or properties;

THINKING ACTIONS IN THE PRODUCTION OF GENERALIZATIONS (Ellis 2007)

ACTIONS OF GENERALIZATION

| RELATING

e relating situations: the formation of an association between two or more problems or
situations. a) connecting back (the formation of a connection between a current situation
and a previously-encountered situation); b) creating new (the invention of a new situation
viewed as similar to an existing situation);

e relating objects: the formation of an association of similarity between two or more
present objects. a) property (the association of objects by focusing on a similar property
they share); b) form (the association of objects by focusing on their similar form)

Il SEARCHING

e searching for one same relationship: the performance of a repeatead action in order to

detect a stable relationship between two or more objects

e searching for one same procedure: the repeatead performance of a procedure in order to

test whether it remains valid for all cases

e searching for one same pattern: the repeatead action to check whether a detected pattern

remains stable across the cases

e searching for the same solution or result: the performance of a repeatead action in order to

determine if the outcome of the action is identical every time

I11 EXTENDING

e Expand the range of applicability: the application of a phenomenon to a larger range of

cases than that from which it originated

e Removing details: ther removal of some contextual details in order to develop a global case

e Operating: the act of operating upon an object in order to generate new cases

e Continuing: the act of repeating an existing pattern in order to generate new cases

FORMULATION OF GENERALIZATION

IV. IDENTIFICATION OR STATEMENT

e continuing phenomenon: the identification of a dynamic property extending beyond
a specific instance;

e sameness: a). common property: the identification of a property that is common to
objects or situations; b) objects or representations: the identification of objects as similar
or identical; c) situations: the identification of situations as similar or identical);

e general principle: a statement of a general phenomenon. a) rule: the description of
a general formula or fact; b) pattern: the description of a general pattern; c) strategy or
procedure: the description of a method that can be extended beyond a specific case;
d) global rule: the statement of the meaning of an object or idea).

V. DEFINITION: the definition of a class of objects all satisfying a given relationship, pattern,
or other phenomenon.
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VI. INFLUENCE: a) prior idea or strategy: the implementation of a previous generalization);
c¢) modified idea or strategy (the adaptation of a existing generalization to be applied to
a new problem or situation).

(b) the extension or expansion of one’s range of reasoning beyond the case or
cases considered, and (c) the identification of commonalities across cases.

The scholar regrets that these studies essentially address the students’ difficulties
regarding the production of a law which is predetermined by the researchers,
and that, consequently, the latter neglect to consider possible generalizations that
are partial or not fitting with what is expected from the students®. She puts
herself in a wider perspective and, in her observation of the students, she
considers processes of generalizations as well as processes of transfer through
which the students autonomously transfer and adapt their knowledge to new
contexts, acting under different conditions.

Ellis investigates how students extend their reasoning, examines the sense given
by students to their general claims, and explores which types of common
characters the students might perceive throughout the cases. The activities
proposed to the students are various and very diversified and allow for the
analysis of processes and outcomes. The wide range of the collected data
(students’ protocols, interviews, video transcripts of the class processes) allows
her to develop a taxonomy on two macro levels: that of the generalizing actions
and that of the reflection generalizations (see the previous table).

Several other studies concern the processes of generalization in algebra which
we refer to in the next section.

What matters is how our eyes combine the images that have chosen to assent to be
captured, how we are able to associate them playing back and forth, how we follow
intuitions, alternative paths, possibilities [...] (Davide Enia, Palermo-India, 2010).

2. GENERALIZATION AND THE TEACHING OF ALGEBRA

Processes of generalization are dominant in a teaching of algebra which gives
room to generational and meta-activities in the sense of Kieran (1996). At the
international level few studies address processes of generalization at an
advanced level, on non standard problem solving activities (Papadopulos &
latridou, 2010, Zazkis & Liljedal 2002). The majority of the studies concern
processes of generalization in generational activities and are intertwined with the
introduction of letters to encode the observed regularities in general terms.
Kaput (1995) writes:

6 Ellis writes: “studies examining students’generalizations often report students’difficulties in recognizing, using
and creating general statement. Because work on generalization predetermines what types of knowledge counts
as general, it may fail to capture instances in which students may perceive a common element across cases,
extend an idea to incorporate a larger range of phenomena, or produce a general description of a phenomenon,
regardeless of its correctness. ... Focusing on correct mathematical strategies, mental acts that cut across
strategies may be overlooked and generalizing processes that result in incomplete or incorrect generalizations
may be omitted.”
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both the means and the goal of generalising is to establish some formal symbolic
objects that are intended to represent what is generalized and render the
generalization subject to further reasoning.

[...] acts of generalization and gradual formalization of the constructed generality
must precede work formalism — otherwise the formalism have not source in student
experience.

Kaput is recognized as one of the fathers of early algebra, a disciplinary area
which is now well established, which proposes the early use of letters
intertwined with a relational teaching of elementary number theory as well as
a valorization of algebraic language as an instrument to represent relations and
properties, to carry out reasoning patterns and produce justifications. His studies
gave birth to interesting experiments in the US which invested both the
curriculum, by making students get closer to the generalization of facts,
procedures and reasoning patterns, and teacher training (Kaput & Blanton 2001,
Blanton & Kaput 2001, Carpenter & Levi 2001, Carpenter et al. 2003, Carraher
et al. 2000, 2001, Schliemann et al. 2001). Influences of these studies can be
found in the NCTM’s proposals for the curriculum, where there is a strong
emphasis on students’ learning to make generalizations about patterns.
Regarding this topic, the anticipatory studies carried out by Stacey (1989), Lee
(1996), Orton & Orton (PME 1994, 1996) and the books by Mason et al. (1985)
and by Orton (1999) must be mentioned.

As a rule, international studies about the approach to algebra that involves the
processes of generalization concern the study of: patterns, algebraically
representable functional correspondences between pairs of variables, equations,
structural aspects of arithmetic operations, simple numerical theorems
(formulation of conjectures and their justification). However the study of
patterns is the more practiced one, as it is also documented by the ZDM special
issue “From Patterns to generalization: development of algebraic thinking”

(2008).

Dorfler, in his comment to this issue, makes a few remarks we agree with (see
Dorfler 2008). First of all, he claims that the knowledge and mastery of
algebraic notations do not develop simply by generalizing patterns of various
kinds. In particular, he observes that it is not enough for pupils to be able to
translate expressions from the verbal to the algebraic register, if they are to grasp
the meaning of formal expressions; he points out the importance of the
“negotiation of the intended meaning of the algebraic terms, specially of their
ascribed generality”, because it is “the habit of usage of, of operating with, of
talking about, etc, the marks/letters on paper” which makes the students aware
of the meanings they bring. About the figural sequences he stresses the
importance that the students become aware that a given visual cue can be seen in
different ways and then look for its different views. Moreover, both to give
room to the students’ creativity and not to determine in them the stereotype of
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the existence of one ‘unique law’, given a series of figures, he suggests that it
should be asked “how can you continue?” or “what can you change and vary in
the given figures?”

Similarly, about the activities of modeling of functional relationships he states
that “verbal or quasi-variable generalizations’ will not easily permit one to even
think of those properties of a functionl relationship. They describe the respective
generality but they are not amenable to operate in it or with it”. He also stresses
that what makes productive the use of letters that allow to transfer the reasoning
on the facts at stake into the calculations, is the chance to operate with the letters
according to the common rules of arithmetic (condensed in the notions of ring or
field); yet if the students are not aware of the possibility of actions, such as
“adding” or “multiplying”, on the letters, the sentence “n stands for an arbitrary
number” remains void and difficult to be accepted.

Moreover, he claims that the papers presented in the ZDM issue do not clarify
the relationship between this kind of activity and the mastery of algebraic
calculations, which the students need to practice in order to become able to
develop reasoning and produce proofs through algebraic language. Last but not
least, he stresses that many papers are only focused on the difficulties met by the
students, but that is reductive: the students’ behaviours and cognition can be
influenced by the teacher’s methods and ways of posing problems. On these
aspects we shall come back later.

As to the literature, due to space reasons, we only take into account some among
the most wide-ranging and consolidated studies, precisely those by: Cooper &
Warren, Rivera & Rossi Becker and above all by Radford. Before dealing with
them, we would like to mention a particular study by Ferrari (2006) about the
generalization and formalization of solution processes for numerical problems in
a primary school; here children are guided to make a distinction between data
and numerical value of the data and are faced with the task to express the
procedure followed to solve the problem in general terms. In this process the
letters are adopted by the pupils as short names for a voluntarily not defined
quantity of data to emphasize the expression of arithmetic relations among them;
each expression is made according to the operational acts needed to solve the
problem, getting to represent the solution procedure in an algebraic expression.
The results not only show the effectiveness of the approach: they also prove
a strong involvement of the pupils which generates motivation to study the
discipline.

2.1 Cooper and Warren studies

The studies by Cooper & Warren (2008, 2011) concern the devlopment of an
Early Algebra Thinking Project (EATP) aimed at placing early algebra activities
in the Queesland Years 1-10 syllabus. They consider three main topics:

7 This construct is defined later.
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a) patterns and functions; b) equivalence and equations; c) arithmetic
generalization. The scholars, in the line of Radford, do not see algebra as the
manipulation of letters but rather as a system charaterized by: indeterminacy of
objects, analytic nature of thinking; symbolic ways of designating objects. Their
obiective is the development of students’ mental models based on relationships
between real world instances, symbols, language, growth phenomena and
graphs, particularly those that enable the modelling of real situations that contain
unknowns and variables. In EATP they have studied the students’ acts of
generalization, in particular, pattern rules with growing patterns, change and
inverse change rules with function machines and tables of values, balance
principle in equivalence and equations, compensation principles in
computations, abstract representation of change (e.g. tables, arrow diagrams,
graphs) and relationship (equations), particularly looking at the relationships
between representations and growth of algebraic thinking. These studies have
reinforced their convinction that generalization is a major determiner of growth
in algebraic thinking and preparation for later learning of studies. (Cooper &
Warren, 2011). These authors, in analogy with the ‘quasi variable’ notion (Fuji
& Stephens, 2001) - which espresses the students’ recognition that a number
sentence or group of number sentences can indicate an underlying mathematical
relationship - introduce the quasi-generalization (QG) notion to indicate ‘a step
very near towards full generalization’, i.e. the state where the students are able
to express the generalisation in terms of specific numbers and can apply
a generalisation to many numbers, and even to an example of ‘any number’,
before they can provide a generalization in natural language and in algebraic
notation. They have found that QG appears to be a needed precursor to the
expression of the generalization in verbal or symbolic terms.

From the points of view of the classroom activities and of the students’ side
these studies are in tune with ours (see Cusi & Malara 2008, Cusi, Malara &
Navarra 2011 and related references). But, as we shall show later, we take into
account both the teachers’ role in the class and, more in general, the issue of the
development of their competence in leading the students to face algebraic
generalization tasks.

2.2. Rivera and Rossi Becker’s studies

The studies by Rivera (2010) and Rivera & Rossi Becker (2007, 2008, 2011)
focus on the mental processes enacted by junior high school students to grasp
and express linear (or quadratic) rules generated by the analysis of (figural
stages of) non elementary patterns. The authors are interested in the students’
construction and justification processes of their own generalizations. They focus
their attention on the ‘visual perception’ as the result of sensory perception
combined with cognitive perception, meaning, as far as the latter is concerned,
the capacity of the individual to recognize a fact or a property as related to an
object. They claim, like Radford, that the processes of exploration of a pattern
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are abductive-inductive, but differently from Radford®, they incorporate in their
model trial and error processes, accepting that cycles of abduction-induction
may be repeated to refine the initial hypotheses, up to the definition of a rule
which is suitable to generalization. The model produced for this process is the
triangle indicated below.

i Managing the unknown .
Known stage =3 Abduction ang Induction
(forming Hypothesis) ®  (Testing Hypothesis)

\/

Pattern generalization

In particular, Rivera (2010) investigates in an analytical way the evolution of
students’ cognitive visualization, at the basis of the produced algebraic
modeling. Concerning this latter point he refers to: Giaquinto (2007)° who
maintains that the detection of the structure of a pattern arises from the
association due to the natural ‘visual power’ of each one and from the use of
a “visual or perceptible template’ which directs the exploration aimed at the
recognition of either constant or redundant parts of a pattern; Davis (1993)°
who conceives the “eye” as a “legitimate organ of discovery and inference” and
who considers the discovery not only as the result of a logical reasoning path but
also of noticing; Arcavi (2003)*! who sees a visual template as a strategy to
allow the students to see the unseen of an abstract world, dominated by
relationships and conceptual structures not always evident; Metzger (2006)** for
the “law of good gestalt” or “gestalt effect” concerning one’s ability to
perceive, discern and organize a figure. The author uses the expressions
“patterns high (or low) in gestalt goodness” to express their high or low
effectiveness to highlight the structure of a sequence. He shows the existence
and effectiveness of visual templates in dealing with patterns which have linear
or simple quadratic structures but he states that further research is needed in
order to ascertain the possibility of visual templates in all figural patterns which
have a not linear structure™.

In Rivera & Rossi Becker (2011) the authors classify the procedures used by the
pupils to reach an algebraic model of the sequence in three categories: 1)
Constructive standard generalizations (CSGs); 2) Constructive non standard

8 We present later the Radford model.

9 Giaquinto, M., 2003, Visual thinking in mathematics, Oxford University press.

10 Davis, R., 1003, Visual theorems, Educational Studies in Mathematics, 24, 333-344.

11 Arcavi, a. (2003), The role of visual representation in learning of mathematics, Educational Studies in
Mathematics, 52, 215-241.

12 Metzger, W. (2006). Laws of seeing, Cambridge, MIT press.

13 Rivera realizes also a refinement of the previous model considering the starting triangle <abduction,
induction, generalization> as a common base of two opposite tetrahedrons, where the top vertex represents ‘the
gestalt effect’ and the bottom vertex ‘the knowledge/action effect’. He considers a new research question, i.e.
how this new model can be used in other algebra tasks involving generalization.
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generalizations (CNGs); 3) Deconstructive generalizations (DGs). The
constructive generalizations refer to those polynomial formulas that learners
directly construct from the known stages of a figural pattern as a result of
cognitively perceiving figures that structurally consist of non-overlapping
constituent gestalt or parts. The Deconstructive generalizations refer to those
polynomial formulas that learners construct from the known stages as a result of
cognitively perceiving figures that structurally consist of overlapping parts (in
some cases also embedding the pattern in a larger configuration that has a well
known or easier structure).

The deconstructive ways of seeing a pattern imply that some elements (sides or
vertices) of a figure can be counted two or more times and therefore the
correspondent formulas involve a combined addition-subtraction process where
overlapping elements have to be subtracted from the total. The terms “standard”
and “non standard” refer to the algebraic expression of the rule: applying
respectively if it is already simplified or not. From their studies CSGs appear to
be dominant with respect to the DGs ones. The authors, even if they identify in
the students’ work the ‘factual’, ‘contextual’ and ‘symbolic’ Radford steps (see
later), focus their analysis on the evolution of the students’work from figurally
to numerically-driven (de)constructions. They document four types of
justifications to support the formulas produced: extension generation; generic
example use, formula projection, formula appareance match. They link the
student’s success with the classroom socio-cultural mediation which allows
them to engage in multiplicative thinking and, in some cases, to simplify their
justifications.

From these results the students’ difficulty to produce CNGs is hardly
understandable: since CNGs reflect faithfully the students’cognitive visions, in
our opinion they should precede GSGs. Probably this behaviour shown by the
students, depends on a clause of the didactical contract.

2.3. Radford studies

Radford develops a very refined set of studies (Radford 2003, 2006, 2008, 2009,
2010, 2011) where the ways in which 12-14 years old students immersed in
a socio-constructive teaching, generalize linear patterns, are analyzed and
theorized. We recall here some key points of Radford’s theory.

The author claims that generalization implies two main processes which involve
phenomenological and semiotic  aspects: grasping a  generality,
a phenomenological act enacted through noticing how a local commonality
holds across the given terms*; and expressing a generality, a semiotic act
enacted through gestures, language and algebraic symbols.

14 Dorfler (2008) critically reflects on the conception of ‘grasping a commonality’ as based only on an
empiricist understanding. He considers the notion of circle and he underlines that it does not fit in with this
vision because “nothing observable have (exactly) the form of circle ... in many situations the empirical
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Grasping is seen as the enactment of an abduction from noticing some cases, i.e.
the identification of a commonality meant as ‘general prediction’ in the sense of
Peirce. The abdution becomes a hypothesis through which, if positively verified,
a new object emerges: a ‘genus’, i.e. a general concept arising by generalisation
of the noticed commonality to all the terms of the sequence. An algebraic
generalization occurs when the genus crystallizes itself into a schema, i.e. a rule
providing one with an expression of whatever term of the sequence. This is
Radford's model of this process (Radford, 2008, p. 85)

Particulars
P1, P2 ..., Pk Noticing commonality C ~ Making C a hypotesis Producing the expression of p,

! > ! > '5

abduction Trasforming the abduction Deducing p, from C

Later he argues that “the identification of the genus cannot be considered the
result of an algebraic process” (Radford, 2011). He claims that thinking
development occurs both at the mental and the social plane, generated by
material (gestures, language, and perception) and immaterial (imagery, inner
speech...) components, which altogether constitute its ‘semiotic texture’. He
considers that algebraic thinking is characterized by indeterminacy and
analyticity which can be distinguished by the signs on which the student draw.
As to the emergence of algebraic thinking he claims: a) that expressing
generality algebrically does not imply necessarily the use of the letters (they can
be used without any general meaning), instead of the way of reasoning which is
made explicit in grasping and expressing vagueness in some way; b) the
emergence of the algebraic thinking occurs when the students succeed to shift
their attention from calculating a number of certain elements to the “way of
calculating” such number.

Noticing students’ behavior he distinguishes three levels of approach to
generality. A first level, which he defines as ‘naive induction’, where there is no
actual, aware generalization. It is characterized by pupils’ trial and error
processes, by the possible occasional discovery of generalities, by germs of
abduction which are falsified in the checking stage. At this level, even though
arule may be expressed in the alphanumeric system the generalization is not
algebraic. A second level that he calls arithmetic generalization, where
generalization is seen locally, in a recursive way, and expressed in the different
cases through the addition of a constant term. A third level, which he defines as
algebraic generalization, is a very mazy and complex one, marked by gradually
more and more advanced phases. Regarding this latter level the author talks
about a whole working area called zone of the emergence of algebraic
generalization, which develops through ‘layers of generality’. The first layer,

generalization or abstractions need a complementary support by epistemic processes like idealization and
hypostatization”.
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defined ‘factual’, is the one where the generalization appears by means of
concrete actions on the examined cases, but it is not coagulated in a statement.
The second layer, defined contextual, is reached when indetermination enters the
discourse, pupils talk about the 'number of a figure' but they make space-time
remarks on it, in a general perspective and a rule is expressed in various ways
drawing on words, gestures, rhythms and signs. The level of the algebraic
generalization is reached when pupils detach themselves from the figural context
and shift towards the relations between constant and variable elements (numbers
and letters). Important elements which intervene in this last process are
iconicity, i.e. a manner of noticing similar traits in previous procedures, the
shifting from a particular unspecified number to the level of variables
summarizing of all the local mathematical experiences, the contraction of
expressions which testifies a deeper level of consciousness. This is a synthetic
representation of the processes (Radford, 2006, p.15)

Radford’s model of the students’ strategies in dealing with pattern activities

Naive Induction Generalization
Guessing Arithmetic Algebraic
(Trial and Error) (local Factual Contextual Symbolic
recursion)

In the most recent works by Radford (2010, 2011) the author adresses his
attention to very young students (7-8 years old) and he studies in details the
relationship teacher-pupils in classroom processes where the pupils are brought
to detect and express generalizations in the exploration of figural sequences. In
(Radford, 2010) the scholar claims that “learning can be theorized as those
processes through which students gradually become acquainted with historically
constituted cultural meanings and forms of reasoning and action”. In particular
he focuses on the ‘way of seeing’ and states that “the mathematicians’ eyes have
undergone a lengthy process of domestication” in the course of which people
come to see and recognize things according to “efficient” cultural means.

Radford considers “seeing” not a simply physiological act but as a fruit of the
cultural milieu where one is imbedded; he stresses that “generalization rests on
synthesizing resemblances between different things and also differences between
resembling things”, and that this game of visions has to be conveniently
educated by the teacher. He highlights the social character of the teaching-
learning processes, the role assumed by the teachers in it and focuses on “the
way in which teachers create the possibility for students to perceive things in
certain ways and encounter a cultural mode of generalizing”; he claims that
“perceiving sequences in certain efficient cultural ways entails a transformation
of the eye into a sophisticated theoretician organ.
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In the analysis of classroom transcripts he highlights the teacher’s behaviours
(questions, guided reflections, gestures, tone of the voice, silences, looks)
through which she succeeds to address her little students to become aware by
themselves of the incorrectness of their visions and to autonomously correct
them. As to this, he writes:

...Poésis is a creative moment of disclosure — the event of the thing in
consciousness ... The poetic moment of disclosure of the general structure behind
the sequence discussed in this paper was the result of a joint student-teacher
interaction. This moment — the event of the thing in consciousness — was much
more than a negotiation of meanings and an exchange. It was rather a Bakhtinian
heteroglossic merging of voices, pointing gestures, perceptions, and perspectives ...
(Radford, 2010, p. 3)

From the examination of the studies we have considered, clear common
elements appear about the articulation of the phases through which
generalizations emerge, but there are also some elements of difference, for
instance the different position of the trials in the models by Radford and Rivera
about the students’ behaviours in front of the exploration of figural sequences.
Radford’s studies stand out for the sharp intertwining between aspects of
practice and theoretical aspects, and moreover for the consideration of the socio-
cultural and epistemological dimension of both mathematics and its teaching.
The experimental studies do not give esplicit indications about factors which
contribute to the students’construction of the semantic basis for generalization.
A study devoted to this aspect and carried out by my collaborators Cusi &
Navarra, is presented in this conference.

In most of the studies we know, the teacher’s role remains in the shadow.
Warren (2006) states that more research needs to individuate teachers’ actions
and ways to pose questions which can facilitate the students’ generalizations and
Radford (2010, 2011) highlights the teacher’s actions in guiding the students to
‘see’ analogies and differences among various stages of a pattern, but they do
not mention that the majority of the teachers meet big difficulties to manage this
type of teaching even when (s)he is convinced that it is appropriate to practice it.
This problem has been an object of our studies and it is discussed in the next
section.

3. OUR STUDIES ON THE SIDE OF THE TEACHERS’ EDUCATION
FOR A SOCIO-CONSTRUCTIVE APPROACH TO EARLY ALGEBRA

Since the nineties we have addressed questions of the teaching-learning of
algebra and we have set up several experimentations of didactical innovation in
collaborations with expert teachers -researchers. Our aims were to individuate
the conditions of real applicability in the schools of didactical innovations in
algebra, centered on algebraic problem solving, generalization, modeling and
proof in the frame of a socio-constructive teaching. Our several studies have
given birth to ArAl Project: arithmetic pathways to favour pre-algebraic
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thinking™ (Malara & Navarra, 2003) which proposes a revision of the arithmetic
teaching in a relational key and an approach to early algebra of a linguistic-
constructive type. The project involves students and teachers from kindergarten
to the first biennium of upper secondary school but it is mainly devoted to
primary and lower secondary school in a perspective of continuity between the
two school levels.

The ArAl project is based on the hypothesis that there is a strong analogy
between modalities in which natural language and algebraic language are
learned. As we know, a child learns natural language through a large variety of
situations which he experiences with an experimental attitude, gradually
mastering the meanings and supporting rules of the language, up to the school
age, when (s)he will learn to read and reflect on grammatical and syntactic
aspects of the language. Similarly, the mental models of algebraic thinking and
language should already be constructed in an arithmetical environment, even
from the very first years of primary school, bringing a child to face pre-algebraic
experiences in the arithmetical realm (grasping regularities, generalizing and
expressing relationships, giving and comparing representations, extending
properties by analogy...). In this way (s)he can progressively develop algebraic
thinking, in a strict intertwining with arithmetic, exerting a continual reflection
on the meanings of the introduced symbols and of the implemented processes in
classroom work.

As reported in Cusi & Al. (2011), our perspective of work in the classes is based
on the following principles:

The anticipation of generational pre-algebraic activities at the beginning of
primary school, and even before that, at kindergarten, to favour the genesis of
the algebraic language, viewed as a generalizing language. From these activities
the pupil is guided to reflect upon natural language; it is from the analogy
between the modalities of development of the two languages that the theoretical
construct of algebraic babbling comes out16.

The social construction of knowledge, i.e. the shared construction of new
meanings, negotiated on the basis of the shared cultural instruments available at
the moment to both pupils and teacher. Arithmetic and algebraic knowing are
both central, but they need to emerge and strengthen themselves through the

15 ArAl is an acronym for “Arithmetic and Algebra”. The ArAl Project is led in collaboration with Giancarlo
Navarra, a teacher-researcher who co-ordinates the organizational aspects of the Project and contributes to its
scientific program.

16 We call algebraic babbling the experimental and continuously redefined mastering of a new language, in
which the rules may find their place just as gradually, within a teaching situation which is tolerant of initial,
syntactically “shaky” moments, and which stimulates a sensitive awareness of formal aspects of the
mathematical language. We employ the “babbling” image because when a child learns a language, (s)he masters
the meanings of words and their supporting rules little by little, developing her/his knowledge gradually by
imitation and self-correction or with the adults’ support.
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coordinated set of individual competencies, which are the main resource on
which they are constructed.

The central role of natural language as the main didactical mediator for the slow
construction of syntactic and semantic aspects of algebraic language.
Verbalization, argumentation, discussion, exchange, favour both the
understanding and the critical review of ideas. At the same time, through the
enactment of processes of translation, natural language sets up the bases for both
producing and interpreting representations written in algebraic language. From
this centre, attention is then extended to the plurality of languages used by
mathematics (iconic, graphical, arrow-like, set-theory language, and so on).

Identifying and making explicit algebraic thinking, often ‘hidden’ in concepts
and representations in arithmetic. The genesis of the generalizing language can
be located at this ‘unveiling’, when the pupil starts to describe a sentence like
4x2+1=9 no longer (not only) as the result of a procedural reading ‘I multiply 4
times 2, add 1 and get 9°, but rather as the result of a relational reading such as
‘The sum between the product of 4 times 2 and 1 equals 9’; i.e. when he/she
talks about mathematical language through natural language and does not focus
on numbers, but rather on relations, that is on the structure of the sentence.

In an approach of this type the teacher has a key role. In fact (s)he needs to set
up a teaching strategy that allows for the implementation of an authentic socially
shared mathematical activity, where space is given to linguistic aspects, to the
representation of information and processes, as well as to meta-cognitive
aspects. The latter are important to monitor the appropriateness and suitability of
representations, to recognize and identify equivalent ones and select the best
ones. All this requires a deep restructuring of the teachers’ conceptions about
both the contents to be taught and the teaching methodology in the classroom:
a real ‘culture of change’ is entailed.

For reshaping teachers’ professionalism several scholars stress the importance of
a critical reflection by teachers on their own activity in the classroom (Mason,
1998, 2002, 2008; Jaworski, 1998, 2003; Lerman, 2001; Shoenfeld, 1998).
Mason, in particular, proposes the study of the discipline of noticing. He claims
that the skill of consciously grasping things comes from constant practice, going
beyond what happens in the classroom, and recommends the creation of suitable
social practices in which teachers might talk-about and share their experience.
Also Jaworski stresses the effectiveness of communities of inquiry, constituted
by teachers and researchers, emphasizing how teachers’ participation in these
groups helps them develop their individual identity through reflective inquiry.
Our teacher education model follows these conceptions and modalities. But it
represents the outcome of research and training practices developed in Italian
universities since the 1970’s.
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Instruments, methods and activities outlined and tuned in the ArAl project, work
as a support for teachers to propose early algebra activities in the classroom,
using a socio-constructive methodology, and, at the same time, as a training to
become metacognitive teachers through a reflection upon their own action in the
classroom. Follow-ups of the basic activities are twofold:

e on the pupils’ side: the aim is to analyze the conditions under which
pupils, since grades 4-6 manage, at a first level, to generalize, formulate
properties and produce formal representations and, at a second level, to
appropriate the meaning of algebraic expressions and become aware of
their expressive strength;

e on the teachers’ side: the aims are on two levels as well. One aim is to
refine their ability to guide the class in the approach to early algebra
following these ArAl modalities; a second aim is to foster their
professional development through stimuli deriving from participation in at
least two-year collaboration projects, characterized by the immersion in
a community of enquiry on one’s own practice, in a continuous interplay
of reflection, exchange, sharing.

Our hypothesis for the promotion of the teachers’ professional development is to
bring them to be embedded in an ‘environment’ where they can acquire a new
way to operate in and for the class, work actively and reshape their
professionalism  through frequent exchanges of studies, experiences and
reflections. Our modalities of work in teachers’ education are aimed at both
bringing the teachers to analyze their didactical processes to assess their results
and guiding them to reflect on these processes according to three different points
of view: the development of the mathematical construction; the teacher’s
actions; the participation of each individual in the collective construction of the
knowledge.

We Dbelieve that by observing and critically reflecting on socio-constructive
teaching/learning processes, the teachers are led to become aware of the
different roles they are supposed to play in the classroom, of the best ways to
interpret them and can also get useful suggestions about how to behave in the
classroom. Moreover, we believe it is crucial for teachers to be familiar with
research results that can be useful for practice and to become aware of the
importance of studying them for their own professional development.

The teachers who choose to participate in ArAl teaching experiments are mainly
motivated by their ‘first encounter’ with the project through publications,
congresses or events in the schools. Often these teachers have already studied
the project and in particular its units17 and the glossary that can be found in the

17 The units can be viewed as models of sequences of didactical projects, open to the teacher’s choices and
focused on a specific strand of activities. They provide information on the mathematical meaning and the
objectives of the single activities presented, report excerpts that exemplify class discussions, as well as
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project’s websitel8. When they actually face the teaching experiment, they
nevertheless show uncertainty towards class discussions, felt as open and
unpredictable situations, difficult to be managed.

Through our studies we became aware of the difficulties that the teachers meet
both in planning and in guiding classroom mathematical discussions. Our
studies highlighted how during a classroom discussion often the teachers assume
not adequate behaviours or fall back to a trasmissive teaching model. Therefore
often they do not share with the students the goals of a problem exploration,
they do not give room to some potentially productive interventions, they tend to
ratify immediately the validity of some meaningful contribution without giving
the class any opportunity to validate them. An example of a discussion where
the teacher has this kind of behaviour is reported in appendix with a comment.

As a support to teachers and an answer to their needs, a mentor-researcher is
associated with each group of teachers involved in the same teaching
experiment: teachers and mentor share some moments of work face to face
together with a dialogical relationship via e-mail. There are also regular working
sessions of small groups with their mentor and the researcher in charge of the
group, but also collective sessions, involving all the researchers and teachers
experimenters, all held in schools or at the university.

Believing that observation and critical-reflective study of classroom-based
processes help teachers become aware of the processes involved in every
discussion and of the variables that determine those processes, our objective is
to lead the involved teachers: a) to become increasingly able to interpret the
complexity of class processes through the analysis of the inner micro-situations,
to reflect upon the effectiveness of their own role and become aware of the
effects of their own micro-decisions; b) to be in a better and finer control of both
behaviours and communication styles they use; c¢) to notice, during classroom
activity, the impact of the critical-reflective study undertaken on pupils’
behaviour and learning.

In order to achieve this objective, we involve teachers in a complex activity of
critical analysis of the transcripts concerning class processes and of reflection
upon them, aimed at highlighting the interrelations between knowledge
constructed by the students and behaviour of the teacher in guiding the students
in those constructions. The analysis is carried out by building up what we call
‘Multi-commented transcripts (MT), or ‘the diaries’. They are realized after

comments on both pupils’ behaviours (meaningful constructions, frequent attitudes, difficulties) and on teachers’
behaviour (appropriate interventions, ways of introducing and managing issues, attitudes etc.).

18 The units are supported by the theoretical framework and, most of all, by the glossary, available online on the
project’s website <www.aralweb.unimore.it>, where teachers can find clarifications and further material on
mathematical, linguistic, psychological, socio-pedagogical and methodological-didactical issues and also find
prototype didactical sequences, aimed at giving them a stimulus for their-own elaboration of the highlighted
teaching processes.
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transcribing in a digitally formatted text the audio recordings™ of lessons on
topics that were previously agreed with the researchers. They are completed by
the teachers-experimenters who send them, together with their own comments
and reflections, to mentors-researchers, who make their own comments and send
them back to the authors, to other teachers involved in similar activities, and
sometimes to other researchers. Often the authors make further interventions in
this cycle, making comments upon comments or inserting new ones. This
methodology is characterized by a sort of web choral participation, due to the
intensive exchanges via e-mail which contribute to the construction of the MTs,
and to the fruitfulness of the reflections emerging from the different comments.

Here we only propose a short excerpt from an MT, trying to show how this
instrument enables one to highlight the behaviours enacted by teachers, the
difficulties they meet and the awareness they achieve after the work of analysis
and reflection has been carried out on the basis of the received comments. We
are well aware that this excerpt cannot fully express the richness and the variety
of the questions which arise from the classroom transcripts, the type of
interactions with the teachers that the comments allow and how these can help
them to refine their actions in the class, so we refer to other examples which can
be found in Malara (2008), Malara & Navarra (2011), Cusi et al. (2011), Cusi &
Malara (in press). In order to preserve the discussion flow, analytical comments
are reported in the same order in which they were made. Authors of comments
are labelled as: T: teacher; M: mentor; R1-R2: team researchers.

A short example of MCT

The teacher proposes a topic concerning the exploration of a sequence, given the
first three terms (it is the arithmetic progression with initial element 4 and step
7). The activity is aimed at determining a general representation of the sequence.
In the following excerpt, the class (grade 6) had already identified the
sequence’s recursive generating law. The teacher writes the following table on
the blackboard and opens up a discussion to introduce the class to the study of
a representation for the general correspondence law (T represents the teacher; S,
J and A represent the students involved in this part of the discussion).

19 We chose to analyze audio-recordings instead of videos of classroom processes because we believe (Malara
& Zan, 2008) that, while watching the video may not enable teachers to completely capture the details of the
verbal interaction, analyzing transcripts, instead, fosters the crystallization of interactive processes and highlights
gaps, crucial decision making moments and also omissions, oversights, carelessness.
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Sequence ranking | Sequence number | Operations made to jump ‘Mathematical recipe®® to
number from the place number construct the number

1 4 4

11 4+...

18 4+ ...+ ...

25

gl

32

1 T: How do we get to 11?
2SI +17.

3 T: We make 4 + 7. What about the third place, S? We make..."

4S:4+7+7.

5 J: Wouldn’t it be better to make 4 x 2? (1)

6 T: What about the fourth place?

7S 4+T7T+7+7,

8 T: What about the fifth?

9S:4+7+7+7+7.

10 T:What if we had a sixth place?
11S:4+7+7+7+7+7.

12 T: Correct. So, now we find...

13 A: I didn’t get it. What do I put in the first place?
14 T: Well, there is 4 in the first place.

15A: I putd x1.(2)

16 T: Well, but there is no x’ there. The first place is 4 (3)

Comments

(1) M. Why doesn’t T comment upon J’s intervention?

(7

R2. T agree. Probably J grasps a regularity but doesn’t express it correctly,
instead of saying 4 + 7 x 2 he packs everything in 4 x 2. T should

have clarified this.

(2) R1. Also this intervention might have been investigated. Why does A think

about the product of 4 and 1?

R2. Again we are in front of a badly expressed intuition. The student probably
wants to ‘fill the gap’ he sees in the representation of the first term
as compared to the others. Here T misses the chance to change the
representation of the first term, 4, into one that fits with the situation,
for example writing 4 as 4+0 and getting back to the class posing the
problem to find a representation for the first term, similar to the

other ones.

20 The expression “mathematical recipe” is a metaphor used by the teacher to convey the idea that pupils should
use a representation of the sequence’s number in function of the place number.
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(3) R2. This intervention by T suggests that she excludes the possibility of
representing 4 in another way, thus showing little algebraic
farsightedness. It would be extremely appropriate to encourage these
intuitions, although imprecise, trying to redirect them.

T. All these remarks make me think | am really close-minded and I didn’t
realise it before. I don’t know whether this 1s a matter of attention, of
being used to seeing things in different ways, of fearing to get out of
the scheme to be followed (or the one | thought I should follow).

Analysis of the excerpt

This excerpt documents a number of rigid behaviours by the teacher in her
action. She does not manage to productively value the intuitions of some pupils,
blocking their emerging mathematical explorations (lines 5, 13, 15) and to direct
pupils towards a relational reading of the correspondence, which implies the use
of the multiplicative representation (line 16). If we look at the comments she
proposes, we notice that she only makes remarks about her action in the class
after reading both mentor’s and researchers’ remarks. Her a posteriori comment
shows awareness of her own rigidity and of her tacit fears to leave usual
schemes to approach innovative activities (note 3-T).

Comments made in this excerpt reflect some of the categories we already
highlighted (Malara, 2008) and that seem to be strictly interconnected here: (1)
conceptions linked to cultural and/or general educational issues (note 3-R2); (2)
methodological issues concerning mathematical aspects (notes 1-R2; 2-R2; 3-
R2); (3) management of discussions in the classroom (notes 1-M; 2-R1). Further
categories strongly emerged in MCTs- not documented here for space reasons-
refer to the distance between theory and practice (difficulty in drawing on
elements of the theoretical framework) and to a wide range of linguistic issues.

The example we presented shows the role of MCTs in the training program in
which teachers are involved, reminding that this analytical work is carried out
on the transcripts of all the episodes that constitute the teaching-experiment. It is
through the comments that teachers: (1) actually realize how the development of
pupils’ mathematical constructions is strongly affected by the teacher’s
language, choices, attitudes and actions; (2) reflect upon their difficulties in
managing a discussion and receive suggestions about how to face micro-
situations of interaction; (3) express their own difficulties, doubts, awareness.

The collectively-written critical analysis is a particularly important
methodological tool for the development of the teacher’s awareness: divergent
comments to a micro-situation lead to grasp a range of possible interpretations
of both behaviours and interventions enacted; converging comments enable one
to amplify the critical points of the management of the activity, on which it is
necessary to (re)construct competences and refine one’s sensitiveness.

We wish to underline the determinant conditions for the effectiveness of our MT
approach. One first condition is the non-episodic nature of the situations for
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reflection and exchange: by progressively accumulating these moments of
autonomous and interactive reflection, characteristic of our methodology, the
teacher becomes more receptive and, in the long term, is led to develop new
conceptions, attitudes and ways of acting. Another fundamental condition,
crucial for the teacher’s development process, is the enactment of a relationship
between the members of a team, based on mutual trust, and the construction of
a sense of belonging to a group that shares common values.

Moreover, the analysis of several MTs related to the implementation of a path
designed with the teachers and aimed at the development of students’ proving
ability through algebraic language, allowed us to identify the specific characters
which constitutes the profile of an ‘effective teacher’, who poses him/herself as
a model of aware and effective attitudes and behaviours for students (Cusi &
Malara, 2009). The defining elements of this model, are as follows: the teacher
must (a) be able to assume the role of “investigating subject”, stimulating an
attitude of research on the problem being studied, and of an integral element of
the class group in the research being activated; (b) be able to assume the role of
operational/strategic leader, through an attitude towards sharing (as opposed to
transmission) of knowledge, and as a thoughtfulness leader in identifying
efficient operational/strategic models during class activities; (c) be aware of his
or her responsibility in maintaining a harmonized balance between semantic and
syntactic aspects during the collective production of thought through algebraic
language; (d) seek to stimulate and provoke the building of key skills in the
production of thought through algebraic language (be able to generalize,
translate, interpret, anticipate, manipulate), acting as an “activator” of algebraic
processes (generalization, traslation, manipulation, interpretation, anticipation);
(e) also have the aim to stimulate and provoke meta-level attitudes, acting as an
“activator” of thoughtful attitudes and “activator” of meta-cognitive acts, with
particular reference to the control of the global sense of the processes.

The work developed with trainees teachers (Cusi & Malara, 2011), suggested us
to conceive this construct as a possible theoretical lens for the analysis of
classroom discussions to be used in specific workshops for/with in-service
teachers. In the future we wish to verify the effectiveness of this construct also
as a tool for the teachers’ self analysis.

4. CONCLUDING REMARKS

In this paper we presented a brief overview of the literature and we sketched out
some research results which offer meaningful indications about recent points of
views on generalization processes. Then we focused our attention on some
recent studies about generalization activities in early algebra teaching describing
the position of some scholars.

In this frame we have considered the issue of the role played by the teacher in
leading the students to engage in this kind of activities and through some short
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excerpts of classroom work we have shown the sharp relationship between the
teacher’s actions and the students’ behaviours. We have also sketched a profile
of a teacher who acts as an effective guide for the students to promote the
development of a meaningful and aware approach to algebraic thinking.

To conclude we stress the importance of the teacher’s awareness at different
levels to gain consciousness and control about the effective ways of posing
him(her)self in the class and, above all, we underline the need of a refined
teacher’s education on this delicate aspect of teaching which requires a deep
study of classroom episodes and above all a systematic careful self-analysis of
the teacher’s own practice.

APPENDIX

A problem situation presented in primary school (grade 1V)

In the great reef life is very intense. You can possibly meet several types of animals:
sponges, jellyfishes, octopuses, multicolour fishes. In the far eastern part of the reef a very
numerous family of sea stars lives, each of them attached to a coral:

Alessia Angela Elena
Loretta Patrizia

When the new moon arises the sea stars shift and change the coral following a very old
rule. Try to discover the rule looking at how the sea stars in the first positions move:
Alessia goes to n° 3; Loretta goes to n° 5; Angela goes to n° 7; Patrizia goes to n° 9 Elena
goes ton° 11

1) On the n. 78 coral the little star Valeria lives: which will be the number of the coral on
which it will move? 2) Which will be the number of the coral where the sea star living at
the 459th place will move?

Justify your answers.

The discussion (the teacher’s interventions are in italic)

At the beginning some pupils give numerical answers without any justifications
or by chance.

1. Teacher | asked you to justify your answers.

Alex the stars move: from 1 to 3, from 3 to 5, then ‘plus 2’, from 5 to 7
‘plus 2°...

Alessia | have added the number that says how much all the stars move: 2, 3,
4, 5... because from 1 to 3, it 1s +2; from 2 to 5, it is +3, then it
moves from 3 to 7, it is +4; and then from 4 to 9, it is +5, from 5 to
11: +6 and adding 2+3+4+5 we obtain 15

Beatrice | have done in this way. (She goes to the blackboard and clearly
describes her reasoning representing all the various cases with
arrows) The star Alessia has to move from place 1 to place 3 and
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2. Teacher

Nicola

then it is +2; Loretta has to move from n. 2 to n. 5, it makes +3;
Angelica moves from n. 3 to n. 7, it makes +4; Patrizia moves from
n. 4 to n. 9, it makes +5; Elena moves from n. 5 to n. 11, it makes
+6. Then, in my opinion, [the answer for the coral n. 78] is 78+79,
that is 157, because | have added to the number of the place of the
star in the initial position, the number which follows it.

+2

*n.l/\3

+3

*n.Z/\S

+4

*n,s/\q

+5

*n.4/\49
*n./\ 11

Really good! What do you think about this? One of you said that
Valeria arrives at n.80, another one said at n. 93, another one at 84,
another one at 157.

| have not understood well Beatrice’s reasoning.

3. Teacher Beatrice, you have to help Nicola (and addresses the class), whether

you do not understand, you ask.

Beatrice Yes. The star Alessia stayed at n.1 and she moved to n.3 ... (Beatrice

starts from the first sea star and she retraces the arrow oriented from
1 to 3, she continues analogously with the other stars, indicating
them while she is speaking).

4. Teacher  What has Beatrice done with respect to the classmates who have
spoken before her?
some pupils: She has represented ... . Others: She has outlined a scheme...

The teacher suggests Beatrice to write in red the value of the arrow operators.
While Beatrice colours she explains.

Beatrice ... then for getting to 5 the star 2 makes +3; then from 3 for getting to

Nicola

7, | have added 4; from 4 for getting to 9 | have added 5, from 5 for
getting to 11 I have added 6

She has to put 6 because it is 5+1; she has to put the [number of] the
star’s address plus 1. She has to add “the address number plus 1 to
“the address number”

5. Teacher Good! Translate it into mathematical language

Nicola

+5+5+1
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Nicola, Beatrice and some others enrich the blackboard with a new
representation: each arrow of the previous representation is splitted in two, the
first arrow appears to be a variable operator depending on the place number and
the second arrow appears to be the invariant operator ‘+1°.

6. Teacher  Then if the star starts from 78, what will be its new place?
Beatrice: 78+78+1=157

7. Teacher:  (shaking hands with Beatrice. Then, addressing the class) Have you
understood?

Giulio Then it has to go to number 157... I have written only the process:
78+78+1

8. Teacher:  Would it be possible to write the same thing in different ways?
Alex, Enrico, Nicola e Giulio give these writings.
78+78+1=157,  78+79=157;,  78x2+1; 78+(78+1)

9. Teacher  Very good. There is a new challenge for you: The star Filippa is at
place n. 100; where does it move to?

Alessia  100x2+1=201

10. Teacher OK. The star Maria is at n. 300; where does it move to?
Alex 300+300 is 600, plus 1 that equals 601
Beatrice  Or rather you can multiply its value times 2 and then plus 1

11. Teacher You have been very smart! We have not got to the generalization
yet, but we are near

Some days after the class restarts the activity.

12. Teacher Go back to where we had stopped: which rule does the star Valeria
follow to move to the new coral?

Some pupils: 78+78+1=157. One of them rewrites this expression on the
blackboard

13. Teacher Someone has said 78%2+1=157, do you remember? Now tell me: if a
little star starts from n. 15 where is it when it arrives?

Pupils  15x2+1!
14. Teacher Ok. And if it starts from 103?
chorus  103x2+1!

The teacher picks other starting numbers: 598; 3654; 92045; she writes in
column the pupils’ sentences, purposely leaving a space between the number of
the starting coral and the chain of the operators acting on it: 78 x2+1; 15
x2+1; 103 x2+1; 598 x2+1; 3674 x2+1; 92045 x2+1

Chorus  Times 2 plus 1, it remains the same!!!

15. Teacher Excellent! ‘x2+1’remains constant. Now try to express in Italian the
rule of this moving. We have to write the “Regulation of the sea
stars movings”. Imagine that the star Carlotta arrives at the colony
for the first time. When there is the new moon it notices that all the
sea stars move and change their place, she does not understand
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anything and she asksher neighbour star what she has to do. In your
opinion which help can the neighbour star give her?

Alex She has to do the number of its coral times 2 plus 1.
16. Teacher How can you say it in another way?
Costanza From the number of her house you have to go forward times 2 plus 1

Piero | shall say: if you are in the coral house number 50, you have to
move to... you have to go... yet 50 house more and plus another

17. Teacher Meanwhile the little star starved ... .Listen to me, we need to assign
some names; how do we call these numbers? (she indicates the first
term of each sentence)

Costanza Number of the house

18. Teacher Both of them are numbers of house
Lucia Number of the coral
Chorus  Starting number

19. Teacher How do we call these in a competition?
Chorus  Start! Arrival!

(The teacher writes on the blackboard, respectively on the left-hand side and on
the right-hand side of the sentences: “number of the starting coral”; “number of
the arrival coral”)

20. Teacher 1 suggest you to begin from the number that is after the equal sign.
(She says) “The number of the arrival coral is equal ...

Enrico ... to the starting number times 2 plus 1
Alessia the number of the arrival coral is equal to twice the starting number
plus 1

21. Teacher We can take away “of the coral”. Dictate it to me
pupils:  The arrival number is twice the starting number plus 1

(The teacher writes the rule on the blackboard and reads it.)

22. Teacher Do you know how to translate it for Brioshi?**
Matteo  Times 2

23. Teacher Only so? In your opinion Does Brioshi understand?
Mattia  78...

24. Teacher Then does it hold true only for 78?
Enrico It holds true for any starting number

25. Teacher The idea is excellent, but in mathematics, after several studies, it has
been decided to call ‘any number’ only with a letter

Mattia | had said it!

21

Brioshi is a virtual Japanese student who exchanges messages in mathematical language with
pupils. His acknowledged skill in this area, encourages pupils to check the correctness of the
mathematical expressions to be sent out to him.
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26 Teacher What do we choose as starting number?

Chorus s
27. Teacher And as arrival number?
Chorus a

Anna gives the rule in formal terms: sx2+1=a. The class writes the relationship
to be sent to Brioshi: sx2+1=a

Comment

At a first reading of this discussion, the teacher’s behaviour can appear good.
But in actual fact she does not act well. She speaks only with few pupils, she
does not promote any interaction in the class, and above all she does not
relaunch the validation of the pupils’ proposals to the classmates. She does not
take into account pupils’ contributions which offer elements of discussion and of
comparison (see Alex’s proposal and Alessia’s proposal). She expresses
judgments through exclamations or emphatic gestures (intervention 2,
intervention 7). She immediately directs the class towards the solution she had
foreseen, as soon as it appears (intervention 5-7)*. She disregards to enhance
important contributions, even expressed in general terms, as the one by Nicola,
which facilitates the emergence of the link between the initial and final coral-
house of a sea star. Yet, she does not re-examine with the class the reasonings
developed for sharing, pinpointing and consolidating them, but she limits herself
to ask “did you understand?””. She does not pose herself in a reflective way in
front of the pupils, trying to help them overcome the procedural vision induced
by the arrows representation, for instance discussing with the class about which
coral-house they have to speak, the ‘regulations’ they have to write, so that the
pupils can understand they have to write a verbal sentence related to the number
of the final coral-house. She disregards the opportunity offered by Alex’s
intervention to clarify that a rule cannot be a simple procedure but it has to be a
sentence with a complete meaning, forcing in this way a verbal representation of
the sought rule. Trying to solve the question of the verbal representation of the
relationship at stake, she poses a vague question (intervention 16) which does
not allow pupils to face this delicate step, impossible to be done without a
careful mediation of the teacher, where they have to shift from the number of the
starting coral-house to the number of the final one. Yet, she does not bring the
pupils to make explicit in the various numerical cases what the starting and final
numbers represent, fact that prevents the pupils from formulating verbally a rule

22 After the first intervention by Beatrice the teacher should have relaunched to the class the
validation of the girl’s reasoning, or at least she should have asked Beatrice to better explain why
in her opinion 79 had to be added to 78, helping the class focus their attention on the extension of
the regularity detected by the girl and trying to force her to express the relationship between the
two numbers at stake (the number to be added to the number of the first coral-house is its
successive), fact which allows to easily identify the relationship between the numbers of the two
coral-houses of the sea stars.
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through the interpretation of the arithmetical sentences, rule in fact suggested
by her (intervention 20). Moreover she does not face in a constructive way the
question of how to introduce the letters as representation of the variables
“number of the starting coral-house”, “number of the final coral-house”, but
only suggests their possible use. So, even if the algebraic representation of the
rule is made in the class, this discussion does not allow the pupils to consciously
understand the meaning of the algebraic expression.

Globally the discussion shows a bigger tension of the teacher for the attainment
of her goal in a short time than for the care to appropriately address the pupils,
educating their ways of seeing and facilitating the interaction among them; such
a tension brings her to assume a procedural behaviour and to give scarce
attention to the meanings associated with the actions in the various steps of a
generalization process.
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YOUNG CHILDREN SOLVING ADDITIVE STRUCTURE
PROBLEMS

Ema Mamede, Florbela Soutinho
CIEC, University of Minho, Portugal

This paper describes a study to analyse how 4-6-year-olds (N=45) children
solve different types of additive reasoning problems. Individual interviews were
conducted on kindergarten children when solving the problems. Their
performance as well as their explanations were analysed when solving additive
reasoning problems. The additive reasoning problems comprised simple, inverse
and comparative problems. Results suggested that Portuguese kindergarten
children have some informal knowledge that allowed them to solve additive
structure problems with understanding. Children performed better in the simple
additive problems and found the comparative problems more difficult.

INTRODUCTION

In mathematics children are expected to be able to attribute a number to
a quantity, which is measuring (Nunes & Bryant, 2010a), but they also are
expected to be able to quantify relations. When quantities are measured, they
have a numerical value, but it is possible to reason about the quantities without
measure them. In agreement with Nunes, Bryant and Watson (2010), it is crucial
for children to learn to make both connections and distinctions between number
and quantity. Quantitative reasoning results from a quantifying relations and
manipulate them (Nunes & Bryant, 2010a), making relationships between
quantities valuable (Thompson, 1994). For Nunes and Bryant (2010a),
quantifying relations can be done by additive or multiplicative reasoning.
Quoting the authors “[...] Additive reasoning tells us about the difference
between quantities; multiplicative reasoning tells us about the ratio between
quantities.” (p.8). In the literature additive reasoning is associated to addition
and subtraction (see Vergnaud, 1983) and multiplicative reasoning is associated
to multiplication and division problems (see Steffe, 1994; Vergnaud, 1983).

Children can use their informal knowledge to analyse and solve simple addition
and subtraction problems before they receive any formal instruction on addition
and subtraction operations (Nunes & Bryant, 1996).

ABOUT THE ADDITVE REASONING

Piaget (1952) argued that children’s understanding of arithmetical operations
arises from their schema. A ‘schema’ is a representation of an action in which
only the essential aspects of the action are evident. He identified three schemas
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related to additive reasoning: joint, separate and one-to-one correspondence. The
author pointed out that children are able to master addition and subtraction only
when they understand the inverse relation between these operations, which is
achieved by the 7-year-olds. More recently, Nunes and Bryant (1996) referred
that kindergarten children of 5-6-year-olds can relate their understanding of
number as a measure of set size to their conception of addition / subtraction as
an increase / decrease in quantities. This can help children to begin to
understand that one operation is the inverse of the other. The schema from
which children begin to understand addition and subtraction are representations
of the act of joint and separate, respectively (Nunes, Campos, Magina & Bryant,
2005). These schemas allow 5-year-olds children to solve a problem such as:
”Anna has 3 candies. Her mother gave her 2 more candies. How many candies
does Anna have now?”.

Additive reasoning problems involve one variable and they tell us about the
difference between quantities. The part-whole relation is the invariant of the
additive reasoning. The whole equals the sum of the parts. Nunes, Bryant and
Watson (2010) argue that additive relations are used in one variable problems
when quantities of the same kind are put together, separated or compared.

Carpenter and Moser (1982, 1984) presented a classification of addition and
subtraction problem that does not characterize all the types of word problems
involving additive reasoning, but those who are appropriate for primary age
children. They distinguished four categories of addition and subtraction
problems: change, combine, compare and equalize (see Carpenter & Moser,
1982, 1984).

Carpenter and Moser (1984) conducted a research on primary school children to
analyse their solution strategies according to the type of problem presented. The
authors argue that the processes that children use to solve addition and
subtraction problems are intrinsically related to the structure of the problem.
This idea that addition and subtraction word problems differ both in semantic
relations used to describe a particular problem situation and in the identity of the
quantity that is left unknown is also supported by other researchers (see De
Corte & Verschaffel, 1987; Carpenter & Moser, 1982; Riley, Greeno & Heller,
1983; Fuson & Willis, 1986), who argue that addition and subtraction problem
types are related to fairly systematic differences in children’s performance at
various grade levels.

According to Nunes et al. (2005), children’s ability to solve problems involving
an additive structure develops in three phases: first children can solve simple
problems; then they can solve the inverse problems; and finally they can solve
static problems. The addition and subtractions simple problems are those in
which children are asked to transform one quantity by adding to it or subtracting
from it (e.g., Joe had 5 marbles. Then he gave 3 to Tom. How many marbles
does he have now?). These types of problems involve relations between the
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whole and its parts. The inverse problems are those in which the situation
presented in the problem relates to a schema, but the correct resolution demands
the inverse schema. For example, in the problem “Joe had some marbles. Then
he won 2 more marbles in a game. Now Joe has 6 marbles. How many marbles
did Joe have in the beginning?” (Nunes & Bryant, 2010a), subtraction appears as
the inverse of addition; the quantity increased and the final one are given, and
the initial quantity is unknown. The addition and subtraction static problems are
those in which children are asked to quantify comparisons. For example, “Joe
has 8 marbles and Tom has 5. Who has more marbles? (an easy question) How

many more marbles does Joe have than Tom?” (a difficult question) (Nunes &
Bryant, 1996; Nunes et al., 2005).

For Nunes and Bryant (1996) the difficulty of the problem is determined not
only by the situation but also by the invariants of addition and subtraction that
have to be understood by the children in order to solve a particular problem, and
these invariants change according to the unknown parts of the problem. Nunes
and Bryant (1996) also point out that the success in addition and subtraction
tasks for young children is also determined by the resources that children are
using to implement computational procedures, the system of signs. For the
authors problems that involve relations are more difficult than those that involve
quantities. The literature about additive reasoning has been giving evidence that
compare problems, which involve relations between quantities, are more
difficult than those that involve combining sets or transformations. Carpenter
and Moser (1984) refer that many children do not seem to know what to do
when asked to solve a compare problem.

Nunes et al. (2005) conducted a research with primary school Brazilian children,
from grades 1 to 4, to analyse their performance when solving problems of
additive reasoning. Their results indicate levels of success above 70% for the
children of all grades when solving simple problems of part-whole relations
involving addition and subtraction. When children were asked to solve inverse
problems only 60% of the first graders and more than 80% of the 4"-graders
succeeded in a problem such as: ”Kate had some candies. She won 2 more in a
game. Now she has 12 candies. How many candies did Kate have in the
beginning?”. Their study also analysed comparative problems, such as: “In a
classroom there are 9 pupils and 6 chairs. Are there more chairs or pupils? How
many pupils are there more?”. The authors reported around 50% of success for
the second question, and almost 90% among the 4"-graders. These results
support the idea that the development of children’s additive reasoning is
progressive, but also suggest that children are able to solve many of these
problems before they receive any formal instruction on addition and subtraction.

Literature gives evidence that kindergarten children are able to solve some
addition and subtraction problems (see Fuson, 1992; Nunes & Bryant, 1996), but
that does not mean that they understand all the relations in the context of
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additive reasoning problems. The children’s understanding of addition
a subtraction is progressive and develops over a long period of time.

To understand more about the children’s additive reasoning, it becomes relevant
to analyze younger children’s ideas of addition and subtraction. Following
previous research of Nunes et al. (2005), it was conducted a study with young
children, from 4 to 6 years of age, concerning these issues. The study was
developed to examine children’s understanding of additive reasoning problems.
For that two questions were addressed: a) how do children perform when
solving additive reasoning problems?; and b) what explanations do they present
when solving these problems?

METHODS

Individual interviews were conducted to 45 kindergarten children (4- to 6-year-
olds), from Viseu, Portugal. There were 15 children from each age level. In
these interviews children were challenged to solve 12 additive reasoning
problems (4 direct problems, 4 inverse problems, 4 comparative problems). The
interviews were conducted always by the same researcher.

The problems presented to the children were an adaptation of the problems
previously documented in the literature by Nunes et al. (2005). Table 1 gives
some examples of additive problems presented to children.

Type of problem Example

Direct Kate’s mum gave her 4 pencils. Later she gave her 2
more. How many pencils does she have now?

Ben had 7 candies and he gave 5 to his sister. How
many candies does he have now?

Inverse Anna had some candies. She gave 3 to her sister. Anna
has 2 candies now. How many candies did she have in
the beginning?

Mark had 5 chocolate candies, he ate some and now he
has 3 candies. How many chocolate drops did he eat?

Comparative In a classroom there are 6 pupils and 4 chairs. Are there
more pupils or chairs? How many more?

Mary has 3 flowers. She has 2 more flowers than Betty.
How many flowers does Betty have?

Table 1: Examples of additive reasoning problems.
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All the problems were presented to the children by the means of a story problem
and material was available to represent the problems.

No feedback was given to any child when solving the problems. All the children
were asked “Why do you think so?” after his/her resolution in order to know
children’s arguments. In the comparative problems, it was expected that some
children could requested help to understand the problem. In some cases the
interviewer had to repeat the problem to the child or to put a second question,
transforming a static question into a dynamic one, in order to facilitate their
understanding of the problem. For example, instead of “how many cars are there
more than planes?” — a static question — the child would then be asked “How
many planes should we give to Mark for him to have as many toys has Ben?”” —
a dynamic question.

For all these problems, the assessment of children’s performance was 0 for an
incorrect response, and 1 for a correct one.

Data collection took place by means of video record and interviewer’s field
notes.

Results

A descriptive analysis of children’s performance when solving additive
reasoning problems was conducted. Table 2 summarizes this information for
each type of additive structure problem according to the age level.

Additive reasoning problems

Mean (s.d.)
Type of problem 4-year-olds 5-year-olds 6-year-olds
(n=15) (n=15) (n=15)
Direct 2.13 (1.25) 3.75 (1.36) 3.53(0.83)
Inverse 1.47 (1.30) 1.80 (1.27) 2.53 (1.25)
Comparative 0.80 (0.78) 2.33 (1.23) 2.33 (1.29)

Table 2: Mean and (standard deviation) of correct responses when solving the additive
structure problems by age level.

It is remarkable the children’s success levels when solving additive reasoning
problems. Even the 4-year-olds were able to solve successfully some of these
problems. The inverse problems and the comparative problems seemed to be
more difficult for children than the direct ones, but even in those 5- and 6-year-
olds children presented a correct resolution. The comparative problems were the
most difficult for the children. Very often the interviewer had to repeat the
problem to the child or to ask a second question in the same problem in order to
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facilitate children’s understanding of the problem, moving from a static question
to a dynamic one, as referred before. Thus, the number of cases in which the
interviewer had to transform a static problem into a dynamic one was registered
producing two categories: without transformation, in which the child solved the
problem with no changes; and with transformation in which the child need the
interviewer to transform the problem. In any of these cases, the assessment was
0/1 for incorrect/correct responses.

Table 3 summarizes the number of correct responses given by the children when
solving the comparative problems according to the need of changes in the
presentation of the problem. As each child solved 4 comparative problems, 60
resolutions for each age group were produced.

Correct responses in comparative problems

4-year-olds 5-year-olds 6-year-olds
Difficulty level (n=15) (n=15) (n=15)
Without Transformation 2 14 19
With Transformation 10 21 16
Total correct responses 12 35 35

Table 3: Number of correct resolutions in the comparative problems, with the
transformation and without it, according to the age.

Figures 1 to 3 present the distributions of the total of correct responses for the
three types of additive reasoning problems, according to the age level.

Number of children's correct responses on solving problems
of direct additive reasoning, by age (n=15)
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Figure 1: Number of correct responses for direct problems by age level.
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Number of children's correct responses on solving problems
of inverse type, by age (n=15)
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Figure 2: Number of correct responses for inverse problems by age level.

Number of children's correct responses on solving problems
of comparative type, by age (n=15)
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Figure 3: Number of correct responses for comparative problems by age level.

In order to analyse the effect of the age on children’s performance solving the
different types of additive problems a one-way Analysis of Variance (ANOVA)
was conducted with performance in the type of problem (direct, inverse,
comparative) as dependent list and age (4-, 5- and 6-year-olds) as a factor. There
were no significant effects of the age on the direct problems neither on the
inverse problems, but there is a significant effect of age on comparative
problems (F(2,42)=9.3, p< .001) indicating that older children performed on this
problems than the 4-year-olds. Bonferroni post-hoc tests indicate that children of
5- and 6-year-olds performed better than the 4-year-olds, but no significant
differences were found on children’s performance of 5- and 6-year-olds. Thus,
in direct and inverse type of problems there was no age effect; the comparative
problems were easier for older children than for the younger ones.
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To know more about children’s reasoning when solving these problems, their
arguments were analysed for each type of problem. Four categories of children’s
arguments were considered in this analysis. The valid arguments comprise the
justifications in which children consider all the quantities involved in the
problem correctly; the incomplete category comprises children’s arguments that
refers only to one part of the quantities involved in the problem; the invalid
arguments are those in which children do not articulate the quantities involved in
the problems; and the no argument category that comprises all the cases of
absence of argument.

Table 4 presents the number of arguments of each type that were used by
children when solving additive reasoning problems correctly, according to the
age.

Additive reasoning problems

Type of problem

direct inverse comparative

Type of argument  4yrs 5yrs 6yrs 4 yrs 5yrs 6yrs 4yrs 5yrs 6yrs

Valid 17 19 38 12 17 28 8 22 22
Incomplete 1 9 - - 2 1 - - 6
Invalid 3 8 4 7 2 7 3

No argument 11 9 11
Total correctresp. 32 45 53 22 27 38 12 35 35

Table 4: Number of arguments of each type given when solving the additive structure
problems by age level.

Four categories of children’s arguments were considered in this analysis. The
valid arguments comprise the justifications in which children consider all the
quantities involved in the problem correctly; the incomplete category comprises
children’s arguments that refers only to one part of the quantities involved in the
problem; the invalid arguments are those in which children do not articulate the
quantities involved in the problems; and the no argument category that
comprises all the cases of absence of argument. Table 4 presents the number of
arguments of each type that were used by children when solving additive
reasoning problems correctly, according to the age.

Children of all age levels presented valid arguments were associated to correct
resolutions. This suggests that the results obtained from children’s performance
are associated to an understanding of the problems presented to them. Around
53% of the 4-year-olds could solve correctly the simple problems presenting
valid justifications; these percentage increases to almost 72% for the group of 6-
year-olds children. Valid arguments were also presented in 54.5% of the correct
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answers given by the 4-year-olds children when solving the inverse problems,
and in 66.7% of the correct resolutions of the comparative problems. In all type
of problems there were children who were able to solve them correctly, but were
unable to present a valid argument.

The use of an incomplete argument can be understood as child difficulty to
articulate verbally a logic explanation that was carried on. Also children who
solved correctly the problems presented no argument, as it happen with 34.4%
of the 4-year-olds that solved correctly the simple problems.

DISCUSSION AND CONCLUSION

Children’s informal knowledge is supposed to be the starting point for the
formal instruction. Thus, it makes sense to know better what do children can and
cannot do before being taught about arithmetic operations in primary school.
The results presented here suggest that Portuguese kindergarten children are able
to solve some problems involving additive structures with understanding, in
particular conditions.

These results converge with those presented by Nunes et al. (2005) who
analysed 5-8-year-olds children’s performance when solving additive reasoning
problems. These authors also reported that additive comparative problems were
more difficult to young children than the direct and inverse ones. Our study
extended these findings about children’s additive reasoning as it gives evidence
that 4-year-olds children can succeed in solving direct, inverse and also
comparative problems. Their procedures do not vary from those used by the 5-
and 6-year-olds relying on the schema of the act of join and separate for the
direct and inverse problems previously identified in the literature (see Nunes &
Bryant, 1996; Nunes et al., 2005).

The children’s arguments were also analysed in order to get an insight on their
reasoning when solving the additive structure problems. These arguments give
evidence that children as young as 4 years of age can establish a correct
reasoning and solve this type of problems. This suggests that their correct
answers were not achieved by chance. If there are children of 4-year-olds able to
solve some additive structure problems with understanding, relying in their
informal knowledge, perhaps kindergarten could stimulate their early ideas
about addition and subtraction. More research is needed to analyse these issues
and to find out what sort of problems, if there are any, should be presented to
kindergarten children in order to help them to develop their reasoning.
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We present a design study to introduce multiplicative thinking at Kindergarten
level with an algebraic perspective. Starting from some theoretical assumptions
about the psychological roots of multiplication and about the use of narration in
Math Education, we build a suitable narrative context in order to promote
children’s actions consistent with such roots. We analyze the development of this
path and its management, emphasizing the special role played by the dialectics
between actions upon objects and graphic representations.

INTRODUCTION

The discovery in human beings of very early, if not innate, mathematical
competencies, achieved by recent neuroscientific studies, induce to deepen the
study of cognitive strategies recognisable as roots of mathematical structures
and procedures, and to design learning environments to drive their evolution.
This enterprise is not new, as it can be traced back to Piaget’s studies about
action schemata, from which a wide literature, in particular about the origins of
arithmetical structures, has been produced. The common starting point is that
action is at the root of any abstract thinking and in particular of the
comprehension of arithmetical structures. This idea has been developed within
different perspectives, also due to the increasing information we are gaining in
these last years about our brain functioning (see e. g. Gallese & Lakoff, 2005).

In this field, our research group has been working for several years at the design
and development of prototypes of long-term paths for primary schools aimed to
promote in pupils arithmetical competencies as well as linguistic ones, in order
to express and communicate their achievements. We are aware of the basic
difference between actions upon objects and mathematical operations, but also
of the neurophysiology discovery that the same neural circuits are deputed both
to actions and to abstract thinking, therefore we think that to carefully identify
the action schemata is fundamental in order to exploit them as roots: since these
actions and the related mathematical operations will constitute the true base for
the whole disciplinary structure.

In this paper we present a design study realized by our team in collaboration
with an expert teacher: where a path is developed to introduce multiplicative
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thinking at a Kindergarten level with an algebraic perspective. A suitable
narrative context was created in order to induce actions consistent with the
theoretical roots of multiplication, identified according with some theoretical
assumptions. We present these references in the next section, after which we
briefly clarify the methodological equipment that has informed our
experimentation; then, in the widest section we describe and analyze the main
parts of the experimental path, and finally we draw some conclusive remarks
from our research experience.

THEORETICAL BACKGROUND

In the last decades many studies have been developed about the cognitive roots
of arithmetical structures. Without pretending to be exhaustive, we can
distinguish two trends: to look for a correspondence between a given
arithmetical operation (or arithmetical structure, i.e. the operation with its
inverse) and an action scheme, as in Piaget or in (Davydov, 1992); or to classify
the different situations in which the use of the operations is needed (e.g.
Vergnaud 1983, Greer 1992, Steffe & Cobb 1998). The second kind of studies
seems very useful especially for detecting cognitive problems that might underly
a given recurrent mistake, whereas the first approach is more fruitful for
planning class activities, particularly when arithmetic is addressed since the very
beginning in an algebraic perspective, as in our approach (lannece et al., 2010).

In particular, we refer to Davydov’s suggestion (1992) that rather than viewing
different correspondences between each mathematical operation and an action
schema, links the whole multiplicative structure to a specific
psychological need. In his vision, indeed, the psychological
—a root of multiplication is identified in the change of measure
unit, when some magnitude has to be measured:

D : If the magnitude of an object is depicted by A, the small unit of
b count by a, the large unit by b, then the system of operation,
At st of e caun carried out by determining the numerical value of A indirectly
a-the unit
b-the large unit

through a, can be expressed by the following formula: 9%:5
a a
(Davydov 1992, p. 11, see fig. 1).

According to Davydov’s studies, we think that children can explore since
kindergarten the arithmetical structures in an algebraic perspective by exploiting
their cognitive strategies and using their languages. In this direction the graphic
representation plays a special role since it can be viewed both as a perceptive
metaphor of paradigmatic/structural aspects and as a cognitive support for
generalization (Stetsenko, 1995). In Vygotsky’s sociocultural vision of learning,
in graphic representations sign and meaning arise together, then the integrated
use of graphic, verbal and symbolic representations lets the concepts as well as
the expressive tools develop. The functional role of drawing in children’s

Figure 1
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cognitive and emotional development and its intertwinement with other
communication tools have been explored in the sociocultural perspective. In
particular it has been observed that

young children do not radically differentiate between drawings and writing. At least
part of this confusion must be due to the fact that children view both drawing and
writing primarily as ways of communicating with others. (Stetsenko, 1995, p. 50)

In other words the intertwined development of drawing and of written and oral
language in early childhood can be related to children’s need to gradually grasp
adults” means of communication. In this study we will show how this knot can
be exploited and driven toward “paradigmatic” aspects of language, in particular
by promoting the array as an effective representation of the multiplicative
structure.

Our theoretical background includes also design-oriented studies about the role
of tales to build mathematical meanings, in this case multiplicative ones. In the
1970s Donaldson has already observed how the child is particular sensitive to
contexts where human intentionality can be recognized and how he uses this key
to interpret and give meaning (Donaldson, 1978). To understand people’s
stories, reasons and feelings is linked to what Bruner calls “narrative” thought,
juxtaposed to “paradigmatic” or “logic-scientific” thought. The complementarity
of the two kinds of thoughts is put in evidence in several contexts of Math
Education, as in problem solving activities (see e. g. Mellone & Grasso, 2008).
About this, Zan (2011) observes how a word problem is both perceived as
description of a ‘human’ situation, and analyzed for its paradigmatic features
with the goal of solving a question. For this reason the mathematical information
in a word problem has to be consistent with the narrated story and viceversa, in
order to get resonance between the narrative thought and the paradigmatic one.
Othewise the risk is to produce a

‘narrative rupture’ in the text of the problem, i.e. the question and the information
needed for the solution are not consistent from the point of view of the narrated
story. (Zan, 2011, p. 341)

As we will show in the sequel, we have tried to take this need into account in
building the tale for our educational path, by describing characters who are
moved by understandable feelings and goals, and by linking feelings and goals
with the mathematical questions. Also the teacher’s management of the activity
has been careful in connecting and balancing the human and paradigmatic
aspects of the story.

METHODOLOGY

The experience we are going to analyze comes from a wider research project
carried out for several years in Naples by some researchers in Math Education
and a group of Kindergarten, Primary School and Lower Secondary School
teachers. This group has been working at building and validating prototypes of
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long-term paths for the teaching/learning of arithmetical structures in an
algebraic frame. Common feature of these activities is the assumption of
a Vygotskian perspective about learning, in particular on the role of signs in the
semiotic mediation process. The research group has been working for several
years about the use of the array as support for multiplicative thinking; in this
study we explore the possibility of using such representation with 5-6 year-old
children. To introduce multiplicative thinking in an algebraic perspective, we
have built, in collaboration with a kindergarten teacher-researcher, a path that
starts with the telling of a story. However, our goal was not just to validate in a
class activity a path packed in advance, but rather to be able, starting from an
initial plan, to repeatedly modify the path itself, according to classroom events
and interactions, following in this a typical design study methodology (Cobb et
al., 2003). Consequently, the theoretical issues listed in the above section have
not been transferred into action along a rigid sequence, but have been
intertwined, in order to obtain effective outcomes for children.

In the next section we will illustrate the main parts of the design and of its three
months development. Our collection of data includes children’s drawings,
transcripts from class discussions, photos, audio and video recording.

THE TALE OF THE GLUTTONOUS KING AND THE DIDACTICAL
PATH

The story that opens the path has been invented in order to merge a change of
measure unit in a narrative context. The story tells the adventures of a king’s
servant who has to do several trips through a tangled wood in order to reach a
bakery and to buy cakes for the royal family, composed by four members. The
cakes are carried ‘two at a time’ (first change of the measure unit) since the oven
takes out only two cakes, one chocolate and one strawberry cake, each time, and
each royal member wants to taste both. At the end of the story the teacher asks
children to help the servant to pay the bill, knowing the total amount of the
cakes bought (here, notice the care for consistency between narrative and
paradigmatic aspects). As usual for the teacher, the story is enriched by every
sort of details, concerning the different characters and the sequence of events;
moreover the verbal language is accompanied by the mimic-gestural one, the
exigence of a mime show and a dramatization naturally arise. In the first phase
the tale is used to reflect upon the words meaning: for this purpose the children
are invited to repeat the story and to discuss about the situation and the
characters. The teacher suggests also to make a sort of proto-analysis of the text.

Afterwards the teacher asks children to represent the story with a drawing. In
this way she wants to analyse which things have impressed more the children, in
order to orient the didactic mediation toward the children’s needs and her goals.
In this phase the children draw only the passages of the story that turn out to be
more meaningful or simpler to be represented. The “paradigmatic” aspects are
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left apart, certainly also because the previous work about the characters has
favoured the narrative thought (see e. g. fig. 2).

Figure 2 Figure 3 Figure 4 Figure 5

The teacher decides for a bodily work, as a premise for reflecting on actions, and
also for reaching more paradigmatic representations useful for catching the
mathematical meanings of the story. After all, if we recognize action schemata
at the roots of comprehension, then we have to make actions. A motoric activity
IS organized to reproduce the path covered by the servant from castle to bakery:
six traffic cones and a cloth tunnel represent the wood, so a gymkhana has to be
made to reach the bakery (the class kitchenette), that contains two tiles as the
cakes (fig. 3-5). Each child performs his/her own servant’s path in order to
interiorize the trip as a meaningful experience. This means to carry a plate, to
reach the bakery and to buy two cakes, one chocolate and one strawberry cake,
as many times as needed to satisfy all family members.

Finally, the children are invited to represent the trips made and the cakes taken
each time. This time, all the children try to answer the numerical question:
nobody feels inadequate, everybody is involved. This guarantees children’s self-
esteem and confirms the effectiveness of the teaching methodology employed,
which includes a careful balance between the exigencies that all the pupils live
successful experiences and that nontrivial disciplinary contents are addressed.

In children’s drawings a major attention to the paradigmatic aspects of the story
arises, maybe supported by the motory activity and, in particular, by the iteration
of trips. In all the drawings we can “see” the multiplicative structure expressed
by the grouping: the cakes are linked to the trips and drawn as rhythms of
repeated plates (fig. 7), some children represent the trips as lines, (perhaps
recalling the feature of the path, see fig. 6) or, in most cases, as half-circles, that
recall the cloth tunnel. Only two children (one less than 5 years old) use
a person-marker (fig. 9), while only Maria Giovanna outlines a sort of array (fig.
8). Ivana traces also the numerals 2 and 4, although as simple drawing
ornaments (fig. 9). We have already observed in the theoretical section how
fuzzy is the boundary between drawing and writing at this age, both abilities
being linked to children’s attempts to appropriate adults’ means of
communication.
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Figure 6 Figure 7 Figure 8 Figure 9

The day after the teacher orchestrates a mathematical discussion about the
different representations. This is a crucial part of the teaching mediation based
on children’s reflections upon their own and their fellows’ behaviour. After the
drawings of the previous day are distributed to the pupils, their comments
rapidly focus on the effectiveness of the representations in order to share the
best symbols used. Everyone illustrates the way he/she has represented trips and
quantities, then everyone is invited to redraw his/her symbols on the blackboard.
In this way all symbols are under the eyes of everybody, and thus, after an
analysis and a comparison of their features, the children choose the most
effective among them (fig. 10). The half-circle is selected as the best
representative of a trip, against teacher’s expectation, who hoped children would
have chosen, since this phase, the array as a powerful sign to represent trips and
quantities of cakes at the same time.

The next meeting between the teacher and the research group
is devoted to understand why the children have not chosen the
| array, even though it appears in one of the initial
representations (fig. 8), and why the collective discussion and
the teacher’s guide didn’t induce this choice: maybe the two
dimensions “trips” and “cakes at a trip” are not so meaningful
till that moment, to deserve a special attention and a form of distinction.
Therefore, and according to a Vygotskian approach, we decide to introduce an
artefact, as a semiotic mediator for the two dimensions of the multiplicative
structure: a rectangular tray divided in two-times-four boxes, into which the
children can arrange the cakes during the dramatization. The teacher tells
a further part of the tale of the Gluttonous King, in which the number of cakes
for each trip is inverted with the number of trips, in order to suggest a two-
dimensional representation, as well as to evoke a new change of measure unit
(from “two at a time” to “four at a time”):*

Figure 10

The Gluttonous King wants to organize a party for his family, where everybody will
get a chocolate cake and a strawberry cake. Knowing that the baker has now
a larger oven where four cakes at a time can be cooked, what has the servant to do?

Maria Giovanna: He must cut the cakes into small pieces.

! Some fragments of this activity have been already presented and discussed in (De Blasio, Grasso & Spadea,
2008).
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Teacher: But the King doesn’t like small pieces since he is gluttonous!
Martina: Otherwise they need a still larger oven.
Mattia: No, the servant must do several trips, carrying two cakes for every trip.

Teacher:: Look, | have prepared a tray for arranging the cakes. So, what has the
servant to do?

Sara: He must go to the bakery, buy the cakes, and put them on the tray.

The above transcript shows how the teacher mediation tends to justify the resort
to the artifact-tray. It is also interesting to notice how she refrains from directly
intervening on Mattia’s difficulty, who has not caught the change of measure
unit from the first part of the story. Instead, she prefers to address the whole
class, using a different strategy. Thus she encourages the children to a new
dramatization, making the same path but using this time the special tray to carry
the cakes. And when Mattia, at the end of his path, arranges the cakes grouping
them by two, as in fig. 11, the teacher stops the play and lets all the children
look at the tray.

Ciro: In this way it looks like the servant is gone twice and has got two cakes each
time.

Mattia [resentful]: No, | went only once [Mattia changes the cakes arrangement on
the tray, putting them in a unique row].

]

Figure 11 Figure 12 Figure 13

Obviously, what is really crucial is not the artifact-tray as itself, but the teacher’s
mediation that, by promoting a shared action schema, helps children to catch,
from the collective discussion, the analogies and the differences between the two
parts of the story. The social interaction works very well at this moment: Ciro’s
remark, which is in better accordance with the use of the tray, immediately
produces Mattia’s reaction. Teacher’s suggestion to reason upon his actions and
not only upon the narrated story turns out effective, indeed if Mattia gets angry
for doing something different from what he thought (or for being
misunderstood), from the other side he is ready to conform himself to the rules
of the game. Finally the teacher invites a child to figure the cakes on the
blackboard, promoting in this way another step from the representation of the
experience through the object-tray toward a representation through signs on the
blackboard. Martina goes to the blackboard and draws a first row with four
circles, then she begins a second row, as in fig. 12. So, Martina’s way of
reporting the ‘mathematical story’ is a sort of rhythm, already implicit in some
previous drawings, where the circles displayed in two rows clearly prefigure
a typical array.
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Teacher: Let’s look at Martina’s drawing. What does it suggest to you?
Mattia (and others): That he’s gone two times... and has got four cakes.

Teacher: Do you agree that now we understand what the servant has done? [She
takes two equal ‘two times four’ trays and puts them close to each
other, but differently oriented, see fig. 13] What has changed?

Antonio: Now the oven is larger and cooks four cakes at a time.

Teacher: But is the number of cakes the only thing that’s changed? How many
times the servant comes from the bakery with his full tray to satisfy
everybody?

M. Giovanna: Twice.

Chiara [pointing at the columns of the array]: One and two, one and two.
Mattia: [ don’t see any change!

Teacher: Are you sure? I see a difference....

Chiara [her hand traces a turning in the air]: They become equal just if we turn
them.

Martina: Of course, since in this case the cakes are four and the times are two,
while in the other case the trips were four and the cakes were two.

Ivana: But they are eight, anyway.

The use of the tray in the action simulation has well oriented Martina to
appreciate the value of the array in representing the performed action. However,
the teacher prefers to go back to the material representation via the tray, to
promote an effective sinergy between syntactital and semantical aspects of the
story. This helps the children to focus on what stays and what changes between
the two situations, in order to discover the commutativity of multiplication.
Moreover, teacher’s pressing requests of precision stimulates a refinement of
children’s linguistic expressions, supported by reference to the concrete
experience or, as well, by representation tools like the arrays. For example, for
Martina it is important to drive attention to the concrete meaning of what they
did, while Ivana’s statement goes exactly in the direction of the multiplicative
operation, overlooking the details of the two situations: anyway, they both
obtain the same result of 8 cakes®.

In the rest of the year the teacher has proposed many variants of the story, in
which the numbers of trips and cakes varied, but with the usual care for the
above discussed consistency between narrative and paradigmatic aspects. We
have observed that not all the children used the array to represent the different
situations. Our goal wasn’t clearly to impose the array, that is to train them to
adopt a mechanical automatism, rather our goal was, in Vygotskian words, to

2
Similar behaviors have been observed in grade 3 children (see Mellone & Pezzia, 2008).
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promote a “cultural” imitation, that is to drive children to repeat by their own
a strategy after having experienced its effectiveness.

For this purpose, at a certain point the teacher decided to change the experience
context and to work with rhythms of sounds. The children were invited to record
the sound patterns, by recognising a group of notes repeated many times. As
usual, they worked sharing, representing, and discussing. But this time the
children naturally chose to represent each pattern of symbols, corresponding to
a sequence of repeated sounds, one under the other instead of sideways, as in
Martina’s ingenious drawing (fig. 12). In this way the children build an array,
putting in evidence the role of multiplication and favouring an exploration of its
properties. The possibility to experience the efficacy of the array in a new
context allows children to recognize the structural analogy between two
different situations. Finally, we can report that, during some further variations
on the theme, children did make autonomous use of the array.

SOME CONCLUSIVE REMARKS

The design study presented above shows how the action schemata, evoked by
telling a story in which the consistency between narrative and paradigmatic
aspects is cared, can create resonance (in the sense of lannece & Tortora, 2008)
between children’s strategies and formal mathematical stuctures. In our opinion
our study also confirms Davydov’s suggestion (1992) about the essential role
played by the change of measure unit in giving sense to the multiplicative
structure. Indeed, the story context allows to explore two semantical dimensions
(trips and cakes for trip) and, at the same time, the peculiar syntactic properties
of multiplication (as the commutative property). The dramatization lets the
paradigmatical aspects arise and, on the other hand, the use of the array as
a semiotic mediator leads the children to start using a genuine mathematical
language to ‘put things in order’ (note the emerging of refined multiplicative
expressions in Martina’s words “in this case the cakes are four and the times are
two, while in the other case the trips were four and the cakes were two”).
Finally, the analysis of the path shows a great difference between working with
a representation proposed by others (the array at the beginning of the
experience) and managing the same ‘linguistic’ tool autonomously (Chiara’s
action on the array to recognize the commutative property). In this sense the
adults’ cultural mediation in providing the array has to be very careful, due to
the foreseeable children’s difficulties of interiorization.
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EXPLORING PARTITIVE DIVISION WITH YOUNG
CHILDREN

Ema Mamede, Amalia Silva
CIEC — University of Minho & J.1. Esposende, Portugal

This paper focuses on a study with 4- and 5-year-olds children understanding of
partitive division when discrete quantities are involved. The study analyse how
young children understand the inverse divisor-quotient relationship when the
dividend is the same. The participants were 30 kindergarten children from
Braga, Portugal. Individual interviews were conducted when solving tasks
involving the division of 12 and 24 discrete quantities by 2, 3 and 4 recipients.
Results showed that 4- and 5-year-olds children have some ideas of division,
can estimate for the quotient when the divisor varies and the dividend is
constant, and can justify their answers. Educational implications of these results
are discussed for kindergarten activities.

FRAMEWORK

Children learn a considerable amount about mathematical reasoning outside
school known as informal knowledge. Literature refers that kindergarten
children possess an informal knowledge relevant for many mathematical
concepts (see Nunes, 1992; Nunes & Bryant, 1997). This informal knowledge
should provide the building of formal mathematical concepts. Concerning the
division, several authors suggest that young children can divide discrete
quantities successfully (see Frydman & Bryant, 1998; Pepper & Hunting, 1998;
Kornilaki & Nunes, 2005; Squire & Bryant, 2002), arguing that these children
possess some type of informal knowledge related to the division of quantities,
understanding the inverse relation between the divisor and the quotient when the
dividend is the same.

Correa, Nunes and Bryant (1998) argue that sharing activities can be relevant in
the understating of the inverse relation between the divisor and the quotient.
Also Kornilaki and Nunes (2005) argue that understanding the sharing activity
helps children to understand the logical relations involved in the division of
quantities, i.e., the relation between the dividend, the divisor and the quotient.

When considering the division of discrete quantities it becomes relevant to
distinguish the partitive and the quotitive division. In partitive division problem
a set of objects is given to be divided among recipients, and the share that each
recipient has received is the unknown part. (e.g., there is a set of 10 candies to
be shared among 5 children. How many candies does each child get?). In
a partitive division problem, the divisor is the number of recipients and the
quotient is the share they receive. In quotitive division, there is an initial



114 EMA MAMEDE, AMALIA SILVA

quantity to be share into a known number of parts. The size of the parts is the
unknown (e.g., Mary has 12 candies and wants to give 3 candies to each of her
friends. How many friends are receiving the candies?). In quotitive division
problems, the divisor is the share to be given to each recipient and the quotient is
the number of recipients. Concerning these types of divisions Kornilaki and
Nunes (2005) argued that children understand more easily the partitive division
than the quotitive division.

Research presents several results of young children procedures when solving
division tasks involving discrete quantities (see Piaget & Szieminska, 1971;
Desforges & Desforges, 1980; Frydman & Bryant, 1998; Squire & Bryant,
2002). Particularly, Correa, Nunes and Bryant (1998) when investigating the
development of the concept of division in young children, examined whether
children who could share would be able to understand the inverse divisor-
quotient relationship in partitive division tasks when asked to judge the relative
size of 2 shared sets. The participants were 20 children of 5-year-olds, 20 of 6-
year-olds and 21 of 7-year-olds from Oxford, England. The authors investigated
the children’s understanding of the three-term quantity relationship in division
when the dividend was constant and the divisor varies. In their experiment the
experimenter shared a given amount (12 in some trials, 24 in others) of red and
blue sweets between two groups of rabbits, one red and one blue, putting the
sweets in the boxes attached to the rabbits’ backs; the experimenter pointed to
one blue rabbit and one red rabbit and each child was asked whether they had
the same quantity of sweets or whether one of them received more sweets, and
why did the child think so. The authors argued that “if the children succeed in
tasks where the dividend is constant and the quotient is inversely related to the
divisor, we can be confident that their success indicates some understanding of
core relations in a division situations. (p. 322). Results showed that 9 of the 20
5-year-olds performed significantly above chance and about 30% were able to
verbalize this inverse relation in their justifications and 11 out of 20 of the 6-
year-olds scored above chance and verbalized the inverse relation between the
divisor and the quotient in the partitive tasks. The authors also report age
improvements between 5 and 7 years. Correa, Nunes and Bryant (1998) also
analysed children’s justifications according to children’s age. Most of the 5-
year-olds were not able to give a mathematical justification for their choices and
did not mention facts relevant to the solution of the task. The 6-year-olds
presented justifications that revealed a progress from some comprehension of
sharing and numerical equivalence to the understanding of the inverse divisor-
quotient relationship. The majority of the justifications presented by the 7-year-
olds showed a logicomathematical approach, referring the inverse divisor-
quotient relationship.

More recently, Kornilaki and Nunes (2005) investigated whether the children
could transfer their understanding of logical relations from discrete to
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continuous quantities. Among other things, the authors analysed 32 five-year-
olds, 32 six-year-olds and 32 seven-year-olds solving partitive division tasks
involving discrete quantities. In this type of problems the number of recipients
varied to produce two conditions: 1) in the same divisors condition, the size of
the divisor was the same; 2) in the different divisors condition, the number of
recipients varied. The results showed that the different divisors condition was
clearly more difficult than the same divisors condition. Thus, the authors argued
that the inverse relation between the divisor and the quotient is understood later
than the equivalence principle of division. The authors also pointed out that in
partitive division tasks, one-third of the 5- and 6-year-olds justified their
responses as ‘“‘the more recipients, the more they get”, but this response
decreased markedly with age as only slightly more 10% of the 7-year-olds used
this incorrect reasoning.

The studies of Correa, Nunes and Bryant (1998) and Kornilaki and Nunes
(2005) give evidence that, at age of 6 and 7, children have an insight into
relations between the division terms, long before they are introduced to this
operation at school. If previous research reports some success with 5-year-olds
children, how would children of 4-year-olds would perform? Besides, it
becomes relevant to get a better insight on young Portuguese children’s informal
knowledge of division.

This paper focuses on young Portuguese children understanding of division of
discrete quantities, when solving partitive division problems. For that we tried to
address three questions: 1) How do children estimate the quotient in a partitive
division in which the divisor varies and the dividend is kept constant? 2) How
do children perform the partitive division tasks involving discrete quantities?
3) What procedures do they use in this process?

METHODS

A study focused on young children’s ideas of partitive division was conducted to
address these questions. The participants were 15 four-year-olds (11 boys and 4
girls, mean age 4 years and 6 months) and 15 five-year-olds (7 boys and 8 girls,
mean age 5 years and 6 months) from Braga, Portugal.

The participants were interviewed individually by one of the researchers when
solving the problems. Each problem was presented to each child using a story
and manipulatives representing the items involved in each story were available.

Each child was presented to 6 problems: 3 involving the division of 12 units
(carrots) by 2, 3 and 4 recipients (rabbits), respectively; and 3 problems
involving the division of 24 units (cabbage) by 2, 3 and 4 recipients (rabbits).

In the interview, first children were invited to estimate the effects on the
quotient of increasing the divisor keeping the dividend constant. Then they were
asked why they thought so. The idea was to have an insight on children’s
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understanding of the inverse divisor-quotient relationship when the dividend is
constant. Then children were asked to carry out the division. In this process,
their ability to perform the division was assessed as well as the procedures used
by them.

The story presented to the children involved a context in which a white little
rabbit had 12 carrots. Then he had to share them fairly with his friend, the brown
rabbit. At this moment the child was asked: “Do you think that the white rabbit
would be with more or less carrots? Why?”. Them the child was invited to
accomplish the division between the two rabbits. Them the child was asked: Do
you think that both rabbits are happy with this division of the carrots? Why?”,
“How many carrots did each received?”. Then a little grey rabbit came around
and they had to put all the carrots together again and share them among the three
rabbits. “Do you think that each rabbit is going to have more or fewer carrots
now?”; “Can you help the rabbits to share the carrots?”; “Do you think that all
the rabbits are happy with this division? Why?”. The story continues to include
the black rabbit. The same questions were asked. In the very end, when the last
rabbit came, the children were asked: “Do you think that all the rabbits are
happy with this division? Why? Do you want to check it by counting?”.

When the 24 units were involved, an analogous story was presented to them but
now involving the 2, 3 and 4 rabbits and 24 cabbages.

Each child took approximately 20 minutes to solve all the problems, in spite of
having no limit for it.

RESULTS

In order to understand children’s ability to estimate the quotient in a partitive
division in which the divisor varies and the dividend is kept constant, their
correct responses and justifications were analysed. Table 1 resumes the
percentage of correct estimates and valid justifications for the division of 12 and
24 units, according to the age. A valid justification is an argument in which
a child expresses some ideas of the inverse divisor-quotient relationship, such as
“because there are more rabbits and each one get fewer carrots.” or “they will
have fewer carrots because now there is the X rabbit”.

4-year-olds 5-year-olds
Correct resp. Valid argum. Correct resp. Valid argum.
12 units 67% 43% 2% 67%
24 units 71% 52% 78% 83%

Table 1: Percentage of correct responses and valid arguments when estimating for the
quotient with the dividends of 12 and 24 units, respectively.
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It is interesting to note that children’s performance in the estimating tasks
improved from the first part of the problems (involving 12 units) to the second
one (involving 24 units), in spite of the sizes of the initial sets. Perhaps this is
due to the fact that when the problems involving the 24 units were presented to
the children, they were not a novelty anymore.

Another remarkable point is the success observed among the 4-year-olds when
asked to estimate and justify their judgement. Almost half of the children
presented a valid justification for their correct answer when dividing the 12
units; when they were asked to divide the 24 units, their valid justifications
increased slightly above 50%. These results suggest that children of 4-year-olds
may have some ideas about the inverse divisor-quotient relationship presented in
these conditions.

Children performance was analysed solving division tasks involving 12 and 24
units by 2, 3 and 4 recipients, respectively. Tables 2 and 3 resume the
percentage of children’s correct responses by age level, in these problems.

12 units
4-year-olds (n=15) 5-year-olds (n=15)
Division by 2 87% 87%
Division by 3 67% 80%
Division by 4 67% 80%

Table 2: Percentage of correct responses by age level when solving the division of 12
units by 2, 3 and 4 recipients.

24 units
4-year-olds (n=15) 5-year-olds (n=15)
Division by 2 60% 80%
Division by 3 86% 74%
Division by 4 67% 80%

Table 3: Percentage of correct responses by age level when solving the division of 24
units by 2, 3 and 4 recipients.

The results suggest that for young children it becomes more difficult to
accomplish the division of 24 units than the division of the 12 units set, possibly
due to the magnitude of the set.
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As the children’s performance was not normally distributed a Mann-Whitney U
Test was conducted in order to analyse children’s performance dividing 12 and
24 units according to the age level. The results show no significant differences
on children’s performance when dividing 12 units according to the age levels
(age 4, Mdn=3, age 5, Mdn=2, U=149, n.s.) and when dividing 24 units
according to the age levels (age 4, Mdn=3, age 5, Mdn=3, U=128, n.s.). Thus,
results give evidence that there is no difference of 4- and 5-year-old children’s
performance in this division tasks.

Trying to explain these results, children’s procedures were analysed when
dividing 12 and 24 units by 2, 3 and 4 recipients, respectively. The same
procedures were observed when children were dividing 12 and 24 units. The
procedure | comprises the sharing procedures relying on the correspondence
one-to-one by the recipients; the procedure Il comprises the counting
procedures; procedure IlIl comprises sharing activity based on perceptual
influence ignoring the size of the shares; and procedure IV comprises sharing
activity combined with counting to produce equal shares.

Tables 4 and 5 resume the observed procedures used by the children of both age
groups when solving the division problems of 12 and 24 units, respectively.

12 units
4-year-olds (n=15) 5-year-olds (n=15)
Type of procedure I I Il v I I Il v
Division by 2 10 0 3 2 8 2 1 4
Division by 3 9 0 5 1 8 2 3 2
Division by 4 9 1 3 2 8 2 4 1
Total (Max.=45) 28 1 11 5 24 6 8 7

Table 4: Children’s procedures solving the division of 12 units, by age level.

24 units
4-year-olds (n=15) 5-year-olds (n=15)
Type of procedure I I i vV I I i v
Division by 2 7 0 6 2 9 2 4 0
Division by 3 9 0 5 1 6 2 4 3
Division by 4 9 1 4 1 6 3 4 2
Total (Max.=45) 25 1 15 4 21 7 12 5

Table 5: Children’s procedures solving the division of 24 units, by age level.
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The procedures used by children did not change much according to the
magnitude of the set to divide. Tables 4 and 5 suggest that sharing assumes an
important role on children’s performance when solving division problems, with
discrete quantities. The sharing activity developed by each child and the type of
shares produced give us an insight of children’s ideas of fare share. Many 4-
year-olds children used sharing activity without recognizing the need of
producing fare shares, either when 12 or 24 units were involved (24% and 33%,
respectively). This phenomenon was also observed in some 5-years-old children
when 12 and 24 units were involved (17.8% and 26.7%, respectively).
Nevertheless, the majority of the children of both age groups involved in this
study recognized the importance of producing fare shares in the division tasks
presented to them.

The procedure mostly used by both age groups of children was correspondence
one-to-one. This procedure conducted children to correct resolutions, producing
fare shares. The procedures using sharing activity based on perceptual influence
ignoring the size of the shares were also popular among children of both age
groups.

After carry out the division of the items by the recipients, the children were
asked if they were happy with the division made through the question “Do you
think that all of the rabbits are happy with this division? Why?”. They were also
challenged to verify their results by counting - “Do you want to check it by
counting?” - to deepen the understanding of children’s ideas of fare sharing by
giving them an opportunity to correct themselves. Their reactions were analysed
and allowed us to distinguished the following categories: CcE comprises
children’s verifications in which it was observed Correct counting of the items
in each recipient when there are already equal shares; CcNon-NE comprises
children’s verifications in which it was observed Correct counting of the items
in each recipient, but without equal shares; NnC comprises children’s reactions
in which they refuse to verify because they are sure about it and it is correct;
NVNE comprise their reactions in which they do not recognise the need to verify
and equal shares were not produced; NC comprise children’s reaction in which
the correct counting of the items was not accomplished.

Tables 6 and 7 resume children’s reactions, by age group, when solving the
division tasks of 12 and 24 units, respectively. The majority of the children of
both age groups used the opportunity to verify their shares, correcting their
distributions when necessary. This was observed by 60% of the 4-year-olds and
73.3% of the 5-year-olds when 12 units were involved; and by 51.1% and 62.2%
of the 4- and 5-year-olds, respectively, for the 24 units. These results suggest
that equal share is a concept understood by young children of 4-year-olds. In
most of the problems presented to them, these young children recognised the
importance of fair shares when accomplishing a sharing activity in a division of
discrete quantities.
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12 units
4-year-olds (n=15) 5-year-olds (n=15)
Division Division
by2 Dby3 by4 Total by2 by3 by4 Total
CcE 9 10 8 27 11 12 11 33
CcNon-NE 2 3 4 9 3 1 3 6
NnC 0 0 0 0 1 1 1 3
NVNE 2 1 1 4 2 1 0 3
NC 2 1 2 5 0 0 0 0
Table 6: Children’s reactions to the produced shares after dividing 12 units, by age
level.
24 units
4-year-olds (n=15) 5-year-olds (n=15)
Division Division
by2 by3 by4 Total by2 by3 by4 Total
CcE 9 10 8 27 11 12 11 33
CcNon-NE 2 3 4 9 3 1 3 6
NNnC 0 0 0 0 1 1 1 3
NVNE 2 1 1 4 2 1 0 3
NC 2 1 2 5 0 0 0 0

Table 7: Children’s reactions to the produced shares after dividing 24 units, by age
level.

It was also possible to observe a few children who did not need to verify their
resolutions that were correct, being sure about their procedures and solutions
obtained. A groups of children of both ages did not recognised the need of
produce equal shares, in spite of using counting properly when verifying their
results (20% and 13.3% of the 4- and 5-year-olds, respectively, when dividing
12 units; and 20% and 35.5% of the 4- and 5-year-olds, respectively, when
dividing 24 units).

DISCUSSION AND CONCLUSIONS

The results presented here give some insights of young children ideas of division
of discrete quantities but also their ideas of fair sharing. The findings of the

study reported here suggest that young children of 4- and 5-year-olds possess
some ideas related to the division of quantities, understanding the inverse
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relation between the divisor and the quotient when the dividend is the same. The
analysis conducted here give evidence that children of 4-year-olds reveal some
understanding of the effect of increasing the number of recipients when the
amount to share is constant. These children were able to estimate the result of
division. This suggests that children also have some ideas of the inverse divisor-
quotient relationship in partitive division tasks, when asked to judge the relative
size of shared sets. This idea is in agreement with Frydman and Bryant (1998),
Correa, Nunes and Bryant (1998) and Kornilaki and Nunes (2005).

The study reported here has some similarities with some presented previously in
the literature (see Correa, Nunes & Bryant, 1998; Kornilaki & Nunes, 2005) but
also offers some original contributions. Correa, Nunes and Bryant (1998)
investigated 5- to 7-year-olds children’s understanding of inverse divisor-
quotient relationship, when partitive division was involved. Their findings give
evidence that 5-year-olds children can succeed in these tasks. Also Kornilaki
and Nunes (2005) give evidence of 5-year-olds children success when solving
this type of tasks. In our study we analysed how children of 4- and 5-year-olds
behave when dealing with this type of problems. Some positive signs arise from
this investigation. Four-year-olds children are also able to understand some
ideas of divisor-quotient relations in particular conditions.

The procedures used by the children of this study suggest that correspondence
can play an important role on children’s sharing activity and on their
accomplishment of division. Some authors argue that sharing activities can be
relevant in the understating of the inverse relation between the divisor and the
quotient (see Correa, Nunes & Bryant, 1998) and that understanding the sharing
activity helps children to understand the relation between the dividend, the
divisor and the quotient (see Kornilaki & Nunes, 2005). In agreement with these
ideas, one-to-one correspondence sustaining the sharing activity seems to allow
young children to understand the logical relations involved in the division of
quantities. This study also shows that equal share is a concept understood by
some 4-yaer-olds children and recognized by them as an important issue of the
division of discrete quantities. Nevertheless, fair sharing does not seem to be
only concept for understanding the division of these quantities, as many young
children were able to estimate the effects of increasing the divisor in the
quotient, for the same dividend, before carry out the division.

These findings suggest that kindergarten activities could stimulate children’s
early ideas of division, relying of their informal knowledge. These activities
could comprise the use of share and the production of equal shares, but also
activities to promote the understanding of the logic relations involved in the
division, when the dividend is kept constant. These ideas are crucial to
understand some complex mathematical concepts such as fractions, later on in
the formal traditional school.
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THE APPEARANCE OF EARLY GENERALIZATION
IN APLAY?®

Paola Vighi
Mathematics Department of University of Parma, Italy

The paper shows the appearance of generalization and its fundamental role in
a didactical activity based on a play with rules, proposed to pupils 5-7 years
old. Every play requires and promotes different competences, in particular
logical and mathematical. The study of pupils’ behaviours in front of the task
furnishes some examples that prove the possibility of an early mathematical
activity of generalization.

THEORETICAL FRAMEWORK

Usually the word ‘generalization’ is related to algebraic procedures and
reasoning, but it is possible to observe the use of generalizations also in other
mathematical activities. Generalization is often cited as typical form of
mathematical thinking, but without using a definition or specify its meaning.
Moreover generalization is often associated with abstraction, since the boundary
between them is very thin.

In an Italian book for teachers, we can read this definition of ‘generalization’:

the capability to free oneself from particular, to find solutions more amply valid to
achieve a given aim. ... capability that allows to distinguish the essential from the
particular, “what it needs make in given situations” from the various “way in which

it can be made”. (Altieri Biagi & Speranza, 1981, p. 178)

In her analysis of the act of understanding, Sierpinska considers four basic
mental operations: identification, discrimination, generalization and synthesis.
Her definition of generalization is the following that completes the previous:

Generalization is understood here as that operation of the mind in which a given
situation (which is the object of understanding) is thought as a particular case of
another situation. The term ‘situation’ is used here in a broad sense, from a class of
objects (material or mental) to a class of events (phenomena) to problems, theorems
or statements and theories. (Sierpinska, 1994, p. 58)

In his theory of ‘universal model’ Hejny (2004) distinguishes six different
stages: motivation, isolated (mental) models, generalisation, universal (mental)
model(s), abstraction, abstract knowledge. In particular, concerning the ‘Stage
of generalisation’ he writes:

*Work done in the sphere of Italian National Research Project Prin 2008PBBWNT at the Local Research Unit
into Mathematics Education, Parma University, Italy.
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The obtained isolated models are mutually compared, organised, and put into
hierarchies to create a structure. A possibility of a transfer between the models
appears and a scheme generalising all these models is discovered. The stage of
generalisation does not change the level of the abstraction of thinking. (Hejny,
2004, p.2)

Hejny (2004) writes also:

The generalisation of isolated models (experiences and pieces of knowledge) is
determined by finding connections between some of isolated models. This web is
the most important product of the stage of the isolated models. (Hejny, 2004, p.5)

In this paper the author presents and studies an example of generalization that
appears during a play. It is well known that the play can promote logical and
mathematical competences. Schuler (2011, p. 1912) highlights that:

[...] play and relationship of playing and learning have to be explored more closely
when talking about mathematics for the early years.

Starting from the consideration of emotional, social and cognitive role of the
play, she writes:

[...] play in early childhood is the motor of development and hence associated with
learning. Consequently the underlying question seems not to be “Can children learn
while playing?” but rather “How can learning while playing be modeled?”” and “Can
children learn mathematics while playing? (Schuler, 2011, p. 1913)

After an analysis of some theoretical models, she emphases “the central role of
the educator and the quality of materials, games and activities”. In fact,
sometimes it is difficult to adopt a good equilibrium between a free and
spontaneous play and a guided play. In other words, “Play is not enough. [...]
children need adult guidance to reach their full potential” (Balfanz et al., 2003),
but when the teacher proposes a play finalised to promote particular abilities, he
risks to force in some way the child and to impose directions of work connected
with the play finality. In particular, Schuler (2011) studied situational conditions
of learning while playing and she highlights three main blocks: affordance,
liability and conversational management:

[...] rules can offer mathematical activities beyond a material’s intuitive affordance
and thus create liability. Intuitive affordance of materials is replaced in games by
(the affordance of) keeping the rules and winning the game. (Schuler, 2011, p.
1919)

In the play utilised in the present research, an important role is done to row-
column arrangements. Rozek & Urbanska (1999) studied in depth this topic:

The children have a different awareness of the rows and columns arrangement.
Some of them prefer rows, some of them columns. It appears that it was difficult to
see both rows and columns, especially for young children.
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In particular, Rozek in her researches about SCFL (Series-Columns Figures
Layout) Rozek (1997, 1998) analyses children’s behaviours, in terms of two
activities constructing and drawing SCFL. She studies also verbal descriptions
of SCFL and she organises the protocols in base of three different features:
following the features of structures, following visual perception, using language.
In the first, she observes the distinction between geometrical aspects as rows and
columns or numerical aspects. In the second, she classifies the vision as global
or analytical. In the third, the focus is on the language that can be referred to real
world or in comparison with mathematical language. In our research, there is
a part related to ‘construction’ and a second part based on ‘lecture’ of villages
(2D) or palaces (3D), that can be analysed and organized following Rozek
theory.

RESEARCH QUESTIONS

The present research is placed in the theoretical framework of early
mathematical education by play, in particular it deals with children’s
development of reasoning in playing with rules. The initial hypothesis is that
a suitable play can promote an early and spontaneous use of generalization. Our
aim is to give answers to the following questions:

1. Is it possible to develop in children the construction of metacognitive
instrument of generalization in the context of a guided play?

2. Under what conditions we can obtain learning of generalization, using
a game that can promote it?

THE EXPERIMENT AND ITS METHODOLOGY

In this paper we present a research focused on a part of a wider study based on
aplay with rules, the ‘Play of coloured houses’, showed and analysed in
a working seminar presented from the author in a CME conference (Vighi,
2010b). The main research aims were to study spontaneous reasoning made
from children, playing with ‘the play of coloured houses’, to analyse their
behaviors in front of row-column arrangements tasks and the possible recourse
to metacognitive processes of symbolization and formalization. In this paper we
refer only the part related to the appearance of generalization during the play
and its crucial role. The experiment took place in the last year of kindergarten in
which pupils (5-6 years old) worked in groups of seven or eight and in the first
year of primary school (pupils 6-7 years old) with work in pairs. Pupils involved
were 20 in kindergarten and 26 in primary school. The activities took place in
every day context. In kindergarten they were conducted from the teacher* in
presence of a researcher (the author of the present paper). Teacher presented the
play and she conducted the works, promoting and fostering the viewpoints of

* 1 wish to thank the teacher Palma Rosa Micheli (Scuola dell'Infanzia Statale "Lodesana", Fidenza (PR), Italy),
for her collaboration and helpfulness.
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children, without force their thinking, but waiting to listen their ideas and
observing their behaviours. Researcher observed, recording on video, later she
analyzed and transcribed dialogues, making also written observations. In
primary school the activities were conducted in part from the teacher’ and in part
from the author who worked with children in pairs.

THE “PLAY OF COLOURED HOUSES”

The “Play of coloured houses” is a play without winner, based on a disposition
of houses with three different colours (red, yellow, green) in a grid 3x3,
respecting the following rule: in each row and in each column it needs to have
houses of three different colours. We report here some examples:

The play remembers Sudoku, in fact it can be seen as a simplified version of
Sudoku with a grid 3x3 (instead of 9x9) and only three ‘symbols’ (it is possible
to use digits 1, 2, 3 in place of colours). From the mathematical point of view, it
1s a ‘Latin Square’, 1. e. a square in which “each element appears only one time
in each column and only one time in each row” (Quattrocchi, Pellegrino, 1980).

The play requires the contemporaneous management of rows, columns and
colours. It can be executed by means of ‘method of attempts and errors’ or using
rules discovered during the play: “It is impossible to have a red house here”, or
“Here it must be a yellow house” etc. When a pupil plays, he makes
argumentations, and also hypothetic-deductive reasoning: “If I put here a green
house, then ...” and so on.

GIRIY|[YRG|I|IYRG
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Figure 1: Examples of villages

rellll ey

THE ‘SCALETTA THEOREM’

In scholastic year 2009/10 the “Play of coloured houses” was presented in
kindergarten in a context of motor activity, after pupils played with coloured
tiles and a support for tiles organized in three rows and three columns (Fig. 2).
We drew a house on each tile with the aim to give an orientation that allows to
distinguish clearly the built villages (in this way it is possible to have 12
different villages).

5 | wish to thank also the teacher Ines Tommasini (Scuola Primaria Vicofertile (PR), Italy).



The appearance of early generalization in a play 127

/@‘ VILLAGGIO

HEEN
HEN
HEN

Figure 2

In scholastic year 2011/12 we presented the same activity in Primary School
(pupils 6-7 years old). Here we refer only on comparison of villages constructed
from pupils, suggested from the teacher. It is well known that the activity of
comparison is fundamental in mathematics, to construct concepts: thinking
about analogies and differences can promote the formation of a concept. It is
also documented that comparison it is not spontaneous in young children; they
start using intuition, but it is insufficient, so it compels the use of the language.
After a lot of activities based on the play, teacher submitted couples of villages
and she solicited their comparison starting from a couple of ‘equal villages’, and
continuing with couples of villages with ‘the same structure’ etc. An important
observation is about the different ways of seeing the SCFL (Rozek, 1997) that
children showed: use of a local way of seeing, observing only some couples of
tiles with the same colours, placed in the same places (“In the first village there
is a green house here, in the second also”); observation of the disposition of all
the tiles with the same colour and use of a words of natural language to describe
their disposition (“It seems letter C”); recognition of rhythms or cycles (“red,
yellow, green, red, yellow, green, ...”); individuation of symmetric villages (for
instance, villages a and c in Fig. 1); only observation of rows (or columns) and
their exchanges (in Fig. 1, “The second row in village b is equal to third row in
village ¢ and vice versa”); observation of different orientations of diagonals (in
Fig. 1, referring to a and c villages: “ ... but one go down, the other go up”);
description of features of diagonals (“In one diagonal there is the same colour”
and “in the other diagonal there are three different colours™).

VILLAGGIO VILLAGGIO VILLAGGIO VILLAGGIO

Figure 3

This last aspect suggested to the author of the present paper to put attention and
to focus this topic: the visual perception of colour leads some pupils to move
their attention from rows and columns, explicitly mentioned from the rules of
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the play, to diagonals that present a particularity, all tiles have the same colour.
Our hypothesis is that it could be a starting point to investigate if children use or
not ‘diagonal rule’ to make generalizations.

In the first experimentation, pupils of kindergarten school used the name
‘scaletta’ (in Italian language it means “little ladder”) to indicate this
monochromatic diagonal; in fact, the disposition of tiles suggested the steps of
a small ladder. The observation of ‘scaletta’ was developed in the following
context: firstly each pupil constructed his village, gluing tiles on a sheet of paper
expressly prepared for the use (Fig. 2); in a second moment teacher put some
villages on a wall of the classroom and she asked observations from the pupils.
In particular, they told: “The yellows are in single line”” and “They are in angle”,
“They are in little ladder”, “In a bandy row” (diagonal), “In a bandy row there
are three equal colors, in the other bandy row there are three different colors”. It
happens since teacher promoted the passage from micro-space to meso-space
(Brousseau, 1983): micro-space is near to the subject and accessible to
manipulation and vision, meso-space is accessible to a global and simultaneous
vision (macro-space is accessible only for local visions). In fact, the first work
proposed to the pupils took place in the space of the desk (micro-space), the
second in the space of the classroom (meso-space). It changed the point of view
in village’s observation: from rows and columns to diagonals. So, the
“connection between some of isolated models” (Hejny, 2004) creates a web that
produced generalization.

So, we observed an unexpected fact: pupils found and formulated a theorem that
IS a consequence of the play’s rule. We call it, the “Theorem of little ladder”: “In
all villages there is a little ladder with only one colour”. It is an example of
generalization in the meaning of Altieri Biagi & Speranza (1981): from
particular to the essential.

Sometimes pupils used this theorem in their following constructions of villages
that started from a diagonal monochromatic. In this way they adopted a strategy
of village’s construction that involved new rules, different from these suggested
from the play. It is a generalization as ‘capability to find solutions more amply
valid’ (Altieri Biagi & Speranza, 1981), and also in sense of ‘a given situation is
thought as a particular case of another situation’ (Sierpinska, 1994), but also in
which the structure appears as generalizing isolated models in sense of Hejny
(2004). But ... the use of the theorem doesn’t guarantee success. It is evident in
Chiara strategy (Fig. 4).

Y YR| [[YRG|YRG|YRG|YRG|YRG
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Figure 4
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Chiara started with a yellow diagonal, she continued with two correct passages,
after she makes an error that leads to have at the end a ‘wrong village’.

PASSAGE FROM 2D TO 3D PLAY

In the present school year, we decided to submit to the pupils of kindergarten
(5-6 years old) a new version of the play, in three dimensions: it consists in the
construction of a ‘palace’ of three floors (a cube 3x3x3), with similar rules: “In
each wall face it needs to have three different colours in each row and in each
column™®. The play can be considered a three-dimensional (3D) version of the
two-dimensional (2D) play of coloured houses. Sometimes in mathematics we

observe the use of the locution ‘generalization’ also for the passage from 2D to
3D.

Pupils worked in groups following the indications suggested from the teacher.
She arrived in classroom with two big boxes and she created a condition of
waiting about their contents. After, slowly she opened the boxes extracting
cubes (27 wooden coloured cubes, 9 red, 9 yellow, 9 blue), their wooden support
(Fig. 5), named from children “palace” or “house with a lot of floors”, and
a wooden rotating disk to facilitate gestures and the observation.

Figure 5

Firstly teacher suggested different free plays with cubes, after she invited each
child to put a coloured cube on the support, promoting the construction of
a building respecting rules; in a second time, she removed the support and she
putted the cubes one near to the other (Fig. 6).

This choice promoted an important breakthrough, since, as Rozek (1997) write,
in a row-column arrangement of figures the distance between objects influence
in depth the observation. We choose to report here the development of the work
in a group, named G2, but we could observe similar behaviours in other groups,
of course not in all. In G2, a child observed the yellow diagonal present in the
“roof of the palace” (Fig. 6), suggested from the colour and also from idea of
“straight line”” and he said that there was a mistake in the constructed palace.

® A similar problem was studied from M. Gardner (1980) that found only one solution for
the final cube (excluding rotations, reflections or permutations of colour).
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Figure 6

Teacher suggested that in fact all rows and columns respected rules and the child
replies that “Yellow cubes are in point, as point of knife”. Immediately pupils
find ‘points’ (‘scalette’ in the previous experience) in the other faces of the
cube: “There are three points blue and three points red”. In fact, after the
construction it is possible verify that the rule is respected also in the ‘horizontal
floors’: in a floor there is a diagonal red, in another blue, in another yellow. So,
they conclude that “This cube is magic!”.

Another breakthrough happens when a child observed that the other diagonal on
the roof presented three different colours: he indicates it with his hand
accompanying with gesture and sound: “here, blue, red, yellow, pum, pum,
pum” and he repeated it for each face visible of the cube. He added: “A ‘point’
entirely yellow, another of three colours, it is an X”. We name it the “Theorem
of two diagonals”. In other words, the disposition of diagonals in each face of
the cube suggested the mental image of letter X, that produced a passage from
isolated models to a general model in the meaning of Hejny (2004): children
changed their cube construction way, they started from a face, putting cubes
following the ‘X disposition’ (Fig. 7) and completing the remaining parts. Using
the two diagonal’s theorem, the play becomes easier: the construction of
a coloured village changes a lot, since starting from diagonals, the placement of
the other houses is obliged.

Y Y |B|YRB
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Figure 7

In other words, the finding of two diagonal’s theorem caused the passage from
‘the various way to make something to what it needs make’ in sense of Altieri
Biagi & Speranza (1981) and also it produced the discovery of a common
structure in the villages (Hejny, 2004).
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Afterwards pupils found also that on the lateral surface of the cube there are
three points (blue or red) that make a continuous and close paths. This was the
input for another play, named ‘Cricket play’ (we prefer do not present it here),
that conduced to find a ‘new’ theorem: “In the cube there is an “internal
diagonal” with only one colour and the other diagonals of cube are of three
different colours” (Fig. 8). In this way the analogy with the 2D play in the
village emerged and the “small ladder’s theorem” reappears... Is it
generalization?

_
Figure 8: ‘Internal’ diagonal of cube.
CONCLUSIONS

We think that our experiment realized a good equilibrium between playing and
learning, in particular we understood that play furnishes the opportunity to
observe mathematical reasoning’s development in young pupils.

In reference to our first research question, we can reply affirmatively,
concluding that in some kindergarten groups we observed the spontaneous
appearance of the metacognitive instrument of generalization, motivated by play
and also by context. So, that confirms our initial hypothesis about the early use
of generalization. In literature we haven’t found similar researches and results
with so young pupils.

In fact, in relation to the use of generalisation, we had better results in
kindergarten than in primary school. We pose a possible explanation: in
kindergarten the play was entirely conducted from the teacher with the presence
of researcher as observer, whereas in primary school the work was conducted
from both, teacher and researcher. In the first case, the observer had the
possibility to “peek and catch” some observations made from children, while the
teacher was involved in the action. That allowed to take advantage of these
suggestions and to use them in the following activities and conversational
managements. In primary school, may be that working with a researcher, an
unfamiliar person, influenced negatively the performances of pupils. So, the
answers to the second research question, according to Schuler (2011), could be:
“Potentially suitable materials and games need a competent educator with regard
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to didactical and conversational aspects”. In other words, the role of the teacher
and a conversational management appeared determinant.
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THE GENERALIZATION OF THE MEASUREMENT
CONCEPT IN KINDERGARTENS THROUGH THE BARTER
MARKET

Antonella Montone, Michele Pertichino
University of Bari, Italy

This paper shows a proposal research that tries to describe how five-year-old
children can learn the measurement process. The focus is on how everyday life
experience can help children build mathematical concepts, especially the
process of measuring, and how children learn to use a special scientific
language.

INTRODUCTION

Kindergarten in Italy has now become an integrated system in evolution,
characterized by the fundamental right to education. Therefore, the final goal of
kindergarten education is to promote the development of independence, skills
and good citizenship in children. All this is reflected in daily experiences when
a child recognizes and communicates an understanding of fundamental activities
and manages transactions with others. Moreover, the child learns to appreciate
other points of view and to recognize rights and duties (NCTM, 2000; NRC,
1989; INC, 2007). This research tries to find whether measurement-related
concepts can be introduced in kindergartens by letting children prepare food and
drinks whose ingredients need to be measured in several ways. Our objective is
also to see if children can seize the underlying differences and similarities
between the use of different measuring instruments and units of measurement.
The school undertook to send school materials to a school in India. To obtain
these materials, the children prepared, packaged and “traded” food products.
The experience of preparing food and beverages for this project taught them the
concepts of weight, volume and length (preparing pasta, juices, blended drinks,
pastry cream and chocolate rolls). Finally, in assigning a value to these products
in order to exchange them for the school material children learned about
numbers in relation to pricing.

CULTURAL REFERENCES

In the field of experience, specifically “speech and words”, the National
Curriculum Guidelines indicate among its goals the development of specific
skills including that of “communicating to others your own reasoning and
thoughts through verbal language, used in an appropriate way in different
activities” (INC, 2007). We have wondered what is the relationship between
everyday language and scientific language at this particular stage of a child’s
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cognitive development. Exploration, observation and comparison in scientific
activities can be used to support the development of language among children
and between children and adults. Therefore, the problem of mathematical
communication “depends at least as much on what we see as on other types of
less abstract speech”. The question then concerns the “effectiveness of
communication” and its mediators: semiotics, artefacts and visual (Sfard, 2009).
“Equally important to the acquisition of mathematical ideas is the neural system
that governs body movements” (Lakoff, Nunez, 2005). Some research shows
that body movements can express the perception of objects and spatial
orientation and therefore crucial elements of mathematical reasoning. Dealing
with the problem of measurement in kindergarten leads to particularly complex
experiences and language. Moreover, Vygotskij’s development theory entrusts
schools with the task of “stimulating” the movement from spontaneous to
scientific concepts; on the one hand, this “stimulation” provides for the
maximum development of the scientific concept acquisition stage, while on the
other hand it exploits spontaneous concepts in order to promote the highest
levels of cognitive development (Vygotskij, 1984). We can see, therefore, that
“measurement can constitute an area of near development in which experiences,
although not completely understood by a child, can successively be integrated
into a network of conceptualization” (Bartolini Bussi, 2008). Moreover, it seems
important, once again, to affirm that the learning objective in kindergarten is to
enter the world of adults by following the “who, what, where, how, why”
method in order to make a concept clear and to explain the meaning of a process
(Ginsburg, Pappas, Seo, 2001). This objective can be realized by resorting to
well-defined mathematical concepts, such as the ability to invent and plan, make
similarities and relationships, as well as to analyse the different forms of natural
language that are the starting point of every activity of formalization. It seems to
us that we have followed the guidelines related to everyday activities,
knowledge of personal history, time rhythms and cycles, space orientation and
exploration of nature. It also seems to us very relevant to point out the
importance of gathering, arranging, counting and measuring by resorting to
more or less methodical ways of comparing and arranging, in relation to
different properties, quantities and events through the invention and use of
objects or sequences or symbols to record and remember some simple
measuring instruments and, finally, by making quantification, numeration,
comparisons (Geary, 1994; Ginsburg, Seo, 2004; Clements, 2004; Copple,
2004).

METHODOLOGY

The didactic methodology uses the inquiry approach, a model based on
assumptions of knowledge, learning and teaching derived from criticisms of the
traditional method of transmission. Through the inquiry approach, it is possible
to: encourage students to explore; help students to verbalise their mathematical
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ideas; bring students to understand that many mathematical questions have more
than one answer; make students aware that they are capable of learning
mathematics; and, teach students, through experience, the importance of logical
reasoning. In other words, we try to enable students to develop the mathematical
capabilities necessary to pose and solve mathematical problems, to reason and
communicate mathematical concepts and to appreciate the validity and the
potential of mathematical applications (Borasi, Siegel, 1994). This has been
recommended in numerous important American and Italian studies on reforming
the teaching of mathematics (NCTM, 2000; INC, 2007).

Several researchers who have studied the learning of mathematics have found
that students must actively demonstrate a personal understanding of
mathematical concepts and techniques. Only in this way can they reach a level
of significant understanding (Ginsburg, 1983; Steffe, von Glaserfeld et all, 1983;
Baroody, Ginsburg, 1990). This position is reflected in constructivism. The
influence of constructivism on mathematics teaching can be seen in requests for
teaching environments that encourage students to actively participate in
developing their knowledge rather than receiving it from teachers or books. In
these classes, the roles are reversed. Instead of passively listening, the students
assume responsibility for their learning. The teachers, on the other hand, speak
considerably less and listen a great deal more to the students’ reasoning in order
to help them understand what they have deduced (Confrey, 1991). In other
words, to be good students, children today must be researchers (“inquirers”).
Therefore, only doubt and uncertainty can motivate the search for new
knowledge (Skagestad, 1991). Our experience was based on the inquiry
approach model, which allowed us to alternate problem posing with problem
solving. It showed children solving problems which arise and for which no one
has the answer rather than solving problems prepared by the teacher. For
example, when they have to assign a price to one of their products, they decide
on the basis of their different personal daily experiences. We have then chosen
to get children to make some types of food such as pasta, cream, fruit juices and
chocolate roll; in this way they can form their own opinion about the best way to
measure things, not to mention the experience they have already gained from
their everyday life.

This model led us to use the problem posing method in which the children’s
answers, their questions and the data they used are analysed. In other words,
with this methodology the children can make observations, ask questions and
formulate proposals. Moreover, they can compare an external investigation with
an internal one. It is also possible to compare and contrast exact and
approximate investigations, using the strategy of “and what if...” to generate
new hypotheses. It has especially been important to see how children know
special terms and the two main aspects connected with the measurement
process: i.e. comparison and order. That’s the reason why it was useful to



136 ANTONELLA MONTONE, MICHELE PERTICHINO

analyse the clinical-like conversation not with a view to verifying the
correctness of the answers but rather to gain an understanding of the social and
cultural motivations behind them. It was an extremely important method for
forming, informing and maintaining the teacher’s “intermediary inventive mind”

(James, 1958).
OUR RESEARCH, ITS RESULTS AND THEIR ANALYSIS

Our research has been carried out in two classes of two different kindergartens.
In the first class there were 16 children and in the second 19; all in all, the
project lasted 35 hours. One of the kindergartens was twinned with a
kindergarten in India. The children saw films of this school and with the
teachers decided to send school materials to the students there. From this came
the idea to organize a “market” whereby the children traded the food and
beverages they had prepared for pens, exercise books, etc. to send to India. The
aim of the research was to give the student an enjoyable experience in which to
experiment with measurement and then to relate it to their primary needs (“the
right to food”) and their childish pleasures. This situation turned out to have a
great influence on scientific learning; in particular, it allowed children to
become familiar with the concepts of weight, volume and length. This
establishes a connection between children and the “who, what, where, how,
why” method (Ginsburg, Pappas, Seo, 2001) and leads them towards the
scientific conceptualization of the measurement process (Bartolini Bussi, 2008).

Through the presentation of some objects (a stick, an orange, a piece of chalk,
a pencil, a coloured ribbon, some coins, a sheet, a bottle, a glass) we have tried
to understand what children know of the size, weight and volume of these
objects.

Children have then been spurred to have a clinical-like talk like the following:

Teacher : Is the pencil longer than the chalk? Is the pot higher than the orange? Is
the pot larger than the bottle? Is the orange heavier than the sheet?

After looking at the objects put on the desk children have started to express their
opinion as follows:
Mattia: The pencil is longer if I put it this way, while if | turn it the pencil is short!
Federica: The bottle contains more milk than the glass!
Giovanni: The orange is heavier than coins.
Mattia: I’m taller than the stick, but Federica is shorter than me!

Teacher: Which are the longest things you know? Which are the widest ones?
Let’s try to find the longest, widest, highest and thinnest things in
this classroom.

Mattia: The door is tall! ... and the teacher too, because she’s taller than me!
Giovanni: On the contrary, the window is wide.
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The distribution of strips of paper having different length to each child has
allowed us to make some inquiries about their previous intuitive knowledge of
comparisons and orders. In particular we have asked children to find in the
classroom some objects as long as their strip of paper.

Mattia: My strip is as long as Luisa’s case on the zip side.

Federica: On the contrary, my strip is as long as the poster which leaves are stuck
onto... it is very long!

Teacher: This means that the poster which leaves are stuck onto is longer or
shorter than Luisa’s case?

Giovanni: I think that Luisa’s case is shorter than the poster which leaves are stuck
onto because the strip of Mattia is shorter than the strip of Federica.

Then we have made accurate inquiries about the order concept by asking
children to find the longest and the shortest strips so as to arrange them in length
order, from the shortest to the longest. It’s at this stage that we can infer how
visual and artefact semiotic mediators become an important instrument for their
“effectiveness of communication” (Sfard, 2009). After the talk stage the activity
carried out at school concerning the above-mentioned objectives developed in
three further stages: an initial observation and exploration stage of the actions
and movements of an “expert” adult in the preparation of sweets; the second
stage in which the children become cooks and, handling the ingredients, they
formulate and verify hypotheses, because they have to reconstruct the previously
observed procedures, going through the recipes and proving their validity; the
last stage in which the attention is focused on the possibility to set up a trade fair
as a problem solving exercise concerning the “value” of the prepared products
and the meaning of fair exchange, identifying the objects to trade and their
value. All the activities performed show how the inquiry approach is carried out
in real terms and draws attention in particular to the formation of concepts
according to the constructivism theory in the teaching of mathematics (Steffe,
2004).

In particular, in the first stage, three adult experts were brought in to prepare
single products: a grandmother for the preparation of an ear-shaped pasta
(orecchiette) typical of their region; a mother to make a cream pastry and a
blended drink; and, a professional pastry chef to prepare a chocolate roll. After
watching the experts prepare the products in class, based on typical housewife
measurements such as “a handful of sth™, “a pinch of sth” and “a spoonful of
sth” there was a fruitful discussion on what they had observed. Problems
relating to weight emerged when trying to interpret recipe indications given by a
grandmother, such as “a handful”, and the additional problem of the different
quantities of flour contained in a child’s hand and an adult’s hand. Children of
the two schools have solved the problem in one or more ways also thanks to the
use of different instruments. A scale with two plates was used in one school; the
following discussion ensued:
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Teacher: “What is happening?”

Denise: The amount of flour in my hand is smaller and the plate stays up but
Grandma’s handful is heavier.

Teacher: Could we put the plates at the same height?
Giovanni: Let’s put some other handfuls of flour on the plate to make it go up.
Teacher: Ok, but how much flour do we have to add?

Giovanni: As many handfuls as the two plates are at the same height [and he
shows the height with his hands].

In the other school Mattia realizes that the amount of flour hold in each handful
is different and says:

Mattia: ... but the amount of flour is different, ... I mean, it’s more than my
Grandma’s handful, yes but my handful is smaller.

Mattia tries to convince his friends of the truthfulness of his statement and says:

Mattia: Let’s take two sheets and let’s put my Grandma’s handful of flour on one
sheet and my handful of flour on the other one. Look, it’s more!
Look!

Federica: Yes, it’s true, you’re right!

It is possible to infer from what children have said two main aspects of the
measurement concept at intuitive level, i.e. comparison and the additive
principle between homogeneous quantities. The inquiry method is also reflected
in this conversation, as there are a lot of solutions to the same problem and also
the desire to support their opinions.

The importance of the linguistic aspects in the relationship between natural
language communication and mathematical communication became as clearly
evident as did the problem of learning mathematical concepts through body
movements (Sfard, 2008; Lakatoff- Nunez, 2005).

When preparing the blended drinks and the pastry cream, the “expert” indicated
the necessary quantities of ingredients but the children had to choose the proper
instruments to measure the liquids and solids. For example: a big glass indicated
a greater quantity of milk than a small glass which the children discovered
contained exactly half the amount; a soup spoon rather than a teaspoon was used
to put more sugar in a drink; a ladle contained even more than a soup spoon. The
practical experience of preparing pastry cream and blended drinks involved the
children in a discussion of volume-related units of measurement. With the
expert, the children decided which utensils (soup spoons, teaspoons, ladles, big
glasses, small glasses) should be used to measure the ingredients.

Mum and cook: Right, let’s see children which utensil is better according to you?

Take a look at these utensils (the mum shows the spoon, the
teaspoon, the ladle, the glass, the cup, and so on).

Vincenzo: Let’s measure the flour with a ladle because it holds more than a spoon
which can be used to measure sugar.
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This started a discussion on the quantity of liquid already prepared which,
according to Federica, would not be sufficient for everybody once it became
cream.

Federica says: But we haven’t got enough cream for everybody!
Mum: But why? How can you say it?

When she was asked how she could be sure of this, she suggested dividing the
cream among all the students. Upon verifying that there was only enough cream
for half the students, she suggested adding double the amount of ingredients to
the mixture. When they finished preparing the cream, they started looking for
ladles to pour the cream into glasses and decided to pour four ladles into the big
glass and two into the small glass. The children were able to see the change in
volume between a glass of a substance before being blended and after. During
the preparation of the blended drinks the children first invented and produced
the recipes discovering the changes in volume between the quantity in a glass
before and after it was blended. They filled a big glass with pieces of fruit,
milk, orange juice and sugar but once it was blended the volume increased
producing enough liquid to fill a big glass and a little glass. Another interesting
aspect emerged during the preparation of the chocolate roll. This product was
chosen to study a series of questions related to the concept of length which was
dealt with in a natural way by the children during the activity. The ensuing
discussion allowed the children to come to a common understanding. Then, the
natural desire to eat the chocolate roll led to find a way of dividing the roll in
equal parts. The teachers had equipped the classroom with “good” instruments
for measuring and the children, looking around the classroom for something to
help them measure, were able to identify instruments long enough for this
purpose. Next, the children chose a strip of paper as the best tool for measuring
and then they developed a way of folding the paper in equal parts. This folded
strip was then used to cut the chocolate roll into enough equal parts for all the
children. The direct experience of preparing the chocolate roll was planned as a
problem-solving activity concerning the concept of length. The children
managed to devise and execute a system for dividing the roll in equal parts for
everyone thereby learning the concept of multiples. Mattia and Pietro try to
compare the lengths of different sheets of paper scattered on the table to the
length of the chocolate roll. When he finds one that was just slightly longer than
the roll, Federica says, "Let’s cut off the extra bit and write “The Length of the
Chocolate Roll” so that we know which is the right piece!” Mattia suggests using
the strip as if it were a ruler by putting measuring marks on it but the idea proves
to be difficult to apply because the marks do not allow for cutting equal pieces.
Mattia has another idea. He suggests folding the strip in two but the chocolate
roll is still longer and bigger and, if cut in this way, there would only be enough
for two children. In fact, Mattia measures the folded paper against the chocolate
roll to see if it is exactly half the length and verifies that it is. Then Federica
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suggests, “Let’s fold the strip in half again” but it still is not enough for everyone.
The children continue folding the paper strip until there are enough pieces for
everyone. This discovery gave rise to interesting games on the meaning of
double and half using other materials.

This way we have made inquiries about the possibility that children can develop
the ability to face situations of problem solving and problem posing. Moreover,
it is obvious that children have been able to take an indirect measure using the
instrument of the semiotic mediation (i.e. the strip of paper) and so they have
found a way of making an effective unconventional “metre” (base 2) having
submultiples, too (principle of Eudosso — Archimedes).

In the second stage, when they personally prepared the baked goods and had to
deal with measurements, the children had the opportunity to experiment with the
concepts of weight, length, and volume. During the preparation stage we have
observed how children can get the main concepts of the measurement process,
even if at an intuitive level. As for the preparation of orecchiette, for example,
children have to make a measurement roughly and at the same time more and
more accurate, which doesn’t mean that this measurement does not follow a
definite plan or pattern. Preparing the cream leads children to make comparisons
thus choosing the suitable measuring instruments; and as for the preparation of
the chocolate roll it is necessary to use adequate units of measurement.

In the third and final stage, the children organized and operated a barter market
where they “exchanged” their goods for school materials on the basis of “price
lists” which they had developed and agreed on previously. The expression
“Barter-Exchange” was introduced at the beginning of the project, during the
preparation of the orecchiette. The teachers bring to the children’s attention that
the grandmother had worked hard to make the orecchiette and should be
compensated for this. Our goal was to get the children to barter in exchange for
school materials to send to the Indian school twinned with ours. This experience
led to the organization of the barter market and the development of the “price”
list. In establishing the “prices”, it is important to emphasize the process by
which the children attributed value to their products. For example, “if a
complete chocolate roll was worth a package of ten exercise books, then how
much was one piece of chocolate roll worth?”. In choosing which products to
exchange, it was necessary to use the concept of double. For example, the
children agreed among themselves that a small glass of pastry cream was equal
in value to exactly half that of a big glass and a big plate of orecchiette was
worth double the amount of a small plate. To determine the value of the blended
drinks, the children took into account the preparation time and the change in
volume and therefore the need to ask for more school materials in exchange.

In order to exhibit the price list to the public, some kind of poster was necessary.
The children solved the problem by designing one with drawings of all the
instruments used to measure the various products: glasses, espresso cups,
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different kinds of plates and the short and long strips of paper. During the fair,
each child bartered their products with the adults and, at the same time,
explained how the products were prepared and, above all, how they arrived at
assigning a value (“price”) to the products. In this way, it was possible to verify
that the child had acquired a full understanding of both the concepts related to
measurement and the value attributed to the products. The observations relative
to the price of the products are equally interesting. Initially, the children were
reluctant to barter because of their personal feelings for the objects they had
made, a behaviour that is typical in this age group. This strong personal
attachment to the products was further highlighted in the barter stage when there
was a request for a “big” piece of cake, for example. It was observed that often
the value of an object was closely tied to its size. During the barter market
another concept linked to the measurement process was examined. When
children had fixed the price of each product the equivalence between different
units of measurement, as well as the main concepts of the equivalence, have
come out once again in an intuitive way. The drawings made by the children in
the price list are evidence of how children have acquired the above-mentioned
concepts of measurement. The entire project proved to have embraced all the
fields of experience included in the Italian curriculum guidelines, not only the
specific one related to mathematics and “knowledge of the world”.

CONCLUSION

This experience allowed us to confirm the idea that it is possible to talk about a
child’s scientific knowledge, as long as we give this sentence the right
connotation. To avoid making an “intellectual mistake”, we must talk about
“correct knowledge”. This i1s what our research in kindergarten is generally
devoted to: having the child’s first experiences and reasoning follow a “correct”
formulation, always respecting the development of the child, who must not be
thought of as an “adult”. Moreover, what we continue to observe in our research,
and what stimulates and supports us, is the children’s sincerity when facing
different situations, that spiritual condition which prevents them from wanting to
distort the observed reality, their capacity to ask questions without feeling
judged, as well as their ability to change their mind. These are all typical of
children’s behaviour (something which adults no longer have) but they are also
essential requirements when talking about “scientific nature”.
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MENTAL REPRESENTATIONS OF MATHEMATICAL
OBJECTS AND RELATIONS IN THE FIRST GRADES

Klaus Hasemann
Leibniz University of Hannover, Germany

The importance of adequate external and internal (mental) representations for
mathematical understanding as well as for generalization is shown with
examples taken from early mathematics in pre-school education and from
primary mathematics in schools. Regarding relations between numbers and
special aspects of addition and subtraction, in the main part it is discussed
whether or to which extent referring to actions with concrete materials and to
children’s every-day life experience might be a learning obstacle and not helpful
for children’s insight and for their ability to generalize mathematical concepts.
In addition, alternative ways for classroom practice are discussed.

CONCRETE AND ACTION-ORIENTED THINKING IN PRIMARY
SCHOOL MATHEMATICS

It seems to be common sense not only in primary mathematics education that to
proceed “from the concrete to the abstract” is the best — or even: the only —
option, i.e. to invite learners to carry out actions with concrete objects or to
present them situations taken real life in such a way that they can grasp the
“intended” mathematical concepts and procedures. In this article it will be
discussed which alternatives do exist, and it will be shown that — especially with
children who do not belong to the high achievers — in some aspects and
situations another way is more promising, namely to focus their attention to the
meaning of mathematical symbols and to help them to get insight in the way
how mathematics is done by using words and signs.

An explanation for the dominance of the way “from the concrete to the abstract”
might be found in Piaget’s work and his — in fact — very important findings and
ideas that might be summarized by his terms “abstraction a partir de I’action” or
“abstraction réfléchissante” (see, cf., Aebli, 1980, p. 217). It should be remarked
that in this abstraction process Piaget focusses on the reflection of actions, and
not on the actions or on the real objects used to carry out these action. One of the
most convincing ideas how to promote students’ learning processes in using real
situations was created by researchers of the Freudenthal Institute when they
established the concept “realistisch rekenonderwijs” (realistic mathematics; see,
e.g., Treffers, 1987, or van den Brink, 1989, who, however, also referred to the
van Hiele levels). The introduction of mathematical concepts based on situations
the students are familiar with from every-day life might also be founded on



148 KLAUS HASEMANN

Greeno’s situated perspective on cognition and learning and his discussion of
generative knowledge (see, e.g., Greeno, 1989, Stern, 1998, or Caluori, 2004,

pp. 86ff).

There is no doubt that for a lot of learners and for a lot of mathematical concepts
it is very useful and important to start with situations in which mathematical
concepts and procedure can be applied. Nevertheless, it should also be taken into
account that this method also includes risks, especially regarding children who
have problems with the abstraction process which has to be passed inevitably to
grasp the intended concepts and procedures as useful and universal mental tools.
In their study on the numerical concepts with primary school children, for
example Gray, Pitta and Tall underlined: “It is our contention that different
perceptions of these objects, whether mental or physical, are the heart of diffe-
rent cognitive styles that lead to success and failure in elementary arithmetic”
(1997, p. 117). Rowlands and Carson put it even more strongly from their “criti-
cal review of ethnomathematics™ (2002, p. 98): “Independent of good intentions,
ethnomathematics runs the risk of attempting to equalise everything down to the
poverty of the ‘builders and well-diggers and shack-raisers in the slums’.

In short: Action oriented mathematical thinking might be sufficient in many
aspects of primary school, but it is not in higher grades.

EMPIRICAL FINDINGS FROM PRE-SCHOOL AND PRIMARY
MATHEMATICS

Mathematical thinking obviously does not start with formal instructions in
school, and therefore Early Mathematics has become an important field in
research. Regarding pre-school and early primary school education, the last 15
years in the focus of our research there were four fields:

1. The development of the “Osnabriicker Test zur Zahlbegriffsentwicklung”
(Early Numeracy Test), a diagnostic tool for children aged 4 % to 7, based
on the Utrecht Getalbegrieps Toets” (van Luit, van de Rijt & Pennings,
1994; van Luit, van de Rijt & Hasemann, 2000; van Luit, van de Rijt &
Hasemann, 2001).

2. Interviews on individual differences in mathematical thinking of children
before and at the very beginning of formal instructions in school
(Hasemann, 2006; see also Hasemann, 2007).

3. The relation between early structure sense and mathematical development
in primary school (Liiken, 2010, 2011, 2012).

4. Work with mathematically gifted children aged 5 to 8 (Hasemann,
Leonhardt & Szambien, 2006; Hasemann, 2007).

In addition, we will discuss some findings from to a teaching experiment in
grade 2 and from interviews in grade 3 on “word problems and mathematical
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understanding” which were carried out together with E. Stern (Hasemann &
Stern, 2002, Hasemann, 2005).

Findings from pre-school education

About 70 children in their last year of kindergarten in interviews the item in
figure 1 was presented. Nearly all the children could to solve the problem, but
the time needed to complete the task was extremely different: Some counted all
the dots and needed minutes to find the correct square; others were ready in
seconds as they had realized immediately that in this square there are six dots
(arranged like those on a die) plus one dot, or they saw two times three dots and
one dot (for more details and further items see Hasemann, 2006, pp. 74f; 2007,
pp. 34ff).
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006 000 Figure 1: Point to the square with seven dots.

Even kids in kindergarten show extremely big differences in their kind of

thinking: Some recognize visually presented pattern and structures and are able
to use them flexibly to solve mathematical problems, others have to their
disposal only counting procedures they are familiar with. Referring to
Linchevski & Livneh (1999) and Mulligan and Mitchelmore (2009) Liiken
(2010, p 241) called this ability to recognize pattern and structures “early
structure sense”, and she indicates with this term the “ability to see any
predictable regularity or ordered entity and the relationships between parts in
such a pattern”. In a longitudinal study Liiken found out that there is a cor-
relation between children’s ability to recognize visual pattern and structure at
the very beginning of school and their mathematical competences at the end of
grade 2 (2010, p. 246): Children who have this structure sense already at the
beginning of school are very likely to be the higher achievers at the end of grade
2, and vice versa, those how have no such sense tend to be the lower achievers.

In addition, Liiken discussed the question what the cognitive milestones in the
development of an early structure sense are (2011, p. 2). From an analysis of
video-taped interviews with children just starting school she concluded that the
lower achievers, for example, do interpret a pattern of dots that are arranged as
the die-five as one number (namely “the five”) whereas the high achievers are
able to interpret this pattern in addition as a partition of this number (4+1 or
2+2+1): “High achievers have an awareness of the spatial structure and function
of particular configurations” (Liiken, 2011, p. 5). It follows that “a learner has to
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organize the perception of things in a particular, mathematical way, for instance
learn to relate geometric clues to numerical matters, ... flexibly decompose and
related substructures” and “intentionally reframe the structures of a pattern”.
Most learners cannot do this process by themselves, “they have to be
instructionally supported with” (p. 7).

Observations and findings in the first grades of school

The question is how to support the learners. In a teaching experiment in grade 2,
Hasemann & Stern (2002) tried to find out which arrangements in the classroom
might be more likely to support weaker students’ ability to grasp numerical
relationships (for details see the next section). As a starting point interviews on
word problems were conducted at the beginning of grade 3. The following
transcript is taken from an interview with an eight-year-old girl who was asked
to solve this problem:

Jan has got 7 rabbits. He has got 4 rabbits more than Thomas. How many rabbits do
both boys have together?

1 I: Please, read the text.

2 S (reads the text) ... 7 + 4.

3 I How did you do that?

4 S Because there is ‘how many rabbits do both boys have together’ ...
5 7+ 4 equals 11.

6 I Why isit 7 + 47 ... (16 sec) ... How many rabbits has Jan got?

7 S o 1.

8 I And how many has Thomas got?

9 S 4,

10 I 47? (The girl nods her head). Where is that in the text?

11 S Points to the text.

12 I Please, read the text.

13 S He has got 4 rabbits more than Thomas.

14 I ... Who is ‘he’?

15 S Jan.

16 I Fine. This means, Jan has got 4 rabbits more than Thomas ... and
17 how many rabbits has got Thomas?

18 S 4,

19 I 47?

20 S Nods.

This kind of dealing with the numbers in a word problem is widespread, and it
might be interpreted in different ways: For example, it might be concluded that
problems like this were ignored in the class yet; or the girl didn’t pay enough
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attention or has bad understanding of this special kind of problems; or she
doesn’t like mathematics at all. Even if these conclusions were more or less
correct (this girl was seen by her teacher as a rather bright learner in language,
but not so good in mathematics), they do not reach to the heart of the matter.

Riley and Greeno (1988, see also Hasemann, 2007, pp. 196f) in a study with
children from kindergarten to grade 3 found 14 types of word problems with
extremely different levels of difficulty. Most items of the “compare” type (as for
instance: “Mary has got 4 marbles. She has got 3 marbles more than John. How
many marbles has John got?”) are rather difficult for younger children. The level
of difficulty of an item, above all, depends on the difficulty children have to
transfer the real situation given in the word problem into the mathematical
language, i.e. it depends on the fact how easy or how difficult it is to represent
the situation in mind, to connect this situation with available knowledge, and to
deduce adequate calculations.

Following the path “abstraction from realistic situations” sequences of symbols
like “4 =1+ 3” or “[1 + 4 = 7” only make sense for children if they have learnt
to connect these sequences with different situations in such a way that they can
transfer it also to new situations. A step in this mental process from situations to
sequences of symbols (and back from symbols to situations) might be diagrams
if they do not just reproduce the situations but represent the relevant mathe-
matical relations without irrelevant details. As an example we take the task

There are 9 children on the red bus. There are 6 children more on the green bus
than in the red bus. How many children are on the green bus?

The pictures in figure 2 were drawn by a student in grade 3 who reproduced the
situation with a lot of (irrelevant) details whereas the diagram in figure 3 (which
is taken from the work in the classroom [see the next section]) represents
quantities and the relevant relationship between these quantities:

Figure 2: The red bus and the green bus

Figure 3: The red bus and the green bus
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Action-related thinking becomes inadequate when the situations cannot directly
be simulated by actions. In fact, a word problem becomes nearly insoluble for
a lot of children when a relation between quantities has to be recognised; the girl
in the interview mentioned above had this problem: She ignored the relation in
the relevant statement (“he has got 4 rabbits more than Thomas”), but referred to
a cardinal number (in the sense of “he has got 4 rabbits”) and did an obvious
calculation (7+4 = 11).

Most lower achievers in mathematics are not able to detach their thinking from
concrete objects and real actions: “The properties by which the physical objects
are described and classified need to be ignored; and attention is focused on the
actions on the objects which have the potential to create an ’object of the mind’,
which has new properties associated with new classifications and new
relationships. For some there may be a cognitive shift from concrete to abstract
in which the concept of number becomes conceived as a construct that can be
manipulated in the mind. For others, however, meaning remains at an enactive
level; elementary arithmetic remains a matter of performing or representing
actions” (Gray, Pitta and Tall, 1997, pp. 115). These authors’ evidence is based
on responses to a range of elementary context-free addition and subtraction
problems given by children at ages from 7 to 11: “’Low achievers’ tended to
highlight the descriptive qualities of the items in strongly personalised terms, ...
there was a tendency to associate these items with a story in the sense that they
were seen as pictures that required colour, detail and a realistic content. In
contrast, ’high achievers’ concentrated on the more abstract qualities within
(the) series of items. Though they initially focused on core concepts, they could
traverse at will a hierarchical network of knowledge from which they abstracted
these notions or representational features” (p. 123).

The next examples are taken from our work with mathematically gifted children,
aged 5 to 8. Confronted with the item

To finish a special work 4 machines need 25 days. Unfortunately, after 7 days one
machine breaks down and the work is finished with only 3 machines. How many
days the work is delayed?

a boy produced as an answer the diagram in figure 4 (the reader is hearty invited
to find out why the boy — rightly — regarded it as a solution of the problem):
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. : . . . Lassen sich die Zahlen 12 und 60 als Summen von
Ein Spezialauftrag wird von 4 Maschinen in 25 Tagen aufeinanderfolgenden Zahlen darstellen?

geschafft. Nach 7 Tagen félit eine Maschine aus und es

wird jetzt mit 3 Maschinen weitergearbeitet.
3+415
Um wie viele Tage verzégert sich der Auftrag?
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Figure 4
The diagrams in figure 5 were produced by the same boy some days later to this
item
Is it possible to write 12 and 60, resp., as sums of consecutive numbers?

These diagrams, especially that one which is related to 60, highlight to the role
and the importance of external and internal representation in the process of

generalization.

A teaching experiment in grade 2
Having in mind the behaviour of students as presented in the interview in the
previous section, Hasemann & Stern carried out a 12 lessons intervention study
on word problems in nine classes at the end of grade 2 in the Hannover area. At
that time word problems were well-known to the children. Two different
additional training programmes for the solution of word problems were
developed, each of which was tested in three classes; in addition, there were
three control classes. One of the programmes focussed on students’ real-life
action-related behaviour. In this programme the teachers’ instructions followed
the scheme “from the concrete to the abstract” (and were guided by the idea of
“ongoing schematisation” developed in the Utrecht project mentioned above)
while the other programme was based on abstract and symbolic activities.

The ““abstract-symbolic” training-programme was conducted in three classes.
The mathematical relations and structures that are particular difficult for child-
ren were made explicit in these lessons, and specific help to overcome the
obstacles were provided. This programme wasn’t “abstract” in the sense that just
formal calculations were carried out, instead this programme was also action-
related and included a lot of “games” appropriate for children at grade 2.
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However, as media to visualise relationships between numbers mathematically
structured representation tools were used as, for instance, the 100 square and the
number line (figure 6 and 7).
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Figure 6: 100 square Figure 7: The beginning of the number line

Exercises with the 100 square: The children sat in a semicircle in front of a big
100 square-poster and followed a route on it given by the teacher:

1. At the beginning | stood on the 7.

2. Then I walked a step downwards.

3. After that | walked 26 steps forwards.

4. Then | walked 3 steps upwards and one to the left.
5. Where | am?

After some “Where I am”-games the students were encouraged to follow the
route with blindfolded eyes.

At the number line a game called “Mister X was played: An empty number line
was drawn on the board and the teacher (or a student) wrote a number (“Mister
X”) between 0 and 100 on the back of the board. The players tried to guess this
number by narrowing down the numeral range, it was only announced whether
the number was too small or too big; the players had 10 attempts at most.

The children also played “brain-games” like: “I imagine two numbers. One is
bigger by 5 than the other. Which numbers could it be?”” In the training in these
classes mainly relations between numbers were emphasised, and then more and
more used by the students to solve word problems.

Before and after the training-programme a test was carried out in the classes
taking part in one of the two training programmes mentioned above and also in
the control classes. During the evaluation a considerable improvement was
becoming obvious especially with the low-achieving children, not only in the
correct solution of word problems but also regarding their ability to solve
arithmetical problems. An increase of efficiency was to be expected because
there is always a correlation between time of lessons and progress in learning.
The main surprise was however that the programme which focussed on pupils’
real-life action-related behaviour had the lowest success, while the “abstract-
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symbolic” programme achieved the most increase of efficiency with the low-
achieving children (Hasemann & Stern, 2002, pp. 235ff; Hasemann, 2005).

FACIT

This finding is not really surprising. It’s even plausible that especially the less
competent children are best aided by helping them to recognise relations,
patterns and structures which they — in contrast to the more competent children —
are not able to find by themselves in the concrete and obvious. This recognition
evidently stands in contradiction to a popular way of acting (cf., e.g., Gellert,
1999, pp. 114/131); most of the teachers seem to believe that especially with the
less competent children the only way of acting is “from the concrete to the ab-
stract”, or — the worst — the only way of teaching is to come down just to the ob-
vious and concrete.

The difficulties of numerous children with mathematics, not only in primary but
also in secondary schools, are partly due to the use of numbers exclusively as
cardinal numbers (quantities) and in rather simple arithmetic. This leads to a
restricted mathematical understanding and makes generalization difficult (or
even impossible). In the first grades it is possible to solve most arithmetical
tasks only by the conception of concrete actions. This thinking is insufficient in
higher classes (and — among other problems — leads to the well-known
difficulties with fractional arithmetic), children should learn to shape relations
between numbers already in primary school. In addition, the procedure “from
concrete to abstract” is not sufficient enough to help low-achievers to detach
themselves from the concrete and obvious and to recognise the relations and
structures in the actual situation. As a matter of course it is necessary in
mathematical lessons to start with concrete actions and a practical context which
is directly comprehensible for children; however, it is important to go carefully
directed (and not only implicit) into relations and structures. If they are not
misunderstood as counting-tools, materials like the 100 square and the number
line (with their pre-forms abacus, 20 number grid and calculation chain) are
excellent fields of experience and practise especially for less competent children
to create mental models of situations where mathematical relations are
represented. The study showed that it is possible to encourage low-achieving
primary school children through carefully directed abstract-symbolic activities
to insights in mathematical relations. Materials for instruction and methodologi-
cal suggestions for such lessons are available for a long time past.

References
Aebli, H.: 1980, Denken: Das Ordnen des Tuns, Klett-Cotta, Stuttgart.
Caluori, F.: 2004, Die numerische Kompetenz von Vorschulkindern, Kovaé, Hamburg.

Gellert, U.: 1999, Vorstellungen angehender Grundschullehrerinnen von Schiilerorien-
tierung, Journal fiir Mathematik-Didaktik, 20, 113 — 137.



156 KLAUS HASEMANN

Gray, E., Pitta, D & Tall, D.: 1997, The nature of the object as an integral component
of numerical processes, in: Proceedings of the 21st Conference of the International
Group for the Psychology of Mathematics Education, Lahti, Finland, vol. 1, pp. 115
— 130.

Greeno, J.G.: 1989, Situations, mental models, and the generative knowledge, in:
D. Klahr, K. Kotovsky, Complexe information processing: The impact of Herbert
A. Simon, Erlbaum, Hilldale NJ, pp. 285 — 318.

Hasemann, K.: 2005, Word problems and mathematical understanding, Zentralblatt
fiir Didaktik der Mathematik, 37, 208 — 211.

Hasemann, K.: 2006, Mathematische Einsichten von Kindern im Vorschulalter, in: M.
Griissing, A. Peter-Koop, Die Entwicklung mathematischen Denkens in
Kindergarten und Vorschule, Miltenberger, Offenburg, pp. 67 — 79.

Hasemann, K.: 2007, Anfangsunterricht Mathematik. Spektrum Akademischer Verlag,
Heidelberg.

Hasemann, K. & Stern, E.: 2002, Die Forderung des mathematischen Verstindnisses
anhand von Textaufgaben — Ergebnisse einer Interventionsstudie in Klassen des 2.
Schuljahres, Journal fiir Mathematik-Didaktik, 23, 222 — 242.

Hasemann, K., Leonhardt, U. & Szambien, H.: 2006, Denkaufgaben fiir die 1. und 2.
Klasse. Cornelsen—Scriptor, Berlin.

Linchevski, L. & Livneh, D.: 1999, Structure sense: The relationship between algebra-
ic and numerical contexts. Educational Studies in Mathematics, 40, 173 — 196.

Liiken, M.: 2010, The relation between early structure sense and mathematical
development in primary school, in: Proceedings of the 34th Conference of the
International Group for the Psychology of Mathematics Education, Belo Horizonte,
Brazil, vol. 3, pp. 241 — 248.

Liiken, M.: 2011, School starters’ early structure sense, Paper presented at the 35th
Conference of the International Group for the Psychology of Mathematics
Education, Ankara, Turkey.

Liiken, M.: 2012, Muster und Strukturen im mathematischen Anfangsunterricht —
Grundlegung und empirische Forschung zum Struktursinn von Schulanfingern,
Waxmann, Miinster.

Mulligan, J. & Mitchelmore, M.: 2009, Awareness of Pattern and Structure in Early
Mathematical Development. Mathematics Education Research Journal, 21(2), 33 —
49,

Rowlands, S. & Carson, R.: 2002, Where would formal, academic mathematics stand
in a curriculum informed by ethnomathematics? A critical review of ethnomathe-
matics, Educational Studies in Mathematics, 50, 79 — 102.

Riley, M.S. & Greeno, J.G.: 1988, Developmental analysis of understanding language
about quantities and of solving problems, Cognition and Instruction, 5, 49 — 101.

Stern, E.: 1998, Die Entwicklung des mathematischen Verstindnisses im Kindesalter,
Pabst Publisher, Lengerich.



Mental representations of mathematical objects and relations 157

Treffers, A.: 1987, Three dimensions. A model of goal and theory description in
Mathematics Instruction — The Wiskobas Project, Reidel, Dordrecht.

Van den Brink, F.J.: 1989, Realistisch rekenonderwijs aan jonge kinderen, OW&OC,
no. 10, Universiteit Utrecht.

Van Luit, J., van de Rijt, B., & Pennings, A.: 1994, The Utrecht Early Numeracy Test.
Manual. Graviant Publishing Company, Doetinchem.

Van Luit, J., van de Rijt, B. & Hasemann, K.: 2001, Zur Messung der friihen mathe-
matischen Kompetenz, Zeitschrift fiir Entwicklungspsychologie und Pddagogische
Psychologie, 32, 14 — 24.

Van Luit, J., van de Rijt, B., & Hasemann, K.: 2001, OTZ. Osnabriicker Test zur
Zahlbegriffsentwicklung. Manual, Hogrefe, Gottingen.



ON EVOKING CREATIVE MATHEMATICALACTIVITIES
RELATING TO GENERALIZATION AND SPECIFICATION IN
EARLY GRADE PUPILS

Bozena Rozek, Elzbieta Urbanska
Institute of Mathematics, Pedagogical University, Krakow, Poland

This study regards issues relating to evoking and developing creative
mathematical activities in early grade pupils. Both theoretical observations will
be expressed, regarding working with pupils who are interested in mathematics
and concepts of working with such pupils will be discussed. The main part of the
study comprises presentation and analysis of children's works created during
after-school meetings of the Young Mathematician's Club. Diversity of the task-
solving strategies applied by pupils will be shown, together with those activities
which may become the basis for shaping generalisation and specification skills.

INTRODUCTION
The studies run in Poland on mathematical skills in small children show that

one may see some signs of mathematical skills in nursery school pupils and early
primary school pupils, and the number of children gifted with those skills is
impressive. (Gruszczyk - Kolczynska, 2011a)

It stems from the studies that such children are willing

to participate in games requiring a considerable intellectual effort and combinatorial
reasoning (...). At the same time, they demonstrate astonishing cognitive
inquisitiveness (...). They are also able to focus for a longer period of time on
complex tasks; what is more, they find them on their own, thus manifesting
astounding inventiveness. (Gruszczyk - Kolczynska, 2011a)

Therefore,

the necessity of supporting mathematically talented children already at the level of
nursery schools and in the first grades of school education is emphasised.
(Gruszczyk -Kolczynska, 2011b)

First years of school education are significant for further education. This is when
the child develops a conviction about his/her abilities, which is so motivating. In
this period of early education, skills of different kinds of reasoning are shaped,
and we know “that assistance in creating opportunities for developing thinking
IS @ much more important investment in child's cognitive development than lots
of knowledge”. In such shaping of thinking one should use a natural child's
inclination to games and create opportunities of experiencing success. Success
and joy of action affect intellectual development positively, “and by achieving
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success we frequently want to repeat it and enjoy an emotional feeling that
despite possible failure we constantly win” (Chmielewska - Luczak D, 2011).

A natural children's inclination to intellectual effort gives a teacher a possibility
to develop children's skills. Those pupils who like mathematical tasks should be
surrounded with special educational care. Currently, as emphasised by
E. Gruszczyk - Kolczynska (2011b), “within the scope of pre-school and early-
school education there are no classes preparing for supporting development of
talented children, including those with mathematical skills”. The author believes
it is necessary to create an additional educational path. That path aimed at
developing mathematical activities and skills could include contents and skills to
be taught both during lessons and after-school classes.

YOUNG MATHEMATICIAN'S CLUB

One of possible concepts of after-school classes, which may support intellectual
development of early school pupils in the area of mathematical creativity, has
been presented in a manual for early-school teachers titled Young
Mathematician's Club®. The exercises presented in it are addressed to pupils
who are interested in numbers, geometric world, mathematical relations and who
enjoy creation. The range of topics of a series of the Club meetings is loosely
connected with the curriculum of the first stage of education and refers to the
situations well known to children; the topics cover selected mathematical
activities the beginnings of which can be shaped in pupils who are willing and
interested in mathematics. Games, exercises and tasks are arranged in such a
way that pupils have a number of opportunities to do manipulation exercises,
repeat them and discover their own strategies of conducting and solving
mathematical problems. The manual includes, apart from presenting a series of
classes, Characteristics of classes and Comments to tasks with detailed tips
and suggestions for a teacher.

All classes presented in the manual have been conducted after school with third-
grade pupils from primary school®. In each Club meeting, the pupils solved
exercises and tasks, which constituted a thematic series. In accordance with the
concept presented in the manual, the pattern of each series of classes was the
same and it consisted of three stages: a Starter, Manipulation Classes and
a Work Sheet. The Starter introduced the pupil into a situational context. At that
stage, the teacher agreed with the pupils the language of communication and
understanding of the meaning of the proposed manipulation material and graphic
presentations. Manipulation Classes were a form of playing games for children.
The pupils could experiment and discuss their ideas how to solve particular tasks

! Rozek B., Urbanska E.; Klubik Miodego Matematyka. A manual developed within the frameworks of the
project titled: Development and implementation of a complex system of work with talented pupils, co-financed by
the European Union under the European Social Fund

? The classes within the Club's frameworks were conducted by a teacher representing the first stage of education,
B. Jachymczak, M.A., working in the Public Primary School run by Salesian Sisters in Krakow
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and exercises. At the third stage of classes, the pupils solved tasks included in
the Work Sheet on their own. Those tasks referred to the same mathematical
activities as in the Starter and Manipulation Exercises, but they often had
a different real context.

The manual describes pupils' works, enriched with the scans of authentic
children's solutions. It constitutes an illustration of different pupils' approaches
to tasks and shows children's creative skills.

STRATEGY AS A GENERALISATION TOOL

The issues relating to the task solution process are central to many psychologists
and pedagogues. The word strategy, borrowed from other fields of science is
often used to describe that process. M. Ciosek (2005) writes about it in her
monograph and she quotes different definitions used to describe that word,
coming from various psychologists, for instance:

strategy is a regularity in taking action;
strategy is a certain systematic way of solving problems;
strategy is a certain detailed plan of action.

The application of the term strategy in the context of solving mathematical tasks
emphasises that aspect of task solving which is related to planning and
consistent implementation of that plan. Yet, it is worth noting that in order to be
able to build a strategy one needs to become clearly aware of what a given task
is about and find significant relations between data. Next, it is good to analyse
a given situation in several particular cases in order to notice some common
features, which will allow for discovering a general principle. Such analysis of
particular cases can be done randomly, but it can be also conducted
systematically in order to make generalisation easier. Thus, we have to do with
specification and generalisation processes, which play a crucial role in
discovering a strategy and help the pupil to achieve success in solving
mathematical tasks. In A. Z. Krygowska's (1977) opinion, the analysis of several
special cases and looking for a common pattern for them form elements of an
inductive generalisation process. Its further stages constitute verbal creation of
a common idea, its expression in a symbolic language, and last but not least,
checking whether the generalisation we have achieved is proper. It seems
important that while teaching mathematics teachers should shape in children
those important creative activities, namely specification and generalisation. It is
also good to realise that the

generalisation process occurs individually. The pupil "grows into” the
generalisation process depending on his/her psycho-physical development and
mathematical experience. Here is a great role of a teacher to arrange such situations
for the pupil at the right time, not to impose the final effect and to support the pupil
discretely in looking for generalisation. (Legutko, 2011)
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PUPILS' WORKS ILLUSTRATING APPLICATION OF DIFFERENT
STRATEGIES

Below, we present selected pupils' solutions of tasks included in the Work Sheets
and we analyse them in terms of activities which may be the basis for shaping
generalisation and specification skills. Diversity of the applied strategies and
consistency in their application is striking in children's solutions of the tasks.
Pupils' inventiveness both in geometrical and arithmetical tasks is illustrated
with examples of solutions of the selected tasks.

Task 1

Jacek has blocks in 4 colours: pink, green, blue and yellow. He builds towers by
putting blocks one on top of the other. The tower is built from 3 blocks, and each
block has a different colour. Draw as many Jacek's towers as possible.

In the solution of the task, the pupils tried to create as many towers meeting the
specified criteria as possible. They did not have to draw all twenty four towers.
Thus, some of them draw only a few towers. We can say that they specified task
criteria in a random way. One pupil, for instance, did the following:

Most probably he made towers randomly using three blocks with the specified
colours, and he focused on fulfilling the task conditions while making
subsequent towers; therefore, his towers had different colours and each of them
was different from the previous ones.

Interestingly, one pupil fulfilled a partial strategy of making towers:

It can be seen that a protagonist of the strategy here is a yellow block, changing
its position. One by one, the pupil draws possible towers in which this one is at
the bottom, later on in the middle and finally on top. In this way, 18 towers have
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been built. Creation of another six towers would require supplementing of the
applied strategy with another step: towers without a yellow block.

There were also pupils who, while applying their strategies in a systematic way,
created all possible towers. Such a way of selecting examples points to the way
of reasoning, which may constitute the basis for creating generalisations.

One of the pupils applied successfully a strategy consisting in building, one by
one, possible towers, which start with a block of the same colour:

pe i PlmcE®

She started drawing with six possible towers, in which the first block is yellow.
After setting the first block, she was building possible towers where the second
block was the same. Next, she was drawing possible towers changing the colour
of the initial block. It is worth noting that those six towers in each group were
built by applying the same strategy once again. After deciding, for instance, that
the first block was yellow, possible towers were now created in which the
second block was green, and later on such towers in which the second was one
blue and finally all towers in which the second block was pink.

Similarly, starting with a block of the same colour the pupil below created her
towers:
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The original arrangement of towers in a regular system of rows and columns
should be noted here, which could help in generating all six elements of a given
group.
Task 2

Kasia arranged with cards all two-digit numbers, where the sum of digits equals 9.
Try to write down as many such numbers as possible. What do you think, have you
managed to find all Kasia's numbers?



On evoking creative mathematical activities relating to generalization and specification 163

The question at the end of the task was to encourage the pupils to try to write
down all possible numbers meeting the task criteria.

Some of the pupils gave randomly only several numbers meeting the criteria,
such as the pupil below:

4 . €% 81,0992

There were also such pupils who listed all numbers in this random way:
19 U4 ° = @a,fw. 37 d -
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There were also pupils who applied a partial strategy here. For instance, they
gave some two-digit numbers with the sum of digits equal 9, and next a number
with transposed digits. Subsequent pairs were totally random; it was enough that
the sum of digits of the written number meets the task conditions. They
continued to do so until they were unable to think of a new number meeting the
requirements. For example, the pupil below acted like that:

30,6322, 2781 18, 54.45,77

As can be seen, while applying his strategy he "lost” only number 90. After
number 45, the pupil tried to write down some example, which may confirm the
fact that he was not sure to have listed all cases.

Another strategy applied here was to build numbers by putting tens of
subsequent digits as digits and adding a matching single digit. Some pupils did it
correctly:

79 % S0
18,1%,%,45,54,63 72,04

Others had problems with number 90 here:
18, %, 36,45, 57,63, 72 84,

Task 3

Ja§ and Malgosia received sweets. They counted them and it turned out that
Matgosia had 4 sweets more than Jas. Ja§ gave Matgosia 2 sweets. Who has more
sweets now and how many more?

That task required that pupils compared the size of sets, although the number of
elements in each set was unknown. The pupils had to conclude from the fact that
Ja§ gave Malgosia 2 sweets that the difference increased by 4, so Malgosia has
now 8 sweets more.
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Some pupils made typical errors in their solutions:
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As can be seen, from the fact that Malgosia received two sweets, and already
had 4 sweets more than Ja$, the pupil concluded erroneously that Matgosia will

have 6 sweets more.

Some pupils presented the situation given in the task in the form of an activity.
Such a strategy of the solution may constitute the basis of a general point of
view and discovering the way of solving such kind of tasks. For instance, one of

the pupils did the following drawing:
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He presented the initial situation: two bags with sweets and 4 additional sweets
next to Malgosia. Later on, by means of arrows he showed that he took out 2
sweets from each bag and those from Ja$ he deleted and drew next to Matgosia's
bag.

Another pupil presents her reasoning by drawing as if shots from a film:

. : MNalgosia MmO © & cukioplys
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First, we can see the illustration of the initial situation (1), then two sweets are
taken out from each bag (2), afterwards we can see the activity of giving the two
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sweets (3) and then presentation of the final situation (4) in which the answer
can be read.

Task 4
Each square was cut in a different way:

N
N\
\\
N

Arrange a colourful square from the created elements, being puzzles.

The strategy of solving that task requires finding equalities of adjacent sections
and interdependencies between angles of the figures. The pupils presented the
squares which were created as a result of manipulation with concrete material.
Equality of sides of the puzzles from which squares were built was evaluated by
the pupils visually. Frequently, such evaluation, despite the fact that the
resulting square looked a bit ’crooked,” was accurate from the mathematical
point of view. It can be seen, for instance, in the following solutions:

While looking for a task solution empirically, specific difficulty appeared with
applying of the strategy regarding comparing the lengths of sections. That
difficulty related to visual comparisons. In some solutions, the quadrangle built
visually resembled a square, but its sides were not equal, so contrary to the
pupil's intentions and conviction it was not a square. The pupils fell in a trap of
putting sections, which differed in length only slightly, one next to another as
equal. It can be seen below:

The upper side of the quadrangle built by the pupil is one and a half times longer
than the diagonal of the initial square, since three legs of the green triangle are
adjacent to it. The lower side of that figure is twice as long as the side of the
initial square, because it was built from four yellow squares. Thus, the figure
built in this way cannot be a square, since the upper and the lower side are not of
the same length, although visually they may look equal. That apparent equality
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of sections stems from the size of the square from which the puzzles were cut.
The initial side of the square was 8 cm long, so its diagonal was 8v2cm long.
Thus the pupil built a quadrangle whose lower side was 16 cm long, whereas the
upper side was less than 17cm long. The difference between lengths of those
sections on the puzzle could be unnoticeable for the pupil. In order to become
convinced that the sections created in this way are not equal, at this stage of
education one cannot refer to relations between numbers. An accurate
application of the strategy relating to the equality of sections requires advanced
knowledge about disproportionate sections. However, while making do with the
visual evaluation, it is worthwhile showing apparent equality of the sections to
the pupils. One may present such erroneous pupils' arrangements using puzzles
created on the basis of a bigger square. For instance, if we make puzzles from
a square with a 20 cm long side, the difference between the lengths of sections
under discussion will be over 2 cm and it will be clearly noticeable for each

pupil.
GENERALISATION OF THE TASK SOLVING METHOD

In children's works, one could see their fascination with a task solving strategy
discovered by them. It could be observed in applying it carefully to solving
different tasks, frequently with different topics. Undoubtedly, one can notice
here manifestation of a generalisation method. For instance, it can be seen when
solving tasks for which a mathematical model is similar. For example, it regards
a series of combinatorial tasks below.

Task 5

An ice-cream vendor sells chocolate, strawberry, blueberry and vanilla ice cream.
Jacek wants to buy 3 scoops of ice cream with different flavours. Mark chocolate
ice cream with a brown colour, strawberry with red, blueberry with purple and
vanilla with yellow. Draw as many different ice creams that Jacek can buy as
possible.

Task 6

Zosia has round biscuits with jelly, each with some sauce. Sauces are in five
flavours and colours: brown, purple, red, green and yellow. She decided to put two
biscuits on each plate in such a way that each cake is of a different colour. Draw as
many biscuit sets as Zosia may arrange.

Task 7

Wojtek has sweets in five flavours: chocolate (brown), raspberry (red), blueberry
(purple), gooseberry (green) and lemon (yellow). He puts three sweets of each
different flavour into one bag. Draw as many bags as Wojtek may prepare.

Most of the pupils, in accordance with the intention of the task authors, came to
conclusion that the order of occurrence of particular elements is not important in
the groups being created. Taking such interpretation into account, in Task 5 one
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can create only four different ice cream portions, in Task 6 ten plates with
biscuits and in Task 7 also ten bags with sweets. However, for some pupils it
was difficult to disregard, especially in the solution of Task 5, the condition
which is important for them in a real situation. For those pupils, the order of
putting scoops in the portions being created was important.

It is worthwhile analysing solutions of the three above tasks given by one of the
pupils, who transferred the method of solving Task 5 he discovered to the other
ones. In Task 5, he considered the order of putting scoops necessary and based
on this interpretation he created all possible 24 ice cream sets:
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As can be seen, he used the following strategy consistently: 1 am making all
possible ice cream portions one by one; they start with a scoop of the agreed
flavour, and later | change the first scoop. When solving subsequent tasks,
perhaps fascinated with the regularity of the discovered method, the pupil
transferred the interpretation: "the order of the elements is important”, to the
second and third task. He did not pay attention to the fact that in a real situation
of making portions of biscuits or bags with sweets the order of elements is not

significant. When using his strategy, he received all possible 20 plates with
biscuits:
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His solution of Task 7 is impressive. The pupil was able to apply properly and
consistently until the very end the strategy invented to solve Task 5 in order to
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create such sets of sweets in which the order is significant. He created all
possible sets in which the first element is a sweet of the agreed colour. At the
beginning, he drew twelve different bags, in which the first one is a green sweet.
Next, he drew other possible bags, changing the colour of the first sweet into
yellow, red, purple, and finally brown. In this way, he received five groups with
twelve bags in each.

FINAL OBSERVATIONS

The third-grade pupils, where the Club classes were tested, participated in them
with great pleasure. They were happy to do manipulation classes, solved all the
tasks and frequently designed such tasks on their own. It should be emphasised
that by solving tasks included in Work Sheets they focused on finding solutions
of even quite complex tasks, which constituted an intellectual challenge for
them. Looking at the works description, it can be seen that task solutions were
original and clever. This illustrates a thesis which is important for the
development of thinking, namely that it is not good to impose on children one's
own ways of task interpretation or task solving methods too early. Such
children's "different views” on the same reality, if properly developed, lead to
independent reasoning and action, and they support the development of creative
mathematical activities of a small pupil.

The tasks and exercises offered in the manual turned out to be available to all
pupils taking part in the Club classes. They stimulated pupils to look for
solutions adjusted to the abilities of each of them and to create their own
strategies. Most of them were able to give examples of objects meeting the task
criteria. Some selected examples randomly, which often did not allow them to
obtain all possible solutions. However, we can say that those pupils performed
specification of task conditions. This is an important stage of development of
children's mathematical reasoning. The next stage will be related to the ability to
perceive some regularity in the examples being created.

Many pupils discovered partial strategies of task solutions. They perceived
certain regularities and presented, frequently in accordance with the instruction
to a given task, as many cases meeting the specified conditions as possible.
Although it did not generate all possible solutions, pupils' thinking was clearly
directed towards looking for some regularity.

It was striking that several participants of the Club classes were able to find all
possible solutions meeting task requirements, even if the task contained only
a suggestion to find as many objects meeting the specified conditions. Most
frequently, all those possible examples meeting task criteria were given by those
pupils who had discovered and applied consistently their solution strategies,
which were often remarkable. One may draw the conclusion that pupils'
experiences acquired in building their own strategies and effective application of
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those strategies should influence handling of mathematical tasks by them later
on.

It is worth adding that the pupils who applied their strategies surprised with
carefulness and consistency, when creating their solutions in a systematic way.
Such regularity of example selection allowed them to notice general patterns.
Finding regularities is an important feature of mathematical thinking. It
manifests a creative mathematical activity, which may become the basis of the
generalisation process.

In further development of creative activities relating to the generalisation
process it will be important for pupils to be able to express, both verbally and
symbolically, general regularities observed by them. At another stage of
developing those activities, it will be important to remember that the formulated
generalisations are certain hypotheses which need to be further studied and
supported with evidence.
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TEACHER’S BEST PRACTICE FOR THEORETICAL
THINKING — THE CASE OF COMMUTATIVITY?®
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We present the results of a long-term teaching practice aimed at favouring
theoretical thinking in primary school pupils. Our research question is to assess
whether this practice achieves pupils’ good results in this way of thinking. We
focus on the operations commutative property as a detector of forms of
generalization. The minutes of a 4" graders arithmetic activity show that
teacher’s methodology gave children the opportunity to express their different
points of view about generalization.

THEORETICAL FRAMEWORK

Literature about generalization offers several ways of interpreting this mental
activity. The generalization can be considered differently depending on the
features of the mathematical topics. Here we consider the realm of arithmetic for
primary school, with its peculiarity. We consider generalization a product of
theoretical thinking, owing this position to Douek (2006, p. 823).

[a] The same researcher presents the following remark:

A change of semiotic system [...] can be a means for the considered processes
[cognitive processes towards generalization] to take place, as well as a sign that
they are taking place. (Douek, 2006, p. 824)

[b] We can find (Moss & Beatty, 2006; Geraniou et al.,, 2010) that
generalization is produced by the individuation of a pattern. The ‘exploration’ in
arithmetic occurring in primary school can give rise to some children’s
intuitions about generalization, via patterns. The appearance of a pattern from
a repeated investigation can be in itself a sort of generalization, but the fact is
clearer when variables are used instead of specific numbers. This is a first step
in the origin of algebra, but we can delineate other ways towards generalization.

[c] Generalization has an important cognitive role for economizing information
needed in the construction of knowledge. But for being useful it is necessary that
generalization it is paired with competence of implementing the generalized
statement in particular cases, together with the identification that this peculiar
situation is deduced from the general statement. Therefore in the phase of
constructing/recognizing a generalization pupils are faced with direct (i.e. from

¥ Work done in the sphere of Italian National Research Project Prin 2008PBBWNT at the Local Research Unit
into Mathematics Education, Parma University, Italy.
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general to particular) and inverse problems (i.e. from particular to general)
(Marchini, 2002).

[d] The ‘natural’ and historical evolution from arithmetic to algebra presented
the passage from rhetorical (syncopated) treatment to the symbolic one. This is
mainly due to Viete (1591) with his transition from numbers to ‘species’. Some
researchers consider the introduction of symbols in algebra and the consequent
formalisation of thoughts as cornerstone for the presence of generalization.

For example, the generalization of a rule or procedure that would hardly be
understood through a single listing of numerical cases can be expressed in a literal
code. (Malara & laderosa, 1999, p. 167)

[e] But Rogers (2002, p. 578-579) distinguishes between icons and symbols in
algebraic thinking:

[...] archaeological evidence suggests that over time we have created icons, used
indexes and developed symbols which first replace and later become the objects of
thought [...]. In our case mathematical objects are represented by icons, indexes and
symbols which we use as tools to develop processes whereby we describe and
manipulate the world. The distinction between icons, indexes and symbols is a
subtle one. On one level, an icon can be taken to represent the object itself. [...] The
interpretive process that generates iconic reference is what we call recognition. The
word “re-cognition” means thinking about something again, and “re-presentation” is
to present something again. Iconic relationships are the most basic means by which
things can be “re-presented”, and hence “re-cognised”.

Therefore, the presence of a ‘representation’ of something with letters as icons
could be considered a generalization, but not the formalization of a thought.

[f] Another point of view is presented by Hejny (2004, p.2):

3. Stage of generalization. The obtained isolated models are mutually compared,
organised, and put into hierarchies to create a structure. A possibility of a transfer
between the models appears and a scheme generalizing all these models is
discovered. The process of generalization does not change the level of the
abstraction of thinking.

4. Stage of universal (mental) model(s). A general overview of the already
existing isolated models develops. It gives the first insight into the community of
models. At the same time, it is a tool for dealing with new, more demanding
isolated models. If stage 2 is the collecting of new experiences, stages 3 and 4 mean
organising this set into a structure. The role of such a generalizing scheme is
frequently played by one of the isolated models (e.g. fingers serve as a universal
model for a simple counting).

In his paper the author presented an example of generalization realized by
a three year old girl with her finger, without formalization, as it is usually meant.
This theory of generic model has been presented recently by Hejny (2008). We
adopt Hejny’s proposal as the main theoretical framework for our research, since
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it is independent from formalization and the examples of children’s statements
often set aside the formal aspects. Moreover the stage 3

can be applied also to generalization ‘by extension’, e.g.
from addition to multiplication and from natural numbers
to rational numbers.

[g] In order to explain our didactical experiment, it will
be useful the so called (Pirie and Kieren, 1989) ‘onion’
model* which is a recognized tool for looking at growing
understanding as it is happening. In it, generalization
does not appear explicitly, but it is present differently

mainly in the more ‘external’ stages. In our theoretical
framework generalization overlaps some of these stages,
but does not coincide with them (e.g. we have examples
of generalization without formalisation).

DIDACTIC AND LOGIC OF THE COMMUTATIVE PROPERTY
Didactical analysis

Figure 1- The ‘onion’
model

The addition and multiplication commutative properties are often proposed as
a ‘fact’, in the sense that in all the examples aiming at facilitating the learning of
these operations the environment justifies the use of commutative properties.
With addition, this fact happens in a dynamic situation of adding to or in a static
situation (putting together) or adding in combining disjoint sets (Tsamir et al.
2008, p. 57). The same happens when multiplication is presented by arrays.

Therefore, the property assumes the role of an ‘en act’ knowledge and the
reflection about it can be considered a superfluous remark and an unnecessary
terminology (‘commutative’). But the comparison between addition and
subtraction is enough for casting light upon the necessity of a name for
a property holding always for addition and hardly ever for subtraction.
Commutativity of addition is useful in case of ‘counting on’ when the first
addend has cardinal value lesser than the second addend one (CAL strategy of
Baroody and Gannon (1984), p. 322). Later on, when an explicit algorithm for
addition in a column is used, commutative property is used to check the result.
This practice is more useful in the case of multiplication. These procedures
attach importance to commutative properties.

Didactical attention in primary school to the commutative property as
a fundamental peculiarity of operation is rare.

Logical analysis
We can consider commutativity as an axiom stating a peculiarity of a binary

* Reproduction difficulty suggested us to slightly modify the graphical aspect of the original drawing of Pirie and
Kieren (1989, p.8).
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‘operation’ in a suitable structure °. Therefore this property is intrinsic part of
the definition of that operation as a specific two-argument functional symbols.
Therefore this property is a ‘brick’ which is essential for the construction of that
suitable structure. To state correctly commutativity for ‘addition’ in a first order
logical language, we must use a specific name for the binary operation, two
indeterminates and two universal quantifier on them:

(1) VXVY(x+y = y+X),

The sentence (1) is the result of a generalization in the sense of a statement
which resumes many cases®. In fact, in the ‘standard’ arithmetic interpretation of
the logical structure the two indeterminates should be interpreted as variables on
the set of natural (integers) numbers; therefore, they can assume the numerical
value you want. The statement 24 + 35 = 35 + 24 is an example of (1) in which
we interpreted x as 24 and y as 35. This is the ‘direct’ problem we considered in
[c]: from the statement to the examples. The ‘standard’ arithmetic interpretation
is not the possible unique one, since we can consider different ‘abelian’
structures, all of them having the commutative property as an axiom.

This structural — syntactic point of view is a final point of a reflexion about the
concept of ‘structure’ and it is not the way in which pupils can act. They know
some aspects of arithmetic and they can generalize their semantic experience
with numbers in order to obtain something similar to the statement (1). In this
case we can speak of a generalization by induction from the everyday
experience with arithmetic. It is the ‘inverse’ problem in [c]. Hejny’s approach
to generalization [f] is close to this.

In the statement of commutative property there is also a morphologic aspect
which can be considered as a pattern [b]. The open formula x + y =y + x is an
equation (in logical terms), i.e. it is an equality of two terms. The evident
morphological aspect is that the term to the second member of equality is
obtained from the first member by exchanging the indeterminates.

THE TEACHER’S PRACTICE

The first author participates from a long time to research activities of the Local
Unit of Research in Mathematics Education of Parma University managed by
the second author. The possibility of teaching mathematics to the same pupils,
following them in all the grades of primary school, favours her choice of a long-
term didactical project. Now (2012) she is teaching in grade 4. In grade 1 she
followed a teaching project borrowed from Hejny et al. (2006), based on the
semantic environment ‘Father Woodland’.

The Czech authors suggest that this environment is useful for the first step

® The structures for arithmetic are abelian monoid with addition and with multiplication.
® The statement (1) formalizes the previous quotation of Malara and laderosa (1999) [d].
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towards algebraic topics such as pre-concept of
equations, conceptual thinking in pupils not only at the
elementary level, solving methods of linear equations,
solving of Diophantine equation. Some results of such a
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The structural properties of arithmetic and relational
thinking in the meaning of Molina et al. (2007) were Figure 2 A protocol of a
always present in Rossella’s teaching. An instance of 1% grader ina true —
that is evident in Figure 2, in which there are examples false task

and counterexamples of transitive and commutative properties of addition,
together with neutral element and reflexive property of equality. Therefore, her
pupils are always ‘exposed’ to the commutative property of operations. In the
previous grades she presented the verbal statement expressing this property,
commenting suitable equalities.

THE RESEARCH: AIMS AND METHODOLOGY

This research aims to assess whether a constant care of the theoretical thinking
favours the process of generalization in arithmetic. More specifically, we want
to detect if pupils not only remember the statement, but are able to handle
generalization and in which form. In particular we are interested to the pupils’
use of a suitable language and to their management ‘direct’ and ‘inverse’
problems related with generalization.

We can define the teacher’s actions as ‘yeast’ methodology. Rossella very often
presents open questions to pupils leaving them to discuss freely the topics. In
particular, for this research she asked what they know or remember about the
commutative property of addition. The discussion was presented in different
days and the pupils’ contributions were recorded by writing each pupil’s
statement on a poster (110 cm x 70 cm) put up on the wall, waiting for the
‘rising’ of the topic. This ‘yeast’ methodology increases the class learning since
the intuitions of brightest children (the yeast) are shared among all and each
motivated pupil can learn with her/his time of attention.

This didactical methodology is suitable for the research, since these written
posters are valid tools for understanding the overall dynamics of the activity,
even if the diachronic dimension lacks.
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THE MINUTES

This non-‘ordinary’ presentation of the research results can help the reader to
follow up on the appearance of different way of generalization taking part in the
class dynamics. In the minutes we tried to reproduce the children’s speaking
style; in them we can ‘listen’ echoes of the previous teaching/learning activities,
but we focus our comments only on the commutative property. The children’s
names are not the real ones, but their statements are reported accurately. We
comment, in round brackets, on some statements, by presenting our
interpretation in italic; letters in square brackets refer to the theoretical
framework.

The teacher’ question: what the commutative property of addition iS?

1 Max: 24+35 = 35+24 — Max is not able to express this property verbally, but
he is able to do that (‘en act’ knowledge or Primitive Knowing of[g]:
possibly [b], but also the use of numbers as icons [€]) .

2 Omer: Changing the order of addends the sum doesn’t change (verbal
generalization in rhetoric style, or simply, remembrance of
a teacher’s statement).

3  Fabio: Addends can be two or more. (verbal generalization in rhetoric style
by extending the property from two to many addends [f]).

The Fabio’s statement diverted the children’s attention to an unexpected
combinatorial problem. Teacher did not intervene: it is an occasion, a new
‘yeast’, to catch what can be retaken in another time.

4 Gino: Commutativity is also for multiplication. (verbal generalization in
rhetoric style by extending the property to another operation [f]; ‘en
act’ knowledge or possible individuation of a common pattern [b]
and Property noticing of [g]).

5  Axel: Addends or factors must be different can be two or more. (This
statement, connecting addition and multiplication, looks strange and
wrong, but it is motivated by a linguistic reflection focusing on the
fact that the commutative property with equal addends or factors
cannot be distinguished from reflexive property of equality, violating
the pattern [b] on the basis of a didactical contract that different
writings imply different things — a morphologic point of view).

6  Carla: Commutativity can be made also with letters: A+B = B+A; C+D+E =
E+D+C = D+E+C = E+C+D =...(verbal generalization with the use
of letters. We can consider the girl’s assertion as an example of
generalization by a formalization having sprung from a pattern [b]
or an Observing of [g]. Our feeling is that letters are not variables,
but they are icons [e] and the girl wants to introduce an arithmetic
among them. In every case this generalization goes from numbers to
letters as an ‘inverse’ problem [C]. The second statement could be
the formalization, or a translation of (3), by extending the property
from two to many addends. We think that she is able to produce
formalization [g]. The last equality sign looks like a thinking pause.
Carla’s combinatorial thinking does not follow a unique pattern: the
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7

10

11

first writing is in alphabetic ordering. The second ‘E+D+C’ is
obtained from the first by ‘specular reflection’, the same pattern as
B+A from A+B [b]. The other two expressions are obtained applying
other strategies).

Dante: There are six ways since with each letter |1 have two combinations =

C+E+D = D+C+E (Dante’s statement concludes the combinatorial
thinking of Carla in the case of three letters, even if the translation
of his statement should be e.g. C+D+E = C+E+D, fixing one letter
and exchanging the remaining two. It is a case of Structuring of [g].
The term ‘combination’ instead of ‘permutation’ is not
mathematically correct. The self-confidence of Dante in the
individuation of the exact number of permutation is remarkable in
grade 4. These expressions are obtained by following a
combinatorial scheme [b] and by detecting of the lacking cases in
Carla’s statements).

Luce: 3x2 = 6 (Luce resumes in a numeric formula the previous proposals of

her classmates. Her presentation is not merely a list or
a computation of the number of permutation, but she shows
a combinatorial intuition, i.e. Inventising of [g]. Her change of
language is relevant: from description — counting from a list of
Carla and Davide, to a normative language with the change of
operation. The presence of a multiplication instead of an
enumeration can be considered a change of semiotic register which
Is coupled with a generalization as in [a]).

Lia: As many letters there are, as many conbinations there are. (Property

Noticing of [g]. She writes with spelling mistakes noticing that the
number of permutations is an increasing function of the number of
letters involved in permutations).

Fabio: It is enough to discover how many combinations we have with the

letter A: A+B+C+D; A+B+D+C; A+C+B+D; A+C+D+B;
A+D+B+C; A+D+C+B (Fabio discovers the pattern [b], extending
to four letters [f]. Here he presents only one case, the permutation
starting with A, but his statement alludes that this isolated model, in
reality, is in Hejny’s stage 4 [f], presenting the whole generalization
suggested by his ordered thinking, via a pattern [b], showing
a Structuring stage of [g]. Nevertheless, he needs the counting from
a list procedure).

Luce: Since there are 6 it is enough to make 6x4 = 24. (Luce recognizes the

pattern of the solving procedure for the permutation problem, by
using the ‘normative’ language as in (6) [a], without justification or
proof. We could think that she is formalising Fabio’s suggestion. He
did not state explicitly that there are six permutations holding fixed
the first letter, but he hints at it. Luce is ready to translate the
suggestion in a numerical statement. The result of this exchange
looks like the generic model [f] for the number of permutations
problem).

Rossella: What happens with multiplication? (Teacher grasps Gino’s

suggestion (4) for two reasons. The first is to lead again the
discussion to the commutative property, leaving the combinatorial
setting. The second is for asking pupils to generalize the
commutativity to another structure and in this way to allow another
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12

13
14

15

16

17

interpretation of the same condition expressed by (1) [f]. Her
question mark is rhetoric and by it she mobilizes newly children’s
attention to the main focus of the research).

Kira: It is in the same way as with addition, but we make multiplication A-B
= B-A; I use dot for avoiding confusion between the sign ‘x’ with
a letter, as it appears on the pocket calculator (Kira shows an ‘en
act’ knowledge the Primitive Knowledge of [g], but she does not
return to a numerical example, since she expresses (4) directly in
a formal way. It is a generalization by extension of the property to
multiplication [f]. She faces the writing problem of the possible
ambiguity of the sign ‘<’ even if the letter x’ is not usual in Italian
words).

Omer: Dot is used in middle school.

Luce: Factors can be two or more (This statement is a generalization by
extension to multiplication parallel to (3)).

Gino: Letters can be any number (This statement resumes the role of
generalization by a first formalization [d] and direct problems of [c].
The presence of the linguistic universal quantifier ‘any’ is relevant.
But Gino uses this quantifier in a semantic interpretation, not in
a formal way).

Luce: The letter can be a one-digit number or a many-digit number; e.g.:
(Figure 3) (This example shows what Luce means. The letters are
‘templates’ for whatever number, direct problems of [c]. In this way
she is able to grasp the role of generic model [f] of the literal writing
by giving examples of semantic interpretation. The arrow she uses
denotes the ‘production’ from the formal writing to its
interpretations. Compare with (6) in which Carla use the inverse
direction: from numbers to letters).

200 x 30 = 30 x 200
Tt 7 (N N B < BA
A x B = B x A !
v 25 x 52
1405 x 500 = 500 x 1.405
Figure 3 — Luce’s statement Figure 4 — Dante’s statement

Dante: | think that behind any letter there is a digit whether there are two
letters, there is a two digits number. Equal letter, equal digit (Figure
4). (Dante makes a wrong generalization and he misunderstands the
commutative property of multiplication. The reason could be that the
pupils made simple activities of cryptography for the learning of
substitutions. He understood the morphological aspect of the
commutative property, i.e. the pattern [b]; from that he produced a
formalization on this base, but he is not aware of the relational
aspect of the equality whose presence produces a statement. He
shows mastery of variable treatment (Marchini, 2002), but the role
of equality in the commutative property is completely
misunderstood).
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18

19

20

21

22

b)
23

24
25

26

Dante: With the numbers, commutativity gives you the result, but with the
letters you don’t have the result nor the value of numbers, thence
you cannot calculate. (This second statement shows the abridged
passage from isolated model given from experience of computation
to generic model [f] given by formalization [d]. Dante is feeling
a strong necessity to connect his experience with numbers. We can
consider him as a semantic thinker in the Property Noticing stage of

[9]).

Luce: I don’t take interest in the number hidden behind A, but | am interested
in the procedure. (Luce is in another developmental state: her
interventions, generally, show a structural understanding [g]. She is
speaking of a ‘procedure’, but without numbers, there is not
a procedure to be performed neither a computation algorithm; her
interest is in the structure of the arithmetic [f]. She is anticipating
a more ripe structural thinking).

Carla: If I must explain the commutative property | would take interest in
what | am performing (Carla in (6) introduced letters, but by
comparing interventions (20) and (6) it is evident that she is able to
formalize [g], but not to generalize).

Omer: The use of letters is senseless, because you have not the result (Omer
resists the change. He knows generalization by heart (2), but he is
not able to put his statement into a formal writing).

Luce: The use of letters is meaningful every time when | am concerned with
the procedure; whenever my concern is about the letter value | must
use number as if we have to solve a problem and we call x a number.
(Luce states clearly the difference between the use of letters as
unknown in problem solving and the use of letters as indeterminates
in the definition of structures [f]. As in (19), ‘procedure’ is structure.
From logical point of view she looks sensitive to the difference
between an existential quantifier — the existence of solution in a
problem — and the universal quantifiers - involved in the statements
of a formal property of addition and multiplication. In this case she
works syntactically).

Rossella: What do you mean with ‘any number’? (Teacher retakes (17))

Luce: All the numbers. (This statement could be misunderstood: small or big
number or other kind of numbers, i.e. [f]? The girl’s classmates
interpret her thinking).

Gino: With natural numbers 10+20=20+ 10 : 10x20 =20x10.

Dante: With integer numbers -1 + (-14) = -14 + (-1) ; -1x(-14) = (-14)x(-1)
(This statement extends the arithmetical structure to integers number
in a form of generalization of monoidal structure of arithmetic to the
ring structure of 2. It is worth noticing that at the moment in which
this discussion took place, pupils have known relative integer
numbers as magnitudes - the winter temperature — and only addition
was introduced among them. The ‘force’ of the structure suggested
them to consider also multiplication, [f] and [g]).

Fabio: With numbers with comma 5,06+7,03+10,05 = 10,05+5,06+7,03
6,7x3,5 = 3,5%6,7 (In this case, addition and multiplication were
well known. Therefore, we can consider this statement as an
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example of ‘en act’ knowledge or Property Noticing of [g]. Remark
that in Italy the ‘comma’ is used instead of Anglo-american ‘point’
for separating the integer part from the decimal one).

27 Dante: With squared numbers 16 + 25 + 36 = 36 + 16 + 25.
28 Luce: With number with powers 1% + 4% + 10° = 10*> + 4* + 1°
22434504+ 7° =34 T 4+5%427 TP x4t =4 < T,
29 Fabio: With fractions 3/5 + 4/10 = 4/10 + 3/5  2/5 x 7/10 = 7/10 x 2/5
(31/40 x 34, =93/ ) (Fabio presents an attempt of computation) .
These proposals (23 — 29) can be interpreted as the children’s search of models
for the ‘abelian’ theory, among the interpretation they know. In a certain sense it
is a ‘validity’ proof of the commutative property in logical meaning.
30 Dante and Kira: For explaining commutative property it is sufficient to say
A+B = B+A AxB = BxA. But for using commutative or for
facilitating computation or for checking computation WE USE

NUMBERS. (Dante is repeating (18); Kira shows the same
cognitive style as her classmate).

31 Dante: Instead of letters we can use symbols. In this case AXC = CxA is
equal to §x* = *x§. (In this intervention Dante suggests to use icons
[e] instead of variables).

CONCLUSION

With this work we tried to show that most pupils involved in the class debate
attained generalization of the several meanings presented in the theoretical
framework. Some of these pupils were able to handle this mental activity using
asuitable language and direct and inverse procedures related with
generalization. Therefore, we can positively assess the long-term teacher’s
activity.

The developmental levels were not the same for all pupils. One of the last levels
in the ‘onion model’ of [g] and the Stage of universal model of [f] were
approached with high similarity by Luce’s interventions, although with some
exceptions. Pupils whose arguments presented aspects of generalization showed
that they accomplished this mental activity in different ways with some
awkwardness.

Less than half of the class participated in this debate. Is this a success? Can we
assume that the long-term teaching activity gave pupils sensitivity towards
theoretical thinking? We are convinced that generalization and the consequent
management of the general concepts are possible in grade 4, but not that every
pupil is ready for this important step. There are relevant intuitions that can be
followed and exploited by the teacher for improving children’s understanding.
The long-term teaching project can be evaluated as fruitful if we consider
important that a fairly high number of children has approached such a complex
topic. In fact, a teacher’s task should be to avoid mortification of clever pupils.
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ASPECTS OF GENERALIZATION IN EARLY ALGEBRA

Annalisa Cusi, Giancarlo Navarra
GREM Universita di Modena e Reggio Emilia, Italy

In this paper we will present some studies we have recently developed in our
research project in the theoretical framework of early algebra. We will illustrate
a first “inventory” of those conditions which might foster the construction of
significant basis to support young students’ gradual approach to generalization
from different points of view (linguistic, perceptive, social and mathematical).

INTRODUCTION: GENERALIZATION AND EARLY ALGEBRA

Traditionally, most curricula separate the study of arithmetic, mainly taught in
primary school, from the study of algebra, considered to be suitable for
secondary school students. However, many researches have shown the negative
effects of a too quick transition from arithmetic to symbolic manipulation.
Warren et al. (2006), for example, suggest that algebraic activity can occur at an
earlier age and that this kind of experiences, proposed through appropriate
teacher actions, could assist students in this complex transition. Blanton and
Kaput (2011), too, stressed the importance of giving children opportunities to
begin using symbolic representations as early as first grade in order to make
them acquire those basic concepts which can allow them easily explore more
complex concepts in later grades. These ideas have brought to the rise of early
algebra, which now has the characteristics of a real new discipline (Kaput et Al.
2007). This is the frame in which we have developed our ArAl Project (Malara
& Navarra, 2003) .

The hypothesis of early algebra is that the common “arithmetic to algebra”
framework is too limiting and narrow (Smith & Thompson, 2007) and that
therefore it should be reformulated in order to give students the opportunity to
develop algebraic thought when they start carrying out the first activities in
arithmetic. This approach does not require to bring the algebraic curriculum in
primary school, but to revise the way in which arithmetic is conceived and
taught in order to promote a shift from a procedural conception of arithmetic to
a relational and structural one. We believe that it is also necessary to clarify
what is the meaning of promoting the development of algebraic thinking at this
level. We agree with Radford (2011), according to whom the use of notations is
neither a necessary nor a sufficient condition for thinking algebraically and that
algebraic thinking is characterised by the specific manner in which it attends to

" ArAl Project (Arithmetic pathways towards favouring pre-algebraic thinking) is a National Project developed
by the GREM (Group for Research in Mathematics Education) directed by N. A. Malara (professor in the
Mathematics Department of Modena and Reggio Emilia University) and coordinated by G. Navarra.
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the objects of discourse. The author suggests that algebraic thinking is about
dealing with indeterminate quantities conceived of in analytic ways (i.e.
considering the indeterminate quantities as if they were known and carry out
calculations with them as with known numbers).

Fostering the teaching of early algebra means, for teachers, giving their students
the opportunity to activate different modes of thinking such as: analyzing
relationships between quantities, predicting, generalizing, exploring stimulating
situations, modelling, justifying, proving.

Generalization is considered to be an important determiner of growth in
algebraic thinking and a fundamental preparation for later learning of algebra
(Cooper and Warren, 2011). A rich context from the point of view of the
different meanings that could be conveyed through it, and therefore potentially
suitable to stimulating generalization processes, is represented by activities
related to the research of regularities (see paragraph D2). During this kind of
activities students have the possibility to experiment a crucial aspect in the
generalization processes: seeing a generality through the particular and seeing
the particular in the general (Mason, 1996). Cooper and Warren (2011) suggest
that, during these activities, a step towards full generalization in natural
language and algebraic notation is quasi-generalization, in where students are
able to express the generalisation in terms of specific numbers and can apply
a generalisation to many numbers, and even to an example of ‘any number’.

In the approach to early algebra teachers play a crucial role in identifying the
best activities to be performed and in promoting those processes which foster
generalization. Obviously their way of proposing these activities in their classes
iIs strictly connected to their deep beliefs, which have been highlighted thanks to
our analysis of the numerous transcripts (about 4500, collected from 2004 and
2011) of the activities performed in our project. These transcripts were object of
a joint reflection carried out by teachers and researchers through the
Multicommented Transcripts Methodology (MTM)® Some reflections on
methodological aspects recur independently of the age of students (from 5 to
15); therefore they can be considered mirrors of the most widespread behaviours
of teachers. The high number of reflections referred to generalization from
different points of view suggested us to identify a tentative but enough detailed
“inventory” that we will present in the second part of the paper. Before
proposing this inventory it is necessary to introduce some theoretical aspects
which constitute our framework for the approach to early algebra, with
particular reference to the aspects related to generalization processes.

8 The MTM, developed in the ArAl Project, is based on the critical analysis of transcripts of the audio-recordings
of whole-class discussions, carried out by the teachers involved in the Project, through the intervention of
different actors: the class teacher, his/her E-tutor, other teachers, teachers-researchers and university researchers.
The commented transcripts are shared through E-mail and during periodical meetings for a critical exchange.
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OUR APPROACH TO EARLY ALGEBRA

Our perspective in the approach to early algebra is a linguistic and
metacognitive one and is based on the hypothesis that there is a strong analogy
between modalities of learning natural language and algebraic language (Cusi,
Malara and Navarra 2011). In order to explain this point of view, we make use
of the metaphor of algebraic babbling.

This metaphor represents the process through which the student acquires first
a semantic, then a syntactic control of the mathematical language in a way
similar to the one he/she learns natural language. This learning is first
characterized by an initial discovery of meanings and a gradual, creative
appropriation of rules and by a subsequent deeper knowledge, developed during
the school years, when the student is able to reflect upon the structure of the
language.

Fostering this process requires to build up an environment able to stimulate the
autonomous elaboration of formal codings, to be negotiated through class
discussions, and a gradual experimental appropriation of algebra as a new
language. The rules of this language are then located into a didactical contract,
which tolerates initial moments of syntactic ‘promiscuousness’.

Another fundamental aspect in our approach to early algebra is therefore
recognizing the potential role played by the relationship between argumentation
and generalization in the social construction of knowledge. Only when
argumentation becomes a shared cultural instrument in the class this relationship
can be made explicit and the students can understand the role played by
verbalization in the development of their capability of reflecting upon what they
are saying. Moreover, comparing particular cases help students recognize their
similarities, gradually highlighting their connecting thread.

Another crucial aspect in this approach to early algebra is helping students
recognize and interpret canonical and non-canonical representations of
numbers® in order to make them build up the semantic basis for the
understanding of algebraic expressions. Non canonical representations can be
considered “semantical ferries” towards generalization (see paragraph A2).

Because of the central role played by verbalization in supporting the
achievement of symbolic notation, another critical aspect is making students
understand the importance of respecting the rules of algebraic language.

While students start soon interiorizing the importance of respecting the natural
language’s rules in order to facilitate communication, it is difficult to make them
develop a similar awareness in relation to algebraic language. It is therefore

® Among the possible representations of a number, one (for instance 12) is its name, called canonical form, all
the others (3x4, (2+2)x3, 36/3, 10+2, ...) are its non-canonical forms, and each of them will make sense in
relation to the context and the underlying process.
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necessary to help them understand that algebraic language, too, is a finite set of
arbitrary symbols which can be combined according to specific rules to be
respected. This kind of conception could be fostered through the creation of
linguistic mediators which force the respect of rules in communicating even
advanced concepts by means of algebraic language, in a perspective which
foster generalization™.

FACTORS WHICH CONTRIBUTE IN STUDENTS’ CONSTRUCTION
OF THE SEMANTICAL BASIS FOR GENERALIZATION

As researchers who develop their studies in the field of early algebra, having to
face the theme of this volume (Generalization in mathematics at all educational
levels) made us try to identify what kind of situations, methodologies and
attitudes could foster, in young students, the construction of the significant
premises for a gradual approach to generalization in order to help them
overcome the difficulties they will have to face in later grades. In the following
we will present a first ‘inventory’ of the situations we have identified,
subdivided according to the ambits they refer to: linguistic, perceptive, social,
mathematical.

Al. Generalization and language: the role of argumentation

The students of a class (11 years old), who are used to argumentation, are exploring
a growing pattern, whose components are called ‘pyramids’, with the aim of
identifying general laws to connect the characteristics of every pyramid (the total
number of triangles it contains, the number of rows, the number of white
triangles...) with its position in the pattern.

Vv ﬁ}

A da Lb LS80

1 2 3 4
When the class is working to find a general law to determine the number of black
triangles in the row which constituted the base of every pyramid, a student (Y.)
observes: “On the line where the pyramids lie ... for example, in the fourth pyramid
the black triangles are four and the white are three ... my pyramid of six floors has
six black triangles and five white triangles on its base... The white (triangles) are
always one less than the blak ones. Maybe a pyramid with any number of floors has
a number of black triangles on its base which is equal to the number of floors and
as many white triangles as the black ones minus one”. The teacher of the class
proposed this reflection as a comment to the transcript: “Before her intervention, Y.

wasn’t aware of her conclusions but, as she was verbalizing, she started deducing
and expressing the general rule”.

9 1n the ArAl Project, as a linguistic mediator, we use Brioshi, a virtual Japanese student who doesn’t speak the
Italian language but knows how to express himself using a correct mathematical language. Brioshi is an
algebraic pen friend with whom students communicate using mathematical sentences which should be written
through a correct application of syntactical rules in order to be understandable (Malara e Navarra, 2001).
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This example highlights the fundamental role played by the relationship between
argumentation and generalization in the social construction of knowledge. This
relationship can be made explicit only when argumentation becomes a shared
tool for the teacher and the students: every component of the class has to get
involved in this process and has to relate him/herself with the ways in which the
other components get involved. This means that the students must take the
responsibility for their learning and that the teacher must take the responsibility
for fostering students’ social construction of their knowledge.

We could say that the power of argumentation is related to the fact that those
who start developing it are not completely aware of their ideas before they try to
express them. As argumentation becomes an habit, the student understands its
value and becomes aware of its role in comparing facts and in making their
similarities gradually emerge, together with their connecting thread.

A2. Generalization and language: the potential general

Through the activity called ‘pyramids of numbers’ (the sum of every couple of
numbers written on two adjacent bricks is equal to the number on the brick over
them), the teacher guides students toward the identification of the law which
expresses how to determine, without any calculation, the number written on the
brick at the top of a three-floors pyramid as a function of the numbers written on the
three bricks on the basis of the same pyramid.

20 TH4x2+5
11 9 7+4 4+5
7 4 5 7 4 5 7 4 5
Fig.2a Fig.2b Fig.2c

The classical method of completion (Fig.2b) is not enough in order to determine
the required law because it leads to an ‘inexpressive’ result (in this case 20). The
non-canonical representations (Fig.2c), instead, allow the construction of what
we call a relational-ontological representation of the number at the top of the
pyramid, i.e. the representation which constitutes the best explicitation of the
general law “The number at the top is the sum of the two side numbers and the
double of the middle one”. The next step to be carried out is the translation of
the equality 20=7+4x2+5 into natural language. The final step for students is
becoming aware that this sentence, expressed in natural language, constitutes a
potential general through which it is possible to carry out a further conversion
into algebraic language: n=a+2b+c. We think that the first, epistemological,
source of difficulties associated with the use of letters in mathematics, is related
to the capability of conceiving a letter as a number. This aspect could represent
an insurmountable barrier to algebraic language and generalization.

The concept of potential general could be related to the notions of quasi-
variable (Fuji and Stephens 2001) and quasi-generalization (Cooper and
Warren, 2011) as possible bridges between arithmetic and algebra for students
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from 6 to 14 years old. This observation leads to the introduction of another
theoretical construct, essential in the construction of the necessary conceptual
and methodological premises in an effective approach to generalization.

A3. Generalization and language: the pupil as thought producer

The ‘law’ identified in the previous example of the bricks pyramid is: “The
number on the top is the sum of the two side numbers and the double of the
middle one”. This conclusion represents an important moment of condensation
in the evolution of algebraic babbling. The pupils have been guided towards the
collective construction of a general, though improvable, definition and have
formulated its explicitation. They were protagonists as producers of ‘original’
mathematical thought: it means that they were able to express with a clear and
synthetic language what they have understood and what they have said in public.
Traditionally, however, the teacher is the one who mediates between the topical
moments of institutional mathematical thinking (principles, theorems,
properties, etc.) and their application; in these cases the pupils are mainly re-
producers of a theory, to the organisation of which they are basically strangers.
On the contrary, it is very important that pupils are educated — through forms of
collective exploration of thought-provoking problematic situations — in
producing, in the natural language, general conclusions to be shared with the
classmates and the teacher, organising them in a coherent and communicable
way, as an intermediate step towards a later translation into mathematical
language.

B. Generalization and perception

Perception, i.e. the psychic process operating a synthesis of sensory data into
meaningful forms, developed in a socio-costructivistic context, allows to create
meaningful premises to the approach to generalization. If, for example, one is
asked to express his/her calculation strategies in order to find out the number of
pearls contained in this necklace:

e __ 60 __00 __00 __00 __600 __600 _600 _ 00

two different perceptions arise, which lead to two different representations of the
counting strategies (on this aspect, see also paragraph D1): (a) visualising the
black and the white pearls separately leads to the representation 2x9+3x9; (b)
‘concentrating’ on the pattern leads to (2+3)x9. We interpret the dynamics of the
situation in the classroom through the following model:
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If an (a) or a (b) pupil were alone, he/she would limit him/herself to his/her
personal mental model and to its consequent external representation, because he
would not be motivated towards searching for other interpretations, and
therefore counting modes. A didactic contract based onto collective
argumentation, on the contrary, promotes the sharing of knowledge: each pupil
compares his/her representation with the other one and discovers that his/her
way of ‘seeing’ the necklace is not the only one. The result is therefore
a feedback that influences the internal representations and the new way in which
the necklace structure can be perceived. The social construction of knowledge
promotes the evolution of thought towards a shared conquering of new
meanings. Overcoming the initial difficulty of integrating the other’s vision is
the first step towards the understanding of the equivalence of the
representations: 2x9+3x9=(2+3)x9. This shall lead to the development of the
general meaning of the equality axct+bxc=(atb)xc and therefore to the
understanding of the distributive property (Malara & Navarra, 2009).

C. Generalisation and conceptualisation: the conceptual condensation

The class (10-years-old) is exploring the behaviour of a scales, seen as a metaphor
of first grade equations at one unknown quantity.

Teacher: Let’s describe the situation.

Jacopo: On the right hand side there was baking soda and 100 grams. On the
left hand side there were three glasses of baking soda.

Teacher: And what are we aiming at?

Jacopo: We want to find out how much a glass of baking soda weights.

Teacher: Ok. So what have we done, Matteo?

Matteo: We have removed a glass from both sides, then we have divided by

two the content of both dishes. So now we have a glass of baking
soda on the left and 50 grams on the right. A glass weights 50 grams.

We refer to the transition from the dynamic phase of concrete, generative
activities, which characterize the pupils’ educational path particularly in the first
eight years of schooling, to a phase in which the teacher promotes the
condensation into knowledge of the mathematical concepts underlying the
activities. The one in the example is meant to promote the need to spot out the
principles of equivalence as tools to represent the experiences carried out. These
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new concepts shall then be linked to knowledge concerning operations on
natural and relative numbers, to the properties, to the use of letters, to the
meaning of ‘equal to’. By reflecting onto the experiences carried out, the pupils
are guided towards the identification of general principles that allow to solve
other, structurally similar situations. A weak leading in this transition phase does
not allow — and sometimes inhibits — the progressive approach to generalization,
since the pupils shall keep operating at a concrete level, without working out any
theory.

D1. Generalisation and foundational mathematical aspects: the evolution of
counting strategies

During our cooperation between Italian classes of the ArAl project and English
classes (pupils aged 9 to 15) we presented the following situation:

This drawing represents a structure made of toothpicks.

Count the number of toothpicks and explain in the
mathematical language your counting strategy. It doesn’t matter
to determine the number of toothpicks.

With the Italian pupils (13 years old) we discussed the strategies produced by
the English pupils (15 years old): (1) 5+5x11; (i1) 3x(3%x5+1)+6+6; (iii)
5x4+5x4x2. We asked them to interpret these strategies so as to make clear the
meaning of these expressions. The evident result was that each counting strategy
reflected the way in which the groups had perceived the structure of the
construction (see paragraph B). For instance: the Italian pupils explained that the
members of the group (i) had seen the five pillars as ‘combs’, and they had then
added the last five vertical toothpicks. Free to count, the pupils discovered many
alternative strategies, some of which were more ‘economical’ than others. When
they were guided in comparing the expressions, they found out equivalences
through proves, e.g. for (i) and (iii):

5+5x11=5x4+5%4x2 > 5x1+5x11=5x4+5x8 > 5x(1+11)=5x(4+8) > 5x12=5x12

Starting from this activity, generalization arises as soon as the static situation is
transformed into a dynamic one, that is in the moment in which students begin to
explore how the counting strategies change in relation to the changing of the
square’s dimensions, and they are asked to say if it is possible to find out a ‘law’
that allows to determine the number of toothpicks that are necessary to build
a given shape. The pupils discover that it is better to organize an in-order
research, for instance through a display of drawings of the following kind:
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The pupils are guided to activate a common counting strategy which express the
interrelation between the number of toothpicks and the number of the place of
the corresponding square and which can be expressed through a formal
representation of the number of toothpicks of a construction, at the generic place
n. In this way, they can identify the structures that allow to express the relations
connecting the numbers in play in a given problematic situation, i.e. its
structure. In this case (if n is the number expressing the position and s is the
corresponding number of toothpicks) they write, for instance, s=2n(n+1). If the
teacher concentrates mainly on the calculus processes, neglecting the reflection
on them, she prevents the pupils from going through the experience that is
necessary to the process of generalization and to the conceptualisation of
arithmetical structures.

D2. Generalization and foundational mathematical aspects: the progressive
achievement of the concept of structural analogy

Rosa (kindergarden - 5 years old) is comparing cardboard ‘trains’, the carriages of
which contain objects set in a precise order. She is concentrating on two of them.

Teacher: Why are you looking at those two particular trains? What do they contain?
Rosa: Here is a red, a red and a yellow.

Teacher: Yes, they are Duplo bricks. And what have you got in this one?

Rosa: A walnut, a walnut, a sunflower and it goes on so.

Teacher: So what?

Rosa: They are almost the same.

In this example, Rosa is doing algebra, since she finds out in a naive way the
structural analogy between the two trains. Right from kindergarten or primary
school, pupils can be allowed to recognize relationships between the elements of
a sequence and their place number. They discover analogies (in this case,
between two train structures), describe them with words and represent them with
a code (e.g.: AAB), thus approaching a germ of formalised language, and
therefore generalization. The common construction of the code, developed at the
stage allowed by the pupils age, hence represents the collective result of a
relational reading of the situation, in which the attention is concentrated not on
its elements, but rather on the relationships that connect them. Being able to spot
out such correspondences between different situations allows the development
of analogical thought. Kindergarten constitutes the first step of this process,
within a logic of continuity with primary school, where these germs of thought
shall gradually ripen along the following school grades, through the exploration
of a kind of arithmetic built up in the perspective of the development of
algebraic thinking, hence towards a more mature generalization and a more
advanced kind of abstraction.
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CONCLUSION

What we have described shows educational aspects that we believe should be
constantly strengthened, since they support the process towards generalization,
promoting in the pupils metalinguistic and metacognitive aspects, and
consequently reflection: (A) on language: the ability to construct
argumentations, to translate from natural into algebraic language, to produce
original thought; (B) on the relationships between perception and the social
construction of shared knowledge; (C) on passing from concrete generative
situations to the construction of concepts (conceptual condensation); (D) on
some foundational mathematical aspects: the evolution of counting strategies
and the progressive attainment of the concept of structural analogy.
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COGNITIVE OSMOSIS IN CLASS AND YOUNG PUPILS’
COGNITIVE PROCESSES IN GEOMETRY

Jaroslava Klobouckova, Darina Jirotkova

Charles University in Prague, Faculty of Education

This article has two objectives: first, to present some preliminary results of our
research in which we focus on mapping young pupils’ cognitive processes in
geometry and on the process of knowledge transfer from an individual pupil to
agroup, i.e. on cognitive osmosis. The second objective is to demonstrate
through own practice and experience how conducting experiments and engaging
in their deep analysis can be an effective tool for the development of a teacher’s
professional competences. The tool selected for the experiment is a set of
geometrical problems from the learning environment of Cube buildings,
involving 3D shapes and their 2D representations.

INTRODUCTION

The educational process is determined by various factors. In one of the
universally known models, the relationship between a) the pupil, their learning
and their development, b) the teacher and their professional endowment and c)
the subject content is expressed by the model of a didactic triangle. The
importance that has been assigned to the different parts of this didactic triangle,
has varied throughout the past.

T. Janik in (2009) writes that “There are numerous didactic transformations,
transpositions or reconstructions taking place between the vertices of the
didactic triangle. These are the subject of specific subject didactics.... It has
become apparent that teacher’s didactic content knowledge is a prerequisite for
awell mastered didactical transformation.” Lately, the notion of teacher’s
pedagogical beliefs and their role in the individual teaching style of a teacher
has become a frequent subject in mathematical education research. The teacher’s
belief develops and grows more mature the longer he/she teaches. It is formed
by his/her education, life style, demands of the society, it reflects the
opportunities of life-long education and many other circumstances (Hejny,
Kutina, 2009).

Important prerequisites for a change in pedagogical belief system and for the
shift towards a development of a constructivism-oriented teaching style are
a need for self-improvement and the availability of adequate tools.

Based on our experience, conducting classroom experiments with pupils or
students, reflecting on such experiments and analyzing them not only from the
perspective of an independent researcher but also that of a participant, form
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a very effective tool for teacher self-education. For that reason, one of the
authors of this paper took up an offer to teach mathematics at the first year of
primary school to complement her teaching contract at the faculty of education
in primary school education. Thus a longitudinal action research was started that
has been initially set for the period of five years, with the possibility of a 4 year
extension. This presents an opportunity to collect a significant amount of
valuable data. The outcomes of day to day analysis and reflection on the
observed classroom situations are being regularly used to modify the subsequent
teaching plans and strategies with the ultimate goal of centering the class
activities around students. The data collected in experiments prompted by
unforeseen situations is being collected and in the future will be subjected to
thorough analysis. This work will form the basis for the dissertation of the first
of the authors.

METHODOLOGY

The first author in the role of a teacher-researcher started teaching mathematics
4-5 times a week in the first grade of a primary school in Prague on the 1%
September 2010. The teaching content is given by the School Educational
Program (SEP). A rough draft of a lesson plan is usually prepared by the
teacher-researcher for the whole week and a detailed lesson scenario is done for
each upcoming lesson. Each lesson is videotaped and the elaboration of
a detailed scenario for the following lesson is based on reflection upon viewing
the video recording. In the scenario much attention is paid to differentiated
approach to pupils.

The participants in this research are all pupils attending the class. There was no
initial selection. There were 25 pupils in this class on the 1% September, out of
whom 18 currently attend classes on a regular basis, there are 10 girls and 8
boys.

The following research documents are being collected and compiled: framework
weekly program, detailed updated protocol for every lesson, video recording of
each lesson, transcripts of selected video recordings, pupils’ written production,
including individual work, pair work and whole class work. A teaching journal
IS kept to record the first reflection based purely on the teacher-researcher own
daily observations. Once a week a second reflection is done based on the week’s
video recordings. In this reflection stage, some interesting phenomena are
identified, and relevant samples from the video recordings are transcribed,
formatted and archived. The reflection is also guided by feedback from
colleagues and students who observed the lesson. This “external reflection” is
also documented.

Whenever necessary a further analysis of selected video segments is conducted
in cooperation with one of my more experienced colleagues — experts. The
theoretical framework for this analysis is specifically Hejny’s Theory of generic
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models (Hejny, 2011a). This analysis usually results in an elaboration of
a further partial experiment or a series of experiments with the potential to
further reveal a particular phenomenon.

The teaching is guided by the principles of constructivist approach to teaching
and focuses on the building of schemata as understood in the didactic framework
of scheme-oriented education (Hejny, 2007; Hejny, 2011 a, b). This approach is
supported by the use of the textbook authored by M. Hejny et al. The pupils
work in many different learning environments, both arithmetic and geometric,
e.g. Stepping (Slezakova, 2007; Jirotkova, 2011), Bus (Hejny, Jirotkova
20094, b), Additive Triangles, Neighbours (Hejny 2007), Wooden Sticks, Paper
folding, Parquets (Hejny, Jirotkova, 2010), Cube Nets (Hejny, Jirotkova, 2007;
Jirotkova, 2010), ...

One of the learning environments significantly contributing to development of
spatial imagination is the learning environment Cube Buildings (Jirotkova,
2010). Work with a set of cubes has been incorporated to class work on a regular
basis since the beginning of the first year. The concept cube building is not
explicitly defined for pupils but by many different activities (see Fig. 1. Task 1,
2, 3, 4). This concept is pre-concept of geometrical solid. At the same time, it is
included as a topic in various mandatory courses for students in primary
education programs at the Faculty of education.

THE FIRST EXPERIMENT

In March 2011 an interesting phenomenon was observed in the pupil Vena (all
pupils’ names have been changed). We decided to study this phenomenon and
the subsequent lesson scenario was prepared in great detail. As a result, the first
experiment here presented was carried out in two consecutive lessons. The
experiment was conducted by the first author and so the I-statements here refer
to her.

In the introductory stage of the first lesson the pupils were working in groups of
five and six. Each group had at their disposal an unlimited number of cubes and
a square grid. The size of the squares in the grid corresponded to the size of the
face of the cube. The pupils were given these oral instructions:

Task 1.

Construct a cube building using exactly four cubes and draw its plan into the square
grid. Carry on with this activity and try to construct as many buildings as possible.

The groups could work at their own pace.

What is didactically important at this task? The task requires manipulative
activity. Each cube building is a geometrical object, however, the whole set of
solutions is a combinatorial object. The task thus connects two mathematical
areas — geometry and combinatorics. When we look at the set of solutions as a
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combinatorial object two questions are elicited: 1) Do | have all of them? 2) Are
not two of them congruent? The second question brings our mind back to

geometry.

Vena (Ve) was working in a group with three girls. He took up the role of
a coordinator. The girls were engaged in the building process and Vena was
deciding which cube building should be recorded. After a moment, he reported
that they were finished with the task. The following discussion (transcript min
38:05 — 40:53) took place then: (Te means teacher)

TeO1:
VeOl:
Te02:
Sa01:

Ve02:
Te03:
Vi01:

Ve03:
Te04:

There’s still some time left. Look for other buildings.
But we have all of them.
How many do you have?

One, two, three, four, five, six, seven, eight, nine, ten, eleven,
twelve. And this one was constructed by me (pointing at one
building).

Well, we have twelve of them and that’s all.
| think that some other may still be built, what do you think?

I’ll try (constructing some buildings again but in a different
position).

No, not this one. We already have it. It’s simply impossible.
But your friends don’t believe you, look, perhaps they’ll manage.

(Others take cubes into their hands and try to construct new buildings, Ve takes

Ve04:
Te05:
Ve05:

a)

them out of their hands.)
But it’s really impossible! Really.
Try to persuade them that it’s impossible.

Well, if | take from the tall one (pointing at the tower building a) the
top cube, | must place it here next to it. And we already have that
here (pointing at b). And if | take the top one here, then we can place
it (still pointing at the building b) here (c), here (d), here (e), here (f)
or here (g). And we already have all these here (pointing at ¢ — g).
And it’s the same in case of the lower ones (pointing at the rest of
the buildings h —1).

Va—

1 |D%%|

b) c) d) e) f) 9)

Lo 0P e Qe ap

Figure 1: Cube buildings constructed out of four cubes.
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Te06: So, what do you think? Is Vena right?
St01: I don’t understand him at all.
Sa01l: (Only watching Vena up to this point, holding one cube in her hand

and moving it in space according to Vena’s explanation.) Yes, we
won’t find any more.

Te07: So, you’ll tell the rest of the class in the end of the lesson what
you’ve just discovered, OK?

The teacher-researcher tried to dissuade Vena from his conclusive statement
(Te01, Te02, Te03). In the end she was able to guide him towards reasoning and
justifying his conjecture. In (Ve05) the pupil described a strategy for
constructions of all cube buildings out of four cubes. He spoke very quickly and
he tried to tackle the difficulties of using geometrical terminology by frequent
use of gestures and demonstrative pronouns. It was apparent that the rest of the
pupils did not completely comprehend his explanation (St01). They tried to
verify his conjecture by searching for new buildings. Perhaps only Sara (Sa01)
was ready to accept Vena’s construct, i.e. his generic model (Hejny, 2011a) of
strategy for constructing all cube buildings out of four cubes, and to take
ownership of it.

In the final stages of the lesson, each group presented their findings and the rest
of the class was checking them. They found five, eight and twelve (ten, after the
others corrected the result) buildings. Vena was the last one to be given the
opportunity to speak and present his group’s findings. At the exact moment
when he said: “We have built 12 constructions and there are no more possible,”
the bell rang. Due to the noise, it was impossible to record precisely his
explanation (why it is impossible). From his gestures we could infer that he was
showing a way to exhaust all possibilities by sorting out the buildings by their
height and constructing all buildings of the same height. We believe that Vena
presented his strategy for constructing all cube buildings out of four cubes.

This fact inspired further experimenting. The idea was to investigate the
persistence of the generic model (the strategy) in Vena’s mind, his ability to
modify it for another context and its transfer to other pupils; we call this latter
process cognitive osmosis (Hejny, 2011a). In the next class, then, all children,
with the exception of Vena, were given this task:

Task 2.

Take out exactly four cubes, not more than that. Construct a cube building from all
of these cubes and draw its dotted plan into a square grid. Using the same cubes,
construct another building and also draw it. Try to find as many buildings as
possible.

By dotted plan of a cube building we mean 2D representation of a cube building
where the cube is represented by a square and e.g. tower of three cubes is
represented by three dots in a square (see Fig. 2.).
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Special attention was paid to the three girls who had been members of Vena’s
group the previous day. These pupils all used the result of their previous work
and arrived at 12 different constructions. Vena’s problem-solving strategy,
however, was not used, due to the fact that there hadn’t been time for him to
share it with his classmates the previous day. The exception to this phenomenon
was Sara who organized her plans in a way that made it easy to see that all
possibilities were exhausted. We suggest that Sara picked up on Vena’s strategy
and now was applying it in her own way, in the ordering of her pictures. In other
words, cognitive osmosis took place within this particular group.

Vena worked entirely on his own, but he got a slightly modified assignment:

Task 3.

Take all your cubes. Construct as many buildings as possible but only those that are
made of exactly five cubes and which have not more than 3 cubes on the first floor.
Draw their dotted plans into the square grid.

We expected Vena to use the same strategy that he had used when justifying his
hypothesis of completeness of his solution. Yet, this expectation was not met.
Clearly, Vena approached this new situation as a completely new problem. He
was asked again to come up with the number of all possibilities but this time the
restriction placed on the number of first floor cubes made the task more difficult.
Vena repeated his process of discovery through creating isolated models. This
time, though, the process took him less time and using only a few isolated
models, Vena was able to create a sequence of these models: five-floor
buildings, four-floor buildings, three-floor buildings with two cubes in the first
floor and so on. These generic models became isolated models of a higher level
and based on them Vena constructed a new generic model. It is apparent in the
video recording that he was showing this strategy with his hand movement. As
any change of language was not present in Vena’s communication we still speak
about generic model, not a piece of abstract knowledge.

THE SECOND EXPERIMENT

The second experiment took place in the second year in November 2011, i.e.
there was a lag of six months between the experiments. In those six months
children were regularly given problems about Cube Buildings including those
that called for examining and describing different types of buildings based on a
given plan. In November 2011 the pupils were presented with this task:

Task 4.

Construct buildings based on the given plans and record the number of cubes in
each floor for each building in a table.

The worksheets available to the pupils contained the dotted plans of eight
different buildings built from four, five or six cubes of different colors. There
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was also a table designed for recording the number of cubes in each floor

(Fig. 2).
green red orange | e || e | (33 S| *|* 