
  

 

 

 
 
 
 
 
 

Critical thinking practices in 
mathematics education and beyond 

 
 
 
 
 
 

 
 

Editors 
 

Bożena Maj-Tatsis 
University of Rzeszow 

Rzeszów, Poland 

 
Konstantinos Tatsis 
University of Ioannina 

Ioannina, Greece 

 
 
 
 

 
Wydawnictwo Uniwersytetu Rzeszowskiego 

2022  



 

 
 
 
Reviewers 

Jenni Back 
Ineta Helmane 
Edyta Juskowiak 
Eszter Kónya 
Eva Nováková 
João Pedro da Ponte 
Christof Schreiber 
Lambrecht Spijkerboer 
Ewa Swoboda 
Michal Tabach 
Konstantinos Tatsis 
Paola Vighi 
 
 

Cover Artwork 
 Aftersounds of (un)defined futures, 2022  
 by Andreas Moutsios-Rentzos and Ioanna Kloni 
  
 
 
Layout Design 

Bożena Maj-Tatsis 
Konstantinos Tatsis 

 
 
 
 
 
 
 
 
 
 
 
ISBN: 978-83-8277-013-1 
 
© Wydawnictwo Uniwersytetu Rzeszowskiego 
Rzeszów 2022 
 
No part of the material protected by this copyright notice may be reproduced or utilized in any 
means, electronic or mechanical, including photocopying, recording or by any information 
storage and retrieval system, without written permission from the copyright owner. 
 
Nakład: 150 egz. 



 

TABLE OF CONTENTS 
 

Introduction.................................................................................................................... 
 

5 

Critical thinking in mathematics education: the researchers’ perspectives 
Bożena Maj-Tatsis, Konstantinos Tatsis......................................................................... 
 

 
7 

Part 1 
Teachers promoting critical thinking in the mathematics classroom 
 

 

Mathematical creativity in the classroom: teachers’ beliefs and values 
Esther S. Levenson........................................................................................................... 
 

 
21 

Argumentation, explanation, mathematical proof 
Maria Alessandra Mariotti ............................................................................................. 

 
38 

 
Primary teachers’ pedagogical design capacity for a smooth mathematical transition 
from primary to secondary education 
Sotirios Katsomitros, Konstantinos Tatsis....................................................................... 
 

 
 

52 

A study on the use of mathematical senses and critical thinking of student teachers 
Esperanza López Centella............................................................................................... 
 

 
61 

 
Reflection of pupils’ composition of word problems: a contribution to the 
development of didactic competences of prospective primary school teachers 
Eva Nováková.................................................................................................................. 
 

 
 

71 

(How) do trainee teachers support mathematical thinking? 
Tobias Huhmann, Sabine Vietz....................................................................................... 

 
80 

  
Activities suggested by adults: counting and enumerating 
Esther S. Levenson, Ruthi Barkai, Pessia Tsamir, Dina Tirosh, Leah Guez Sandler..... 

 
91 

 
Part 2 
Students manifesting critical thinking in the mathematics classroom 

 
 

  
Learning to reason mathematically with meaning 
João Pedro da Ponte....................................................................................................... 
 

 
105 
 

Improving understanding of logarithms using cryptography-based activities 
Ivona Grzegorczyk........................................................................................................... 

 
118 
 

Observing critical thinking during online pair work 
Emőke Báró..................................................................................................................... 
 

 
128 

First experience with problem-posing: what can be done with a multiplication table? 
Linda Devi Fitriana......................................................................................................... 
 

 
137 

 



4 

Manipulation possibilities and manipulation realities with digital media by learning 
mathematics 
Tobias Huhmann, Chantal Müller................................................................................... 
 

 
 

147 
 

Critical thinking in early arithmetics: discovering and reflecting on task solutions 
within reciprocally designed learning environments 
Tobias Huhmann, Ellen Komm........................................................................................ 
 

 
 

158 

Critical thinking in modelling real-life phenomena based on students’ explorations 
Eliza Jackowska-Boryc.................................................................................................... 
 

 
171 

Metacognitive activities as a means to enhance students’ critical thinking 
Edyta Nowińska............................................................................................................... 

 
182 

  
Difficulties of students with critical thinking during proving 
Anna Pyzara.................................................................................................................... 
 

 
193 

 
One task – different solutions 
Marta Pytlak.................................................................................................................... 
 

 
204 

An investigation about the links of geometrical thinking with spatial ability and 
formal reasoning 
Andreas Moutsios-Rentzos, Georgia Benou.................................................................... 
 

 
 

215 

Critical thinking in overcoming a faulty decision-making system when solving 
mathematical tasks 
Mirosława Sajka, Edyta Tomoń....................................................................................... 
 

 
 

226 

Addresses of the contributors....................................................................................... 236 
 



 

INTRODUCTION 
 
 
Critical thinking in mathematics can be envisioned as an aspect of a wide range 
of mathematical activities, such as problem solving, problem posing and 
reasoning. Moreover, critical thinking contains the element of dispositions, which 
stress the human agent, specifically the critical thinker. Additionally, some 
approaches stress the critical aspect, by focusing on the critical thinker as 
a responsible citizen, who is not only able to solve problems, but also to be aware 
of the societal impact of the suggested solutions. The multifaceted nature of 
critical thinking has led to various definitions and approaches on its study. This 
fact is showcased in the current volume. 
Critical thinking in mathematics adheres to the above characteristics, therefore it 
can be related to affective components of mathematics learning, but also to critical 
mathematics. Additionally, one should not ignore the affordances and the 
constraints for developing critical thinking in the mathematics classroom. 
The works in this volume contribute to the above considerations, by presenting 
approaches that focus either on teachers or on students. Following this, the volume 
contains two main parts. Part 1, entitled Teachers promoting critical thinking in 
the mathematics classroom presents works that focus on preservice and inservice 
teachers’ views and actions towards enhancing their own or their students’ critical 
thinking skills. Part 2, entitled Students manifesting critical thinking in the 
mathematics classroom presents works that focus on analysing students’ critical 
thinking skills, usually in relation to a learning environment designed by the 
teacher. The volume begins with a study on mathematics education researchers’ 
views on critical thinking in mathematics. 
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CRITICAL THINKING IN MATHEMATICS EDUCATION: 
THE RESEARCHERS’ PERSPECTIVES 

Bozena Maj-Tatsis*, Konstantinos Tatsis** 
*University of Rzeszow, Poland, **University of Ioannina, Greece 

 
Bearing in mind the importance of critical thinking in education and, particularly 
in mathematics education, we designed a study in order to examine the ways that 
researchers in mathematics education perceive critical thinking. An online 
questionnaire was distributed, containing four questions on critical thinking, its 
relationship with mathematics and the possibilities for developing it within 
education. The results from the thirteen respondents adhere to those of relevant 
studies, but also add some new elements of critical thinking, such as being an 
effective communicator. 
CRITICAL THINKING IN (MATHEMATICS) EDUCATION 
The notion of critical thinking has been extensively used in the literature of 
education to denote particular skills and dispositions. Many definitions for critical 
thinking have been suggested by researchers (Ennis, 1989; Facione, 1990; Paul 
& Elder, 2002). One of the most encompassing ones is the following: 

We understand critical thinking to be purposeful, self-regulatory judgment which 
results in interpretation, analysis, evaluation, and inference, as well as explanation of 
the evidential, conceptual, methodological, criteriological, or contextual 
considerations upon which that judgment is based. (Facione, 1990, p. 2) 

It is important to note that critical thinking consists of skills but also of 
dispositions. Abrami et al. (2015) invite us to consider “a person who possessed 
the cognitive skills associated with CT but who lacked the disposition to learn 
about or discuss social issues–it would be difficult to call this individual an 
effective critical thinker” (p. 277). Making informed judgements about social 
issues can be related to social responsibility as one of the ‘21st century skills’, 
which are commonly mentioned in the relevant literature (Ananiadou & Claro, 
2009). 
In mathematics education, critical thinking can be viewed: 

as a by-product of mathematics learning, as an explicit goal of mathematics 
education, as a condition for mathematical problem solving, as well as critical 
engagement with issues of social, political, and environmental relevance by means of 
mathematical modeling and statistics. (Jablonka, 2014, p. 160) 

Additionally, as we have noted in an earlier work (Maj-Tatsis & Tatsis, 2021), 
critical thinking has been associated with specific mathematical activities, such as 
problem solving and posing, reasoning, identifying the suitability of problem 
solutions, and metacognition. At the same time, there seems to be no agreement 
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among researchers on whether critical thinking is subject-bounded and/or subject-
specific (Ennis, 1989). Additionally, there have been varying approaches on the 
types of teaching that contribute the most to the development of critical thinking 
in mathematics (Aizikovitsh & Amit, 2010), but also in general education. This 
fact, together with the inconclusive nature of the discussion on what is critical 
thinking in mathematics, have led us to conduct a study among researchers in 
mathematics education. Our aim was to examine their views on the nature of 
critical thinking, its relationship with mathematics and the possibilities for 
developing it within education. The questions posed to the researchers were the 
following: 

• What is critical thinking in mathematics? Can you give some examples of 
critical thinking in mathematics? 

• How would you describe a person who is a “critical thinker in 
mathematics”? 

• Do you believe that critical thinking in mathematics can be developed? If 
yes, how? What are the challenges for the teachers? 

• Do you think that critical thinking in general can occur without 
mathematics? If yes, what could be its characteristics? 

The questions were chosen in such a way to enable us to investigate the dual 
nature of critical thinking (abilities and dispositions), the teaching approaches for 
critical thinking and whether it is viewed as subject-bounded and/or subject-
specific. 
METHODS 
An online questionnaire was delivered to mathematics education researchers in 
2022; it contained the four questions mentioned in the previous section, together 
with the following: 

• How many years of experience do you have as a researcher in mathematics 
education? 

• How many years of experience do you have as a mathematics teacher in 
primary and secondary education? 

The responses to the above questions, together with the countries of residence and 
the gender of the responders are presented in Table 1: 

Researcher Country Gender Research 
experience 

Teaching 
experience 

R1 England F 25 6 
R2 Netherlands M 35 12 
R3 Portugal M 40 6 
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R4 Italy F 50 0 
R5 Latvia F 20 6 
R6 Italy M 10 3 
R7 Israel F 17 28 
R8 Poland F 17 1 
R9 Poland F 40 10 
R10 Poland F 4 8 
R11 Poland F 10 1 
R12 Greece M 18 0 
R13 Poland F 20 10 
                               M  23.5 7 

Table 1: Participant data. 

The responses to the questions on critical thinking were mainly analysed by 
performing a thematic analysis (Boyatzis, 1998). Particularly, we categorised the 
emerging themes within the main topics of our interest, namely: Definition (i.e., 
characteristics of critical thinking in mathematics), Thinker (i.e., characteristics 
of a critical thinker in mathematics), Development (i.e., features of teaching 
focused on critical thinking in mathematics), and Subject (i.e., relationship 
between critical thinking and mathematics). For each theme, we identified the 
relevant categories, as appeared in the responses. In most cases, each utterance 
was assigned to one category; in few cases a single utterance was assigned to two 
categories. The responses could contain more than one category. 
RESULTS 
Definition: characteristics of critical thinking in mathematics 
Five overarching categories were identified in the responses: problem solving, 
evaluation, reasoning, mathematical knowledge, and reflection. Table 2 presents 
the frequencies of all nine categories: 

Category f 
Problem solving 10 
Evaluation 6 
Reasoning 4 
Mathematical knowledge 4 
Reflection 3 
Citizenship 2 
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Noticing mistakes 2 
Autonomy 1 
Motivation 1 

Table 2: Definition/characteristics of critical thinking in mathematics. 

The above results provide a glimpse of the researchers’ views on critical thinking; 
by looking at each response, we identified the qualitative properties of each 
category. Problem solving possessed various properties. For instance, the most 
prevailing one was the mere solving of given tasks. In other cases, though, the 
researchers referred to real-life problems or, to ways to solve a problem: 

critical thinking is the process of application [of] the appropriate 
models/methods/mathematical tools in solving real-life problems (R10) 
I would consider instances of critical thinking: […] neglecting information (entry 
data of a problem) to transform the problem in an easier one (R6) 

Evaluation was mainly expressed in the form of evaluating a problem’s solutions 
(or solution paths), in order to decide on their plausibility based on the given 
contextual demands. At the same time, some researchers expanded the evaluation 
to more aspects of mathematical activity: 

Critical thinking is a focused analysis of information. Student analyzes and evaluates 
different types of information and situations (R5) 
critical thinking in mathematics is the ability to make an evaluation of a response, of 
mathematical proof, of a mathematical text, of the value or beauty of a mathematical 
problem, or of any other piece of mathematical text (R3) 

Some researchers claimed that the evaluation of solutions or solution paths should 
be made on the basis of mathematical reasoning: 

A child, or a teacher, who is able to think critically in mathematics will have 
knowledge of an appropriate number of mathematical facts and procedures but will 
also be able to reason about which one would be appropriate to use in a given context 
and to use mathematics to solve problems in that context (R1) 

Mathematical knowledge was manifested in different ways in the researchers’ 
responses; from being a prerequisite of critical thinking (see, e.g., the excerpt 
above) to being able to connect or work with mathematical theories: 

critical thinking involves the identification of gaps in existing mathematical theories 
and/or discerning the need for formulating new theories and/or realizing the need to 
reformulate mathematical theory to be in line with the mathematical idea (e.g. the 
history of the various definitions of the curve) (R12) 

Reflection was mainly identified as reflective thinking, which could be in turn 
associated with metacognition: 
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Critical thinking is also related to the ability to choose the way of proceeding, the 
method of solving the task. For me, critical thinking in mathematics is related to 
reflective thinking (R8) 
the ability to self-observe mathematical activity and the ability to analyze one’s own 
errors (R13) 

Citizenship, or precisely critical citizenship, was manifested either directly as the 
awareness of the ‘why?’ of a problem, or indirectly as a result of the ability to 
verify information (which also falls in the category of Evaluation): 

critical thinking is that you are aware of the reasons for the problem to be solved and 
what is the mathematical use of the theory in focus. Also what are the consequences 
of doing this kind of job (calculations, problem solving activities, ...) (R2) 
In order for critical thinking to be effective, in addition to the motivation mentioned 
above, you need to have the tools to be able to verify the information. (The main way 
to manipulate society is precisely to provide information that cannot be verified.) 
(R13) 

Noticing mistakes in our study was associated with students noticing mistakes or 
contradictions (see also the above excerpt from R13), sometimes by examining 
the validity of a solution (cf. the Evaluation category): 

Critical thinking allows you to notice mistakes. (R11) 
Critical thinking in mathematics is revealed when a student notices contradictions. 
(R11) 
Critical thinking manifests itself in a situation where the student, solving a word task 
after committing a computational error, notes that the result obtained does not make 
sense in relation to the context of the task. (R11) 

Autonomy was manifested as independent thinking, which sometimes emerged 
from the need to take one’s own position, when, e.g., one does not agree with the 
existing results or an existing theory: 

First of all - independent, with reflection on the procedures performed, with reference 
to “self-confirmation” (how do I know it, maybe some earlier experiences or proven 
methods). Often - in surprising situations, with new results, but also when we do not 
agree with the results or ways of working of others. Generally - when I am faced with 
a situation that provokes me to take my own position. (R9) 

Motivation was manifested as the disposition to engage into critical thinking 
activities: 

motivation and attitude (towards mathematics and towards life) play a big role here. 
Students and teachers, including mathematics teachers, are struggling with the lack 
of motivation to undertake critical thinking (R13). 

Thinker: Characteristics of a critical thinker in mathematics 
Eight categories were identified in the responses. They are shown in Table 3. 
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Category f 
Problem solving 5 
Interpreting information 4 
Flexible thinking 4 
Reasoning 3 
Mathematical thinking 3 
Reflection 3 
Applications 2 
Discourse 2 

Table 3: Characteristics of a critical thinker in mathematics. 

Problem solving was manifested in most responses, just like in the Definition 
theme. Since the question contained the human agent, the responses were 
sometimes slightly altered (compared to those given to the previous question), in 
order to better represent an element of action or even affect. Additionally, the 
feature of the novelty of a problem – apparently in the sense of the non-triviality 
of a problem (Schoenfeld, 1992) – came to the fore: 

A person that can deal with a problem or question even if it is new and unexpected 
for him (R4) 
person who is not afraid to “take” tasks which is new for himself (R9) 

Interpreting information was manifested in many responses. This category 
resembles ‘Evaluation’ of the Definition theme: 

A person who applies critical thinking in mathematics: […] 
- assesses the correctness of arguments, 
- verifies whether there are no errors in processes (actions, reasoning), 
- can assess the correctness of proofs, 
- takes into account the criteria, 
- analyzes the information received and verifies its correctness (R11) 

Flexible thinking was manifested as flexibility in applying mathematics or as 
following an inquiry-oriented approach: 

The person should develop his natural curiosity (inquires), knowledgeable, thinker, 
communicator, risk-taker, open-minded (R10) 

Reasoning was manifested by explicit reference to it, or by the term ‘thinker’ 
mentioned in the previous excerpt by R10. Mathematical thinking was mainly 
manifested in the following ways: 
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Logical, strong number sense, capable of reasoning and problem solving, creative 
and flexible in applying mathematics (R1) 
A practicing mathematician should be a critical thinker in mathematics and, thus, 
anyone who practices mathematics should include critical thinking (R12) 

Reflection was associated with metacognition, just like in the Definition theme. It 
is noteworthy that the first appearance of the term ‘disposition’ has been identified 
in a response to this question: 

I would say that a person who interrupts frequently their mathematical activity to 
check what has been done, its outcomes, and what remains to do is acting as a critical 
thinker. A critical thinker would evaluate the process and the products and modify 
them accordingly to their assessment. Thus, a disposition to self-evaluation and self-
regulation appears as important feature of a critical thinker (R6) 

Applications was mainly associated with applying mathematics in real-life 
situations. Finally, discourse was associated with the disposition of discussing 
with others and, if needed, revising one’s point of view: 

[…] such a person is not afraid to discuss his ideas, he can ask about inaccuracies (or 
about what seems unclear, incomprehensible to him) in the reasoning presented by 
others (R8) 

Development: Features of teaching focused on critical thinking in 
mathematics 
Three categories were identified in the responses. They are shown in Table 4: 

Category f 
Discourse 9 
Contextualised problems 8 
Flexibility 2 

Table 4: Features of teaching focused on critical thinking in mathematics. 

Discourse was the most prevailing strategy, since it appeared in nine out of 
thirteen responses. Its manifestations varied from general claims about classroom 
discussions to specific claims on the teacher’s attitude during these discussions 
and the challenges they are facing: 

the way to do is to have once a while a classroom discussion about the question for 
what reason we are doing mathematics in school? (Because we want to build society 
with critical thinkers). Challenges for teachers are: how to organise this in classrooms 
with many different perspectives and cultural backgrounds (R2) 
Critical thinking must be developed in mathematics, may be promoting the use of the 
language, through the request to explain the reasoning and in which way the problem 
was solved (R4, emphasis in the original) 
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You just need to give students the opportunity to think for themselves, without 
rushing and criticizing every mistake (R9) 

Contextualised problems appeared to be another effective teaching strategy, 
according to the respondents. Just like in the previous category, we have identified 
general claims, but also more specific guidelines on how to implement such an 
approach: 

I think that critical thinking in mathematics can be developed by offering learners 
problems and scenarios which they can address meaningfully in ways that make sense 
to them. Learners need to be exposed to problems that demand creative thinking and 
the capacity to connect and apply a range of mathematical concepts and methods. The 
challenge for the teacher is to identify appropriate contexts and scenarios for the 
learners and so build pathways to understand mathematics (R1) 
The challenges are as following: sometimes it is very hard to find appropriate problem 
to solve, there are problems in formulating appropriate questions (asking good 
questions is not very easy), sometimes the level of mathematics of students varies a 
lot (R10) 

Flexibility was manifested in two responses, and referred to teacher’s readiness to 
adopt her teaching, according to the needs of the classroom and/or particular 
students: 

[…] requires from her [the teacher] a very flexible and reflective approach, the ability 
to react quickly to emerging situations (R8) 
More than once I hear from both active [in-service] and future teachers: “there is 
a tight program in high school, we do not have time for it, why introduce five methods 
– just one – why do students need to mix in their heads with five methods, they will 
still be confused. You have to teach certainties for the final exams.” Teachers reject 
solutions that they do not know – and therefore the need for continuous substantive 
improvement on the part of teachers (R13) 

Subject: Relationship between critical thinking and mathematics 
The vast majority of respondents answered that critical thinking can occur without 
mathematics; seven of them gave a clear ‘yes’, and two of them noticed that their 
answer in the Definition theme would fit to any subject. Five respondents claimed 
that critical thinking can occur in subjects other than mathematics, but only if 
particular conditions were met: 

Critical thinking can occur in any discipline: science, languages, art… but the 
characteristics of applying problem solving and reasoning are key (R1) 
If we define critical thinking as the ability to reflectively approach a given situation, 
analyze it and draw appropriate conclusions, then critical thinking can be found 
outside of mathematics (R8) 

Only one respondent excluded the possibility of critical thinking out of 
mathematics: 
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I think that without logic there is no critical thinking. Logic is a part of mathematics. 
(R10) 

DISCUSSION 
Our results, in general, go in line with those that appear in the literature; especially 
reasoning and problem solving prevailed in the responses of the researchers, to 
both the first two questions on the characteristics of critical thinking and of the 
critical thinker. We have also identified the categories of noticing mistakes, which 
resembles (although in a narrower sense) the activity of noticing (Sherin et al., 
2011), which seemingly has not been associated with critical thinking.  
It is noteworthy that the main ‘critical’ aspect of critical thinking, ‘Citizenship’ 
was explicitly manifested in only one response in the first question, while in the 
second question it could be remotely related with ‘Applications’. We may have to 
agree with Jablonka (2014) that: 

Notions of CT in mathematics education with a focus on argumentation and reasoning 
skills have in common that the critical competence they promote is directed toward 
claims, statements, hypotheses, or theories (“texts”) but do include neither a critique 
of the social realities, in which these texts are produced, nor a critique of the 
categories, in which these texts describe realities. (p. 161) 

Most scholars in the relevant literature stress the duality of abilities and 
dispositions that constitute critical thinking (Facione, 1990). In our study, the 
second question was designed to elicit the characteristics of these dispositions, 
although ‘Motivation’ did already appear in the Definition theme. What we found 
in the Thinker theme was mainly a repetition of the categories of critical thinking, 
such as problem solving and reasoning. However, the category of ‘Discourse’ in 
the sense of a disposition towards communicating one’s ideas, appeared in two 
instances, which may reflect the general trend towards communicative views of 
learning (Sfard, 2008). 
Discourse was expressed as the most prevailing way to develop critical thinking 
in the classroom. Most researchers agreed on the importance of engaging students 
in meaningful discussions, with the teacher not exercising their authority (Tatsis, 
Wagner, & Maj-Tatsis, 2018) in these discussions. It seems that, according to the 
respondents, the teacher’s ability to ‘step back’ and give room to the students – 
while, at the same time, monitoring and preparing oneself for the next move – is 
of crucial importance to the development of students’ critical thinking. This 
reminds us of Rowland, Huckstep and Thwaites’s (2005) notion of contingency, 
which can be defined as “the readiness to respond to children’s ideas and 
a consequent preparedness, when appropriate, to deviate from an agenda set out 
when the lesson was prepared” (p. 263). 
The fact that all but one respondent agreed on the possibility of developing critical 
thinking out of mathematics can contribute to the ongoing discussion on the 
subject-specificity or subject-dependence of critical thinking (Ennis, 1989). We 
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agree with those respondents who claim that the development of critical thinking 
should be based on activities that require reasoning and reflection. 
Generally, our study adds to the rather limited literature on critical thinking in 
mathematics education, by offering some researchers’ views on it; it also brings 
to the fore aspects of critical thinking, which were not stressed until now, 
especially the communicative one. We believe that any approach on critical 
thinking, including the teaching approaches should bear in mind the need for 
effective and meaningful communication among students and among the 
mathematics teachers and the students. The teacher’s role is crucial to the 
development of critical thinking and, according to the results of our study, this 
can be achieved not only within mathematics, but in most – if not all – school 
subjects. 
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MATHEMATICAL CREATIVITY IN THE CLASSROOM: 
TEACHERS’ BELIEFS AND VALUES 

Esther S. Levenson 
Tel Aviv University, Israel 

 
In this chapter I focus on promoting mathematical creativity in the classroom. 
First, I discuss different views of what it means to foster mathematical creativity 
and ways for occasioning mathematical creativity in the classroom. Next, 
I review studies of teachers’ beliefs related to mathematical creativity. Finally, 
I will introduce the issue of values, and describe initial findings from a study 
concerning how values may influence teachers’ choices when their aim is to 
occasion mathematical creativity in the classroom. These studies may help 
teacher educators plan professional development that can encourage more 
teachers to promote mathematical creativity in their classroom. 
INTRODOUCTION 
Along with promoting critical thinking, fostering mathematical creativity is one 
of the major aims of mathematics education. One of the challenges to promoting 
creativity in the classroom is that educators do not agree on how to define, 
promote, or evaluate mathematical creativity. The first part of this chapter will 
present researchers’ views regarding these issues. A second challenge is that 
teachers may hold various beliefs related to creativity that may or may not 
coincide with educational goals. For example, do teachers believe that we can 
foster mathematical creativity among all students, or do they believe that 
creativity is an inborn trait? A third challenge is that teachers’ values may also 
interact with their intention to foster creativity. For example, if a teacher values 
originality, he may promote individual creativity as opposed to collective 
creativity. This chapter will present results from studies which investigated 
teachers’ beliefs and values related to mathematical creativity, and discuss how 
beliefs and values may impact on the ways teachers foster mathematical 
creativity in their classrooms. 
MATHEMATICAL CREATIVITY: SOME THEORY  
Fostering mathematical creativity is one of the major aims of mathematics 
education. As stated by Sriraman (2009) “mathematical creativity ensures the 
growth of the field of mathematics as a whole” (p. 13). While there is no single 
accepted definition of creativity or creative thinking (e.g., Runco & Jaegaer, 
2012), many researchers from several domains, including mathematics, note that 
creativity involves at least two attributes: originality and appropriateness (e.g., 
Runco & Jaeger, 2012). Runco (1996) stated that creativity is “manifested in the 
intentions and motivation to transform the objective world into original 
interpretations, coupled with the ability to decide when this is useful and when it 
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is not” (p. 4). Thus, critical thinking may be considered a component of 
creativity.  
As educators, we are less concerned with the creativity of a few eminent persons 
(Big-C creativity) and more concerned with creativity as it manifests itself in the 
classroom (mini-c creativity) (Kaufman & Beghetto, 2009). As students learn 
new concepts, they may come up with “novel and personally meaningful 
interpretation of experiences, actions, and events” (p. 3). With regard to 
mathematics classrooms, this aspect of creativity may manifest itself when 
a student examines many solutions to a problem, methods or answers, and then 
generates another that is different (Silver, 1997). As such, the product of 
mathematical creativity in the classroom may be original ideas that are 
personally meaningful to the students and appropriate for the mathematical 
activity being considered. Notice that originality and novelty are used almost 
interchangeably. In a previous paper (Levenson, 2013), I claimed that the two 
are not synonymous. An idea that is novel may be “new,” while an idea that is 
original refers to an idea that is “one of a kind” or “different from the norm.” An 
idea, especially one raised in the classroom, may be new to a student, but if 
other students have the same idea, it may not be original. When measuring 
originality, Leikin (2009) considered the level of insight and conventionality of 
a solution in comparison to the learning history of the participants. For example, 
a solution based on a concept learned in a different context would be considered 
original but maybe not as original as a solution which was unconventional and 
totally based on insight.  
Originality is not the only consideration when characterizing creativity; fluency 
and flexibility are also components of creative thinking. In general, fluency 
refers to the total number of unduplicated ideas generated (Jung, 2001), and in 
mathematics, the total number of unduplicated valid mathematical responses. 
Flexibility is evident when different solutions employ different strategies, or are 
based on different representations (e.g., algebraic and graphical representations), 
properties, or branches of mathematics (Leikin, 2009).  
Flexibility may also be considered in relation to its counterpart, fixation. In 
problem solving, fixation manifests itself in mental rigidity (Haylock, 1997) or 
self-restrictions (Krutetskii, 1976). Flexibility is then shown by overcoming 
fixation or breaking away from stereotypes. In a previous study (Levenson, 
2011), I demonstrated this type of flexibility in a fifth-grade classroom, when 
a student ventured to suggest that a sequence may have unequal jumps, in 
contrast to the rigid adherence of equal jumps. Haylock (1997) differentiated 
between content-universe fixation and algorithmic fixation. Overcoming the first 
type of fixation requires the thinker to (intentionally) consider a wider set of 
possibilities than at first is obvious and extend the range of elements appropriate 
for application. For example, elementary school students asked to find two 
numbers whose sum is 18 may miss 18 and 0 or may not think of fractions 
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because they do not consider the possibility of numbers which are not natural. 
The second type of fixation relates to when an individual adheres to an initially 
successful algorithm even when it is no longer efficient. This type of fixation 
relates to the familiar case of a student who is requested to calculate 20×20 and 
resorts to the long multiplication algorithm, though it is clearly unnecessary in 
this case. 
Promoting mathematical creativity in the classroom 
Several factors need to be considered when discussing the promotion of 
mathematical creativity in the classroom, including the types of tasks 
implemented, the classroom environment, and the teacher’s actions. Regarding 
tasks, Torrance (1965) was one of the first to suggest the use of divergent 
production tasks in promoting fluency, flexibility, and originality. In order for 
such tasks to actually produce creativity, Haylock (1997) claimed they need to 
include the possibility of using a wide range of ideas, have at least 20 possible 
appropriate responses among several of which are obvious to students, some 
responses which will likely be obtained by only a few students, and they should 
not be mathematically trivial. Silver (1997) claimed that both problem-solving 
as well as problem-posing activities may encourage students to generate 
multiple solutions, in turn encouraging the development of creativity. Kwon, 
Park, and Park (2006) advocated the use of open-ended problems for developing 
students’ creativity in mathematics. In general, open-ended problems have 
a clear starting point but may have less clear objectives. This allows students to 
choose their own paths and come up with diverse and novel solutions. Sheffield 
(2008) added that a task which can be extended and thus promotes further 
questioning, can also promote mathematical creativity. 
The classroom environment may be another factor influencing mathematics 
creativity. For example, consider a classroom where students work in groups. 
This situation may offer additional opportunities for group creativity or may, on 
the other hand, inhibit creativity. Paulus and Yang (2000) claimed that deficient 
results of group creativity may be caused by the group members not being 
attentive to the ideas of the group or there may not be enough incubation time to 
reflect on those ideas in order to integrate them with one's own ideas. Hadamard 
(1945) considered the incubation stage, working on a problem at the 
unconscious level, an intrinsic part of the creative process. In a group, time for 
incubation is usually scarce. Another perspective on group creativity considers 
the situation where diverse individuals come together to solve a problem. On the 
one hand, the different backgrounds and knowledge base of a diverse group may 
contribute different perspectives for consideration. On the other hand, diversity 
may be so wide as to hinder individuals as they strive to understand different 
ideas and come up with an agreed-upon solution (Kurtzberg & Amabile, 2001). 
Recently, we investigated individual and group creativity among post high-
school students (Molad and Levenson, submitted). In that study, we found that 
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the group experience, working collaboratively on open-ended tasks, can impact 
positively on the group’s collective creativity as well as on the group 
participants’ creativity even as they work individually. 
Finally, the teacher also has several roles in promoting creativity. In my study of 
collective mathematical creativity in the classroom (Levenson, 2011), it was 
found that the teacher's roles included (1) choosing appropriate tasks, (2) 
fostering a safe environment where students can challenge norms without fear of 
repercussion, (3) playing the role of expert participant by providing a breakdown 
of the mathematics behind a process, and (4) setting the pace, allowing for 
incubation periods. Regarding the third point, Mhlolo (2017) suggested that 
when a teacher exhibits representational competence, working with and 
engaging students with varied equivalent representations, and encouraging 
students to use different modes of representations meaningfully, the teacher is 
supporting flexibility. Another aspect is acknowledging creative solutions when 
they arise among students, and prompting further mathematical inquiry with 
appropriate questions (Hoth, Kaiser, Busse, Döhrmann, König, & Blömeke 
(2017). 
TEACHERS’ BELIEFS REGARDING MATHEMATICAL CREATIVITY 
As noted above, the teacher has a prominent role in promoting mathematical 
creativity. Taking into consideration that teachers’ beliefs may affect their 
instructional decisions (Schoenfeld, 2011), as well as students’ learning (Cross, 
2009), this section focuses on teachers’ beliefs related to mathematical 
creativity. These beliefs include beliefs about mathematics as a discipline, about 
the teacher’s roles in promoting mathematical creativity, and about students’ 
capabilities. 
I begin with the question of whether teachers believe that mathematics is 
a creative domain. When asked to identify school subjects and domains likely to 
elicit creativity, most elementary teachers list art, theatre, and music, (Diakidoy 
& Kanari, 1999; Kamplylis et al., 2009). As one prospective teacher stated, 
“creativity has strong relations with subjects such as art, while mathematics is 
related with logic” (Panaoura & Panaoura, 2014, p. 6). In a different study, 
elementary school teachers associated creativity with language and writing 
(Aljughaiman & Mowrer-Reynolds, 2005) because these subjects offer 
opportunities for discussing and exploring ideas, where students have freedom, 
can use their imagination, and where no ‘correct answer’ exists (Bolden, 
Harries, & Newton, 2010). Similar sentiments were found among prospective 
middle and secondary mathematics teachers when investigating the place of 
creativity in classroom discussions (Beghetto, 2007). Mathematics teachers were 
significantly less likely to value unique contributions to discussions, than other 
subject teachers. The future mathematics teachers considered unique responses 
as potentially disruptive, believing it more important to focus on the problem at 
hand, and to follow the curriculum.  
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Teachers’ reluctance to associate mathematics with creativity might be due to 
their beliefs of mathematics as a domain, and not necessarily to their beliefs of 
creativity. Prospective primary teachers often suggest that mathematics is a body 
of knowledge, based on facts, figures, and rules, with little room for developing 
independent ideas (Bolden, Harries, & Newton, 2010). Many participants 
claimed that English, art, and even science had fewer set goals, and were 
therefore more conducive to creativity development. Some prospective middle- 
and high-school mathematics teachers believe mathematics to be a closed 
domain, where all possible concepts have previously been invented by 
mathematicians (Shriki, 2010). These participants sometimes based their beliefs 
on their past experiences. For them, mathematics in school was always about 
getting the right answer, checking the answers in back of the textbook, and then 
moving on to the next problem. Another factor related to the subject of 
mathematics in school is the standardized curriculum for mathematics in many 
countries.  
Another issue investigated by several researchers is whether teachers believe 
that creativity can be developed. Among general teachers, it was found that 
approximately 75% of participants believed that creativity is not a characteristic 
of all people and that some children are more creative than others (Diakidoy & 
Kanari, 1999). Yet, about 90% still believed that creativity can be facilitated 
amongst all children. More recently, a study of Greek prospective and practicing 
elementary school teachers (Kampylis, Berki, & Saariluoma, 2009) found that 
participants held conflicting beliefs. Half of the participants believed that only a 
few students have the “gift” of creativity, and yet the vast majority agreed that 
creativity can be developed in all students. Thus, while teachers may believe that 
some people are born more creative than others, most believe that everyone can 
learn to be creative.  
Focusing specifically on mathematical creativity in the classroom, studies found 
that in general, teachers of all levels, from elementary to secondary school, 
believe that mathematical creativity can be developed (Lev-Zamir & Leikin, 
2011; Shriki, 2010). In one comparative study of secondary school mathematics 
teachers in different countries (Leikin et al., 2013), participants were requested 
to rate their level of agreement on a scale of 1-6 with the statement “a creative 
person is born that way.” The average across all participants was 4.23, 
indicating a tendency to agree. Participants from Mexico were less likely to 
agree with this statement than participants from India, Cyprus, Israel, Latvia, 
and Romania. Yet, some mathematics teachers believe that not all students can 
develop creativity (Levenson, 2017), or that relatively few students are capable 
of being creative (Shriki & Lavy, 2012). Reasons mathematics teachers give for 
why only some students exhibit mathematical creativity are related to views of 
individual characteristics, such as mathematical ability.  
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Taking a closer look at teachers’ beliefs, I recently investigated mathematics 
teachers’ perceptions regarding the relationship between mathematical creativity 
and mathematical excellence (Levenson, 2020). The specific research questions 
of the study were: (1) Do teachers believe that there is a relationship between 
mathematical creativity and mathematical excellence, and if so, what types of 
relationships do they believe exist? (2) What beliefs regarding mathematical 
creativity surface, as teachers describe the relationship between mathematical 
creativity and excellence? (3) Are different beliefs regarding creativity 
associated with different beliefs regarding the relationship between 
mathematical creativity and excellence?  
Forty-five mathematics teachers responded to the following query: “There are 
those who say that mathematical creativity is related to excellence in 
mathematics. What is your opinion?” From participants’ comments, six different 
categories of relationships were found (see Table 1). Considering those who 
believed that mathematical creativity can promote mathematical excellence, as 
well as those who believed the relationship to be mutual, we find that half of the 
participants believed mathematical creativity to have some influence on 
mathematical excellence. 
 
Category F (%) Examples of teachers’ statements 
A:  Mathematical 
excellence 
precedes 
mathematical 
creativity  

13 (29) “When a student is good at mathematics, his 
self-confidence rises, which causes him to dare 
more and to try different solution methods 
without fear of failure.” 

B: Mathematical 
creativity precedes 
mathematics 
excellence 

19 (42) “Creativity comes from having an open mind, 
solving problems in many different ways, which 
leads to excellence.”  
“Mathematical creativity promotes excellence in 
mathematics… However, excellence in 
mathematics does not promote creativity 
because creativity is genetic and cannot be 
acquired.” 

C: Creativity and 
excellence in 
mathematics are 
reciprocally 
related 

4 (9) “The relationship between creativity and 
excellence is two-way. While it may be that 
stronger mathematics students exhibit more 
mathematical creativity, if teachers promote 
creativity among the weaker students, they will 
become stronger in mathematics.”  
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D: There is a non-
influential 
relationship 
between 
mathematical 
creativity and 
excellence 

2 (4) “There is a relationship between mathematical 
creativity and mathematical excellence, but one 
is not a sufficient condition for the other.” 

E: Mathematical 
creativity and 
excellence are not 
related 

4 (9) “Creativity in mathematics can be developed 
and acquired, even among lower achieving 
mathematics students. It is dependent mostly on 
a supportive environment of which the teacher 
is responsible.”  

F: Undecided 3 (7) “I cannot decide. It depends on how one defines 
excellence in mathematics.” 

Table 1: Types of relationships between creativity and excellence (Levenson, 2020, p. 
167). 

A second analysis of the data investigated inferred beliefs specifically related to 
creativity. These beliefs were related to (1) creative processes (e.g., thinking 
creatively means thinking out of the box), (2) the product of creativity (e.g., 
creative products include unconventional solutions), (3) the nature of creativity, 
and how creativity might be affected by the environment (e.g., opportunities 
afforded in a classroom), and (4) affective issues (e.g., creativity is enjoyable). 
Interestingly, the same inferred beliefs related to creativity were sometimes 
associated with different beliefs concerning the relationship between excellence 
and creativity. For example, a belief that the environment is a factor in 
promoting mathematical creativity, may lead one teacher to claim that 
excellence (because of opportunities given to excellent students) leads to 
mathematical creativity, while another teacher may claim that since it is up to 
the environment, mathematical creativity and excellence are unrelated. 
Deeping our knowledge of teachers’ beliefs related to mathematical creativity 
can help teacher educators address these beliefs. For example, some teachers 
believe that mathematical ability leads to greater motivation and less fear of 
failure, which can then lead to greater creativity. Knowing this aspect of 
teachers’ beliefs, teacher educators can discuss with teachers how to mitigate 
fear of failure among all students, possibly then motivating those same teachers 
to promote creativity among all students. Closely related to beliefs is the notion 
of values. This is discussed in the next section. 
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VALUES AND MATHEMATICAL CREATIVITY 
A brief review of past studies 
Beliefs and values both belong to the affective domain associated with learning 
and teaching mathematics, but they are not the same. DeBellis and Goldin 
(2006) stated that beliefs involve attribution of some external truth to a set of 
propositions. Values refer to “personal truths or commitments cherished by 
individuals. They help motivate long-term choices and shorter-term priorities.” 
(p. 135). Philipp (2007) stated that people hold beliefs to be true of false, with 
varying degrees of conviction. On the other hand, values come from the word 
‘value’, meaning the worth of something, and are thus desirable or undesirable. 
In addition, beliefs are context-specific, whereas values are less so.   
Few studies focused on the question of whether teachers value creativity, 
although one might infer such values from other studies. For example, in one 
study, when teachers were asked to describe their views of creative production, 
none of them mentioned its usefulness (Aljughaiman & Mowrer-Reynolds, 
2005). The researchers attributed this oversight to teachers’ stressing about 
academic achievement and thus viewing creativity as perhaps interesting, but 
not necessarily of value. It could be, however, that those teachers viewed 
creativity in the classroom as did Kaufman and Beghetto (2009), who described 
students’ (mini-c) creativity as being personally meaningful to the student, and 
not necessarily of value or useful to others. Similar results were found when 
mathematics teachers were asked to describe creativity (Shriki & Lavy, 2012). 
In addition to the question of whether or not teachers value creativity for 
creativity’s sake, there are other values which teachers may associate with the 
promotion of mathematical creativity in their classrooms. In a previous study, 
I investigated mathematics teachers’ choices of tasks when their aim was to 
occasion mathematical creativity (Levenson, 2013). In that study, teachers were 
requested to choose a task that in their opinion had the potential to occasion 
mathematical creativity and state the reasons for their choice. While several 
teachers chose a task because it had more than one solution or more than one 
way to solve a task, participants’ values were also in evidence. For example, two 
teachers mentioned the importance of having every student participate. “One 
teacher wrote, ‘there isn’t a student who cannot participate in this activity, even 
special-needs students [can participate].’ Another teacher wrote, ‘Every student 
can find his own unique solution method’” (p. 286). Some teachers valued group 
work and wrote that they chose a task because it encouraged students to 
cooperate. Other teachers valued individuality, stating that their chosen task 
allowed each child to come up with a unique solution. There was one teacher 
who seemed to relate the cognitive demand of connecting different mathematical 
representations (which she calls ‘media’) to the value of allowing for student 
individuality, “The task promotes the use of different medias such as graphs, 
algebra, numbers, and words and does not limit the solution to a specific media 
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thus allowing many students the possibility of expressing themselves in the area 
where they are strongest” (p. 286).
In a follow-up study of one teacher’s changing perspectives on tasks that may 
occasion mathematical creativity (Levenson, 2015), values were again part of 
the choosing process. When stating why a certain task was chosen, the teacher 
wrote, “There is an opportunity here for collective creativity with its associated 
characteristics: searching for help (I didn’t find the rule, I don’t understand the 
conclusion…), giving help, and gaining new comprehension.” (p. 12). The 
secondary mathematics teacher in that study raised the value of collective 
creativity. In her opinion, the value of group work is offering students the 
opportunity to help each other and to help students who might find the task 
difficult.
Values and preference
According to Bishop (2012), values are often revealed at decision points in the 
lesson. Thus, in order to investigate teachers’ values associated with 
mathematical creativity, I began studying how teachers choose among three 
given tasks, which task has the most potential to occasion creativity. By asking 
teachers to choose between three tasks, I hypothesized that values would play 
a role. Participants were 42 teachers who had taken part in a graduate course 
called “Creativity in mathematics education,” which aimed to increase teachers’ 
theoretical and pedagogical knowledge regarding mathematical creativity. As 
such, participants had some knowledge and experience with mathematical 
creativity in educational settings. Below, I present the three tasks given to 
participants, and then give examples of teachers’ choices and the reasons for 
their choices.
The first task was taken from a book written about problem solving by the 
mathematician Polya:

To number the pages of a bulky volume, the printer used 2989 digits. How many 
pages has the volume? (Polya, 1945, p. 234).

The second task was taken from a fourth grade mathematics textbook entitled 
Geometry for the Fourth Grade (The Center for Educational Technology, 2006):

Find the area of the polygon. It may be helpful to divide the polygon into 
rectangles. (Draw the dividing lines on the diagram.)

Computation: _________   The area of the polygon is: __________________

5
cm

3
cm

7
cm

10
cm

2
cm
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Discuss: Are there different ways in which you can divide this polygon? If so, 
what are they? From the different ways of dividing the polygon do you get 
different areas of the polygon?   

The third task was taken from a seventh-grade mathematics book, chosen by 
a teacher in a previous study as a task that has potential to occasion 
mathematical creativity (Levenson, 2015, p. 12). The teacher stated that it was 
intended as an inquiry-based task, where the students come to a new, for them, 
multiplication rule: 
 

Multiplying signed numbers 
Below is a multiplication table: 

× 3 2 1 0 -1 -2 -3 

3 9 6 3 0 -3 -6 -9 

2 6 4  0    

1 3 2  0 0 -2  

0 0 0 0 0  0 0 

-1  -2 -1 0 2   

-2  -4  0   6 

-3  -6  0  6  

a) What is the rule in the first row? 
b) What is the rule in the second column? 
c) Find the rule in each column/row and fill in the rest of the empty cells. 
d)  (i) What is the sign of the solution when multiplying a positive number 

with a negative number? 
 (ii) Where in the table are these numbers located? 

(iii) Write a multiplication example using a positive number and a negative 
number? 

e) (i) What is the sign of the solution when multiplying a negative number 
with a negative number? 

 (ii) Where in the table are these numbers located? 
 (iii) Write a multiplication example using two negative numbers. 
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After analysing each task in terms of its potential to occasion mathematical 
creativity, each participant was requested to state which task, in their opinion, 
had the most potential to occasion mathematical creativity and state the reasons 
for their choice. It is this last part that I focus on here. First, I present the case of 
Adina (all names are pseudonyms), who despite her analysis of the creative 
potential for each task, finally chose one of the tasks for a reason not even 
mentioned in her initial analysis. I then present three different teachers, each 
who chose a different task as the most preferred. Finally, I present the case of 
a teacher who could not decide which of the two tasks she most preferred. 
I begin with Adina’s analysis of each task. When analysing the three tasks, 
Adina stated that each task led the student to search for several solution 
methods. For Task 1, she stated: 

According to Silver (1997), this task encourages creativity because it encourages 
fluency and original ideas. Finding the number of pages in the book is not trivial 
and therefore requires the solver to check several solution paths (fluency), and 
because questions of this kind are not usually given to students, the question 
encourages originality. (Underline in the original.) 

For Task 2, she stated, 
Because there are a number of ways in which to divide the figure into rectangles, 
there is an element of fluency and there are many ways to reach the same solution. 

For Task 3, she wrote,  
There are many ways to complete the table and to reach a rule. For example, one 
student can see that a row jumps by three (0, 3, 6, 9, and so on) and so can complete 
the table. Another will recognize the multiplication table from his previous 
experience (the positive side) and then fill in the negative side according the 
example given. 

In the end, Adina preferred Task 1 and stated that this task had the most 
potential to occasion creativity because: 

The task is interesting, even to a person who is very knowledgeable in mathematics, 
because (as I wrote in the above paragraph), the style of the question does not lead 
the student to use a clear and known algorithm, like calculating an area or 
multiplying numbers. 

In Adina’s case, we see an example of a participant who analysed each task 
according to its potential to occasion creativity. For each task, she refers to 
elements of mathematical creativity discussed during the course, such as fluency 
and being able to connect mathematical topics learned at different times. Yet, 
when it comes to choosing the task she believes has the most potential, what 
Adina values is a problem that is interesting.  
Orah, Deborah, and Ron each preferred a different task. Orah preferred the first 
task and wrote the following: 
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Each of the tasks has features and cognitive demands that promote creativity. In my 
opinion, the first task has the greatest potential to occasion creativity. The first task 
has a different style than what the student is used to. There are no instructions how 
to solve [the problem]. There are many high cognitive demands and there is 
potential and challenge in those cognitive demands. The main difference between 
this task and the other two is in the cognitive demands, which are higher in the first 
task. 

Orah begins by noting that each task has potential to occasion mathematical 
creativity. In fact, when she analyzed the second task, she specifically noted that 
it could lead to fluency, flexibility, and originality, characteristics of 
mathematical creativity mentioned by educators and researchers (e.g., Silver, 
1997). She also wrote that the instructions specifically call for finding different 
ways to solve the problem. When she analysed the third task, she noted that the 
use of the table format, along with the verbal instructions, allows students to 
make their own connections between different representations, assisting them to 
generalize. She specifically wrote that this might help them to think creatively in 
the future. Yet, Orah still chose the first task as having the most potential to 
occasion mathematical creativity, despite writing in her initial analysis that it 
does not call for solving the problem in different ways. Why did she prefer the 
first task? The first reason is because of its “different style.” The second reason 
is because of its high cognitive demand. It seems that for Orah, these 
characteristics are valued over others that are also associated with mathematical 
creativity. 
Deborah (T15) preferred the second task. She wrote: 

On the one hand, it (Task 2) is simple, but the discussion which asks if there are 
additional ways to solve the problem is a challenging question which shakes up the 
student’s knowledge and causes him to investigate other possibilities. The first task 
is too challenging, and students might just give up. The third task is too structured 
and directed. The second task is the only one that promotes fluency, flexibility, and 
originality. 

First, we note that when analyzing the first task, Deborah claimed that it could 
promote flexibility and originality, but not fluency, while in her opinion, the 
third task did not promote creativity at all. Thus, it makes sense that Deborah 
chose the second task, because in her opinion, it could occasion all three 
characteristics of mathematical creativity, characteristics learned and discussed 
in the course. But this is not the only reason Deborah chooses the second task. 
She stresses the issue of challenge. Deborah values challenge, but the degree of 
challenge is also important. The second task, in her opinion, presents a balance 
between a task being too challenging and not challenging enough.  
Ron (T20) preferred the third task and wrote: 

The third task encourages the student to connect between two mathematical 
domains – numbers and algebra. The students are able to make a generalization 
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based on the numbers and their place in the table and find a rule. The task has many 
ways to solve it, and it is somewhat challenging. The task promotes flexibility – 
a change in the way of thinking. 

Above, we see that when explaining why he preferred Task 3, Ron mentions 
generalization and finding a rule as reasons for preferring the third task. These 
attributes were also mentioned in his initial analysis of the third task; they were 
not mentioned in conjunction with the first two tasks. Ron also states that the 
third task can promote flexibility. Yet, in his initial analysis he did not note this 
attribute. In fact, in his initial analysis, Ron did not mention flexibility in 
relation to any of the tasks. It is possible, that when Ron must compare the tasks 
with each other, this attribute comes to the fore, and in line with Bishop (2012), 
this when values come into play.  
The last case presented here is of Dorine. Dorine could not decide if Task 1 or 
Task 2 had the most potential to occasion creativity. She wrote: 

I recognize the second task from textbooks that I use in seventh grade and it 
promotes creativity. It has fluency, flexibility, and originality. However, because 
the discussion requests dividing the polygon into rectangles, it limits the students by 
not suggesting additional polygons, such as triangles and rhombuses. If the question 
was to divide the polygon into different polygons in different ways, we would see 
more original solutions. 

Dorine then continues to discuss the first task: 
When solving the first task, I did not have fluency nor flexibility. However, the first 
task is challenging and requires a different way of thinking. That is, it requires using 
methods that are not the usual solution methods and therefore requires a great deal 
of thought and trial to find different solution methods. Although I only found one 
solution method, I did try to find other ways using sequences and functions. That is, 
I tried not to be fixated on one solution path and tried to find other ways. 

Dorine exhibits knowledge of mathematical creativity. She recognizes that the 
first task can promote fluency, flexibility, and originality, but also points out its 
limitation. She also points out a way that this limitation could be overcome and 
how the task could be extended to promote more creativity. Interestingly, 
despite her experience of solving the second task and finding that it did not elicit 
fluency, flexibility, or originality, she still believes that the second task has great 
potential to occasion creativity. Why? When attempting to solve the problem 
Dorine tried to find other ways to solve the problem, and although she was 
unsuccessful, she did not become fixated on one method. Note that Dorine’s 
reservation with the first task was that it limited the students’ ways of thinking 
and that her positive review of the second task was due to her not being fixated. 
Basically, what Dorine found lacking in the first task, was not lacking in the 
second task. To sum up, what Dorine seems to value most when it comes to 
promoting creativity is overcoming fixation. 
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SOME CONCLUDING THOUGHTS 
As I discussed in the beginning of this chapter, the challenges to promoting 
creativity in the mathematics classroom are many. Theories and research point 
to various views of characterizing creativity, and different means of promoting 
mathematical creativity. As mathematics teachers, and mathematics teacher 
educators, we need to ask ourselves what we can do to encourage students’ 
mathematical creativity. 
In the sections above, it was shown that teachers hold various beliefs related to 
mathematics, the teaching of mathematics, and the promotion of mathematics 
creativity in the classroom. While beliefs may be slow to change (Schoenfeld, 
2011), professional development can have an impact. In one of my courses, 
a secondary school teacher claimed that she had no time to promote creativity 
because she was too busy preparing students for state exams. She believed that 
promoting creativity could not go hand-in-hand with enhancing students’ 
mathematical knowledge. By the end of the course, she saw that mathematical 
knowledge and creativity were not mutually exclusive, and that students can 
benefit by thinking flexibly. In her case, enhancing her knowledge of 
characteristics of mathematical creativity, along with her experiences while 
solving problems in multiple ways, encouraged her to try new methods in her 
classroom. It also increased for her, the value of promoting creativity. Our 
values, along with our beliefs and knowledge, influence our aims. If teachers 
believe that promoting mathematical creativity can assist in students’ 
mathematical growth, they may explicitly plan lessons that do both. According 
to Schoenfeld (2011): 

Teachers’ beliefs and orientations, like students’ beliefs and orientations, are built 
up slowly from experience and are often not consciously held. Thus, they are slow 
to change, especially if the individuals are unaware of having them (Schoenfeld, 
2011, p. 464). 

As teacher educators interested in promoting mathematical creativity, let us raise 
our own awareness, as well the awareness of other mathematics educators, 
regarding beliefs and values we hold related to mathematical creativity in the 
classroom. This could be a first step in recognizing and promoting mathematical 
creativity among students of all ages. The next step is to afford teachers 
opportunities to experience for themselves mathematical creativity and guidance 
as they occasion mathematical creativity for the students in their classrooms.  
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The proof and the deductive method in mathematics have their origin in the 
classical model of exposition developed by Euclid in his famous book of 
elements. The attitude of mathematicians towards this method has certainly 
evolved over the centuries, but the relationship between understanding and 
acceptability of mathematical statements has not changed and still constitutes 
a characterizing element of this discipline.  In this article we discuss some 
aspects that can be considered at the origin of the difficulties related to the 
mathematical proof. In particular, we focus on the tension between two poles, 
that of understanding and that of the theoretical arrangement of mathematical 
knowledge.  
INTRODUCTION 
Like all human activities, mathematical practice has many facets, and it is for 
this reason that it is difficult, and perhaps useless, to circumscribe it in rigid 
schemes or, even worse, in a single scheme. Particular conclusions can 
determine specific interpretations and beliefs towards mathematics, and the 
school experience has always had a great influence on that, often contributing to 
privilege and strengthen one practice and overshadowing others, so as to lose the 
complexity and richness of Mathematics. Of the many aspects that concern 
Mathematics and its practices, perhaps the least popular, and certainly not 
beloved one, concerns mathematical proof, and more generally what commonly, 
and sometimes with some contempt, is referred to as rigor. 
All this corresponds in school practice to the perception of a specific difficulty 
related to mathematical proofs; in the field of mathematics education, since long 
ago the issue of proof has become a very active research topic, opening a debate 
among researchers that has not only made it possible to clarify some aspects, but 
above all has shown how difficult it is to isolate the mathematical proof from 
other practices that are connected to it (Mariotti, 2006;  Mariotti et al., 2018; 
Stylianides et al., 2016) and how important is to educate students to manage the 
specificity of each of them. 
The objective of this contribution is to support this statement, we will start from 
some reflections on the nature of the mathematical proof to clarify the 
complexity of the relationship it has with other practices; I will focus on specific 
features of a mathematical proof that characterize it and for this very reason can 
be hardly neglected without a serious loss for mathematics education (Mariotti, 
2006). 
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In the following statement the educational value of proof was clearly stated. 
The concept of proof is one concerning which the pupil should have a growing and 
increasing understanding. It is a concept which not only pervades his work in 
mathematics but is also involved in all situations where conclusions are to be 
reached and decision to be made. Mathematics has the unique contribution to make 
in the development of this concept [...] (Fawcett, 1938, p. 120, quoted by Reid & 
Knipping). 

SOME EPISTEMOLOGICAL ISSUES 
The deep roots of the mathematical proof date back to one of the most famous 
texts that antiquity has handed down to us: the Euclid’s Elements; the specificity 
of mathematical proof lies in the key features of the way used by Euclid for 
collecting and exposing mathematical knowledge. Such a way considered by 
Proclus excellent, provided a solution to a difficult problem. 

It is difficult, as in all science, to choose as much as to arrange in the order due to 
the elements from which everything else derives... (Heath, 1956 (I), pp. 115-116). 

The problem was: how to “organize knowledge in the proper order”. The mode 
of exposition refers to a “style of rationality” that some historians define 
precisely as “Euclidean” (Arsac, 2007). The nature of style stems from the fact 
that a deep unity connects organization and understanding, making the 
organization itself functional to the understanding of content, an understanding 
that is inextricably linked to the requirement of acceptability and recognition 
within a scientific community. The aspect that must be emphasized is precisely 
that of the dual purpose, of understanding on the one hand and of acceptability 
on the other, unanimously recognized as characteristic of a theoretical corpus 
(Hanna, 1989, pp. 21-22). That can explain why Euclid’s Elements remained for 
centuries a reference book for those who intended to learn Geometry, and 
Mathematics in general. Though other possible approaches have been proposed 
to learn Geometry (Menghini, 2015), the logical-deductive mode introduced by 
Euclid has remained and reaches us as the paradigm of communication for 
mathematicians. 
Despite the difficult change of perspective, which led to the radical revision of 
the idea of truth in mathematics, the relationship between understanding and 
acceptability regarding mathematical statements does not seem to have changed 
over the centuries. And it continues to be a characteristic element of this 
discipline. The development of increasingly complex relationships between two 
fundamental moments in the development of mathematical knowledge: the 
production of conjectures as the heart of knowledge production and the 
systematization of such knowledge, has led to a slow elaboration of the idea of 
rigor that at the end of the nineteenth century perhaps had a turning point (Lolli, 
2004). 
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All this leads us to underline the profound continuity between the construction 
of knowledge and its systematization into a logic-deductive frame, between 
typical aspects of communication, such as that of being understandable, and 
typical aspects of knowledge as a cultural product, such as acceptability.  The 
issue is broad, and it is not possible to address it in the space of this contribution. 
I have therefore chosen an aspect, on which perhaps not enough attention has 
been paid, but which I believe is of great interest for the close relationship with 
school practice: the relationship between proving and explaining. 
DIFFERENT APPROACHES TO THE PROBLEM OF 
MATHEMATICAL PROOF  
When the discussion about mathematical proof opens, we are generally faced 
with two possible positions, often seen in opposition, but which can be 
considered rather to refer to different and complementary perspectives. On the 
one hand, it is possible to take a descriptive approach, observing and classifying 
different answers that students provide after the request of justifying a specific 
statement. This is the case, for instance, of the seminal work by Harel and 
Sawder (1998); on the other hand, it is possible to take an approach that we can 
call cognitive-epistemological. In this latter approach, an a priori analysis is 
carried out, describing the different ways of determining the truth of a statement, 
comparing and characterizing them with respect to the cognitive processes 
involved.  
Argue, prove, explain: continuity or rupture? is the title of a seminal article by 
Duval (1992). The author focused his attention on a crucial point: the difference 
between the semantic plane, where it is the epistemic value – the truth or 
falsehood, with all possible intermediate degrees – of a statement that is 
fundamental, and the theoretical plane where only validity is at stake, i.e., only 
the logical status of a statement in relation to the theory. Regardless of the truth 
values attributed to propositions and their combinations – in arguments or 
explanations – what matters is being an axiom or a theorem, that is, provable 
with respect to the theory that determines the value of truth and acceptability.  
The Duval analysis highlights in a very clear way the problem of cognitive 
distance between proof and argumentation, a distance that can explain many of 
the difficulties observed and at the same time brings to the centre of the didactic 
problem the relationship between hypothetical-deductive system and 
understanding, and in particular the explanatory function of the mathematical 
proof (Hanna, 1990). 
There may be several possibilities. Focalizing on the break between the semantic 
plane, where it is possible to speak of the truth (epistemic value) of a given 
statement, and the theoretical plane where one can only speak of validity within 
a theoretical system, one must also distinguish the different points of view in 
terms of understanding. Semantically, understanding can refer to links between 
meanings and not necessarily to links of logical consequence. To focus on 
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continuity, which is so evident in the processes of production of conjectures in 
which the logical connection between two propositions is unthinkable without 
referring to the meanings of the propositions at stake? 
The fundamental problem therefore seems to be to solve the possible tension, 
sometimes the conflict, between the different functions that an argument can 
assume, explain and validate, and acquire a flexible thought that knows how to 
pass, casually and consciously, from the intuitive level, (that) of truth in terms of 
the meanings of the statements, to the formal level of validity, in terms of 
relations of logical dependence between the statements within a theory. 
The practice of mathematicians is, in this respect, enlightening; every 
mathematician is convinced that he proves true theorems, but, at the same time, 
truth is understood in terms corresponding to a certain theory. This is a relative 
truth, stemming from the assumption of truth assumed for the axioms and the 
assumption that accepted rules of inference “transform truth into truth”. The 
relativity of the meaning of truth, however, is fundamental: axioms are not 
“absolute truths”, let alone factual truths. 

A statement B can be a theorem only in relation to some theory; it is nonsensical to 
say that it is a theorem (or a truth) in itself: even a proposition like ‘2+2=4’ is 
a theorem in a theory A (e.g., some fragment of arithmetic). (Arzarello, 2000) 

One does not spontaneously arrive/acquire to the control – that the expert is 
automatic and unconscious of the relativity of the meaning of truth; rather, it 
seems to us that first awareness and its 'atomism' constitute an achievement and, 
in this sense, a formative objective. 
From the didactic point of view, it seems obvious that the persistence of 
confusion between the two points of view, without clarifying the relationship 
between the explanatory function and the validation function, has as 
a consequence the construction of a distorted conception of mathematical proof 
(Balacheff, 1999).  
In this regard, the following answers given by some students to the open 
question seem significant1: “write everything you know about proofs in 
mathematics and their use”.  

The proofs serve to explain more clearly, to make us understand the reason for 
some mathematical rules. In theory they should facilitate us, but sometimes they are 
more difficult than the rules! (Luc) 
I can’t understand what mathematical proofs are for. They are too difficult to do and 
then you lose too much time for something that you already know at the beginning 
if it is true or false. (Lu) 

 
1 The test was at the heart of an investigation whose main objective was that of shading light on 
students’ conceptions regarding mathematical proof. The students involved attended the first year of 
the high school (15-16 years old). The names are abbreviated.   



42 MARIA ALESSANDRA MARIOTTI 

Proofs in mathematics serve to better understand rules or concepts. They are used to 
explain and to see if we have understood the rules studied. (Ce) 
Mathematical proofs have accompanied us since elementary school, but their use is 
always given almost exclusively in homework. Perhaps such mathematical proofs 
serve to open the brain to various situations in life, in various decisions. (Ric). 
[Proof is] what professors do to explain things that are always simple. (Nic) 

In the statements reported above, we find recurrent reference to the function of 
explanation; we also find considerations regarding the effectiveness unless the 
proofs with respect to this function, up to the paradox expressed by Nicole, for 
which the proofs are what the professors do to explain things that are always 
simple. What the students write links mathematical proof and explanation, but 
some of the proposed distinctions suggest that the relationship between an 
explanation and a mathematical proof is not completely clear; this leads us to try 
to better understand what lies behind an explanation especially in reference to 
what happens in school practice. I will start by briefly introducing the 
argumentation and proof and the complex relation between them, then I will 
focus on explanation, formulating a characterization that can allow us to discuss 
its relationship to both argumentation and proof.  
ARGUMENTATION AND PROOF 
Contiguity and differences in comparing argumentation and proof has been 
widely discussed (Mariotti 2006; Reid & Knipping, 2010). According to Duval 
(2002) difficulties originate precisely in the differences between the justification 
processes characteristic of mathematics and those typical of other domains. 

Proving processes in mathematics are quite unlike those of the other fields. […] 
there is a gap between the discursive ways of using arguments and using theorems. 
(Duval, 2002, p. 3) 

At the core there is the distinction between the epistemic value2 of a statement 
that in the case an argumentation is based on the interpretation of the arguments 
provided to support it in, and in the case of a mathematical proof is based on the 
logic status of the arguments provided to support it. Thus, the control differs in 
the two cases: the semantic control, for an argumentation and the theoretical 
control, for a math proof. Nevertheless, this distinction is totally artificial. In any 
case, the statement and the discourse accompanying it will be interpreted and 
though in principle validation occurs at the theoretical level, meanings involved 
will be taken into account. If for the expert such a distinction, between the 
semantic and the theoretical level, can remain almost unconscious but perfectly 

 
2 Epistemic value is the degree of reliability of what is stated in the proposition. In the very moment of 
his apprehension, the content of a proposition appears obvious, or certain or only plausible, or 
plausible, or simply possible, or impossible, or absurd... [...] Naturally, the same proposition does not 
necessarily have the same epistemic value for two different people (translated by the author). (Duval, 
1995, pp. 218-219) 
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under control, this is not the case for the students for whom it may become 
difficult to be grasped.  
In the articulation between these two levels, the semantic and the theoretical, we 
can situate mathematical explanations and their use in school practice; before 
entering the discussion about the relationship between these three discourse 
modes, let us clarify what explanation can mean for us in this context. 
EXPLAINING, WHAT DOES IT MEAN? 
Openly in contrast with the principle that students must be responsible for their 
learning, explanations remain a persistent didactic method, which any teacher 
would hardly abdicate, mainly with young students (Leinhardt, 2001). Though 
often unclear what explanations consist of, teachers seem to acknowledge that 
explanations have an intrinsic effectiveness, hardly questioned. In school 
practice, mutual roles and expectations are usually well defined, and rarely 
admit derogations: the teacher explains, and the students listen, while in case of 
failure, reasons are always to be ascribed to students’ responsibility, for instance 
lack of attention.  
If the theme of proof has long been at the centre of attention of many studies in 
mathematics teaching, the same cannot be said for explanation, despite the fact 
that explaining is a widespread practice in our classes.  
Studies concerning explanation at school, or as some author call it instructional 
explanations, focused on the effect of this method and findings seem not to 
imply that instructional explanations should generally be regarded as being 
ineffective, rather show their effectiveness greatly depends on the design and 
quality of their implementation (Lachner & Nückles, 2015; Wittwer & 
Renkl, 2008), highlighting some possible elements concerning different 
elements involved: as teachers naturally resort to their own knowledge when 
generating instructional explanations (Nückles et al., 2005), focus has almost 
been on the teacher, thus teachers’ Content (mathematical) Knowledge,  but 
also, to great extent, Pedagogical Content Knowledge (Baumert et al., 2010) 
showed their relevance. Nevertheless, less attention has been devoted to study 
explanation in itself and with respect to its functioning; in this contribution, 
I will focus on it with the aim of clarify its relationship with other instructional 
discourse modes belonging to mathematics class practices, e.g., argumentation 
and mathematical proof. As commonly shared, we will consider explanation’s 
main goal as that of supporting students’ understanding of a specific subject-
matter (Wittwer & Renkl, 2008). Specifically, among the few available on this 
theme, we take the characterization of characterization offered by Mopondi: 

Explanation is a tool used by an interlocutor to make an object of communication 
understand, or make sense of, [...] the role of an explanation is to clarify the 
meaning of an object (a method, a term, a task, ...) (Mopondi, 1995, p. 12, my 
translation). 
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The explanation has as its objective to make people understand, to make sense 
of one of its objects, which in some cases can be expressed by a statement, 
though not always.  
This characterization of an explanation in terms of its goal: with respect to its 
object and an interlocutor, allows us to compare it with other types of discourse 
that involve an interlocutor and the intention to change his/her relationship with 
an object; specifically,  with an argument whose goal is to convince someone of 
the truth of the object and with a mathematical proof, whose goal is to make 
someone accept the object within a theory.  
The goal of explanation appearing in the definition formulated above, refers to 
understanding, but though often used in the field of education this term needs 
some clarification. Sierpinska (1994, p. 28) proposes  a clear and articulated 
interpretation of what it usually meant with term: understanding is a mental 
process that relate something new, to what is known to the subject and on which 
understanding is based process; such a process combines acts of understanding, 
or operations that relate to the object of understanding, the basis of 
understanding (i.e., representations, mental models, beliefs, personal opinions, 
etc.). The acts of understanding are of different type and nature: for example, 
common acts of understanding are generalizing as well as synthesizing (ibid., p. 
60). But, as we will see in the following analogy is one of those that are 
frequently used, together with deductive inferences. 
The unity of a process of understanding is determined by the close relationship 
between the objects of understanding of the individual acts of which it is 
composed. The links between acts of understanding can be of various kinds 
among these obviously there may be deductive inferences, though not 
exclusively (ibid., p. 73).  
The definition of understanding as a mental operation that allows the subject to 
connect the object to his own knowledge, clarifies how understanding is 
a completely personal and private phenomenon, and makes it reasonable to ask 
to what extent one can make someone understand something.  
The analysis of the act of understanding shows us which elements to consider: 
certainly, on all or some of the mental operations necessary to carry out the act 
of understanding, but above all on the system of knowledge of one’s interlocutor, 
those who will have to be activated to become the base of understanding 
necessary to found the individual acts and the chains of acts of understanding.  
For this reason, the action of a subject who seeks to promote the understanding 
of an interlocutor must be oriented and tuned to the latter. The person who 
intends to make someone understand will have to take into account what may be 
the bases of understanding available to his interlocutor and on which mental acts 
can be based that lead him to understand the object at stake.  
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The discursive nature of an explanation and the contiguity between the structure 
and the forms of the discourse of argumentation, makes explanations interesting 
to be investigated and in relations to school practice leads us to the question: to 
what extent a mathematical argument and specifically, a mathematical proof can 
also make one understand what is proved. 
WHEN CAN AN ARGUMENT EXPLAIN? 
Though introduced in a very synthetic way, the definition of understanding 
given above can shade light on the complexity and problematic nature of the 
relationship between an explanation and an argument, and in particular between 
an explanation and a mathematical proof of which some authors speak (Hanna, 
1989); in fact, two opposite situations are possible regarding the same argument 
or the same mathematical proof. 
On the one hand, it is possible that an argument, and in particular a proof, can 
take on an explanatory function. This will depend on whether the arguments 
used have a direct correspondence with the base of understanding, that is with 
the system of conceptions, models, beliefs that the subject has available for 
interpreting them. In the specific case of a mathematical proof, it can have an 
explanatory function only if the theoretical elements (axioms, theorems or 
definitions) used in the deduction, are available as part of the base of 
understanding; in particular, in the case of a mathematical proof, it is also 
necessary that the modes of inference used offer the necessary support to 
identify the connections between the object of understanding, and the base of 
understanding.  
On the other hand, it is possible that a certain argument or mathematical proof, 
even if considered explanatory by the person (for instance the teacher) 
presenting it, can be judged non-explanatory by the interlocutor. In particular, 
such a misinterpretation can occur when a teacher or a textbook present 
a mathematical proof with the intention of providing not only a validation of the 
theoretical acceptability but also an explanation of a statement; in that case, it 
can happen that a student who listens at teacher in class, or reads the text on the 
book, does not perceive the discourse as an explanation, because s/he cannot 
grasp the necessary connections between the object of the explanation and his 
own knowledge. In the following section we present an example. 
Is this proof explanatory? 

Consider the following statement “If two numbers are divisible by 3 then their sum 
is also divisible by 3”. 
In the following a possible mathematical proof is reported and analyzed.  
Proof 
1. if a is divisible by 3 then there exists k such that a = 3k 

2. if b is divisible by 3 then there exists h such that b = 3h 
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3. the sum a + b will then be equal to 3k + 3k, from which collecting the factor 3 we get 

4. a + b = 3(k + h) then 

5. a + b is divisible by 3 by definition. 

The proof has as its key element in the following definition that we formulate in 
its general version belonging to number theory: 

x is divisible by y if and only if there exists k such that x = k∙y 

However, this way of characterizing ‘divisibility’ is not the current way students 
have in mind: students usually consider that 

one number is divisible by another if performing the division, one gets remainder 0. 

If we assume that student’s knowledge available for interpreting the proof 
corresponds to such a statement, it will be difficult for the proposed proof to be 
explicative; although the individual passages might be acceptable, there is a gap 
(instead of a link) between the available knowledge and the arguments. The 
occurrence of the word ‘divisible’ evokes the fact of dividing and obtaining as 
remainder 0, instead of the fact that there exists k such that a = b∙k. The 
common mode of conceiving divisibility does not fit with the mode of 
expressing the divisibility in the theory within which this proof is developed and 
is acceptable as a validation of the statement. 
But there is something more, this proof is also delicate for its logical structure, 
for the logic role that a definition plays in the construction of the guarantee that 
links one step and the next of the argumentation.  
Each definition has the logical structure of a double implication, in the sense that 
premises and conclusion can exchange their logic roles: one can be 
a consequence of the other. What happens in this proof is the following: in the 
first step, being divisible by 3 has the status of premise from which the 
consequence is drawn to obtain “there exists k such that a = 3k” (step 1); in the 
last step, the same property, being divisible by 3, appears as a conclusion 
derived from the property obtained in step 4: “a+b = 3(k+h)”.   
This example highlights how the process of understanding can depend on 
a possible gap between student’s conception and corresponding formalization; in 
this specific case such a gap will be overcome only after the transition from a 
procedural knowledge of divisibility linked to performing an operation and 
obtaining zero rest, to a relational knowledge (Skemp, 1971; Sfard, 1991), 
which expresses divisibility through a multiplicative relationship between 
a number and its divisor. Until divisibility activates this a procedural knowledge 
in the reader, s/he will not be able to give meaning to the key arguments of 
which the proof is constituted, that is, the necessary connection between the 
object of the explanation and the base of understanding is missing, and no 
understanding will be possible. 
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This example can be considered a prototype with respect to a broad category of 
situations in which it may happen that there is a discrepancy between the system 
of available knowledge and the guarantees used in the argumentation, when it 
occurs that the combination of arguments fails to create the link between 
available knowledge and object of understanding. 
What is formalized in the theory and what is known do not fit and that originates 
a break between explaining and proving, e.g., validating with respect to the 
theory.  
WHEN THE OBJECT OF AN EXPLANATION BECOMES 
AMBIGUOUS 
Let us now consider another situation, which we can consider opposite with 
respect to the previous one. Consider an explanatory text, that is a text aimed at 
making some mathematical knowledge understandable, which leads to the loss 
of mathematical meaning. 
The following example shows a case of a text in which the explanatory objective 
of the text is intertwined with the objective of convincing the reader of both the 
truth and the mathematical validity of what is asserted, without clearly outlining 
the boundaries of these three different practices with respect to their respective 
purposes. The object of such an explanatory text is making the ‘rule for adding 
monomial’ understandable. 
Consider the following passage, taken from a textbook for the first year of 
secondary school; the text has been divided in two numbered parts for the 
convenience of the analysis. 

1. If in a basket there are 3 apples and we add another 2 apples at the end in 
the basket we will have 5 apples; if you have 2 notebooks in your 
backpack and we add another 4 notebooks, in the end you will have 6 
notebooks; but if to the 3 apples in the basket we add 4 oranges, we will 
always have 3 apples and 4 oranges. 

2. Therefore, if we have to add 3x and 2x, we can say that the sum is 5x; but 
if it should add 3x and 4a, in the end we will still have 3x and 4a. 

Moving from the first segment of the text to the second segment we can clearly 
distinguish a shift between two semantic fields: in the first paragraph, the terms 
belong to the semantic field of everyday experience – baskets, apples, and 
notebooks; in the textual segment coinciding with the second paragraph, the 
terms refer to the semantic field of mathematics, in particular algebra. The 
presence of a shift of speech from one semantic field to another, poses 
a problem of understanding and requires the construction of a link between the 
respective meanings. In the text, the link seems to be ensured by the adverb 
‘Therefore’ that binds the two discourses and that implicitly, introduces the 
analogy between the description of the situation referred to the real context, and 
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its ‘mathematization’ referred to the algebraic context. Actually, the analogy, 
like the metaphor, constitutes an operation among those often involved the 
process of understanding, and for this commonly used. However, in this case 
analogy has also the specific objective of supporting the validity of 
a mathematical statement concerning an algebraic property. It is important, 
therefore, to question whether the analogy evoked in the text is mathematically 
acceptable. 
The transition by analogy, from the field of everyday experience to the 
mathematical field of algebra, involves the consequent transition of the criteria 
of validity for the arguments: the acceptability criteria running in the source 
field are automatically transferred, ‘by analogy’, in the new field. However, 
such an automatic transfer from one field to another not always succeeds, and 
the transition would require a careful control. In the specific case, the analogy 
that is established transforms the argument developed in the field of everyday 
experience, and acceptable according to “common sense”, into an argument that, 
in the field of algebra, is totally meaningless. The way of representing the sum 
of two monomials, for instance 3x and 2x, into the algebraic expression 3x+2x, 
has the algebraic meaning of the sum between two products, given that the 
writing ‘3x’, conventionally leaves implicit the multiplication symbol and stands 
for the product 3∙x and similarly, 2x stands for 2∙x; thus, the algebraic 
interpretations of the symbolic (and conventional) writing ‘3x+2x’ is 
incompatible with the proposed analogy.  
In algebra, letters represent variables for which it makes sense interpreting the 
juxtaposition of the symbols 3 and x,  as a multiplication between a number and 
a variable; on the contrary, in the proposed analogy, the interpretation of the 
expression 3a+2a  as “3 apples added to 2 apples”, does not make sense: in this 
case, the letters play the role of abbreviations of the names of the counted 
objects. At the same time, a multiplicative interpretation does not make sense.  
The mathematically correct explanation, which is also a proof, can refer directly 
to the distributive property of multiplication with respect to the sum: 
3x + 2x = (3 + 2)x [for distributive property] 
(3 + 2)x = 5x [calculation of the sum] 
3x + 2x = 5x [prop. Transitive of equality] 
All this makes the explanation provided by the text not only mathematically 
incorrect, but also misleading with respect to a correct use of the analogy. The 
correspondence between the mathematical meanings and meanings emerging 
form everyday experience is not made explicit; moreover, the apparent 
simplicity of the arguments used, produces an immediate acceptance. All that 
invites students to an uncontrolled use of analogy and reduces its value with 
respect to mathematical thinking.  
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As a matter of fact, besides its persuasion strength, the use of analogy has 
a strong argumentative power: arguments by analogy generates a high degree of 
acceptability: precisely, it generates immediate adhesion by virtue of 
transferring in a new and almost unknow field, the strength of a sound argument 
produced in familiar a field. 
Moreover, and above all, it seems to us that it can be considered a missed 
opportunity to propose, or perhaps let the students find, a sensible justification 
that at the same time consolidates important algebraic meanings, such as that of 
variable, that of the properties of operations and the role that these properties 
can have in defining what symbolic manipulation consists of (Kieran, 1992). 
The example just discussed, can be considered paradigmatic of the risks that the 
use of analogy and similarly that of metaphor, can hide.  From the didactic point 
of view, it is appropriate to become aware and clarify not only the differences 
but above all the contiguities between mathematical proofs and explanations, 
and in particular it is required to analyze in a fine way all those situations where 
the proximity between explanatory texts, argumentative texts and mathematical 
proofs raises the risk of confusion, because this confusion hinders not so much 
the correct understanding of the content that is intended to be explained,  but the 
functioning of the different modalities, in particular the correct development of 
the mathematical sense of the argument.  
CONCLUSIONS 
The crucial role that argumentation and proof have in mathematical practice, has 
as implication for teaching practice: above all, the need to recognize the 
importance of placing the development of argumentative skills among the 
primary and transversal objectives of Mathematics education; at the same time, 
the discussion presented has clearly highlighted that this didactic objective must 
be harmonized with the need to promote understanding and therefore to develop 
the mathematical sense of what is proposed in class.  
In the restricted limits of this contribution I tried to focus attention only on 
a very particular aspect of the didactic problem of developing argumentative 
skills in the Mathematical field, that asks to effectively intertwine in 
a meaningful net  three fundamental  components of mathematical thought: 
producing  arguments, whose goal is to convince of the truth pf a statement, 
producing proofs, whose goal is to establish its validity within a theory, and 
explaining that is making it understandable for the interlocutor. 
All this corresponds to better articulate the primary objective – to develop 
argumentative competencies in the Mathematical field – highlighting two 
interrelated dimensions. The first consists in developing in the classroom the 
“culture of why?”, that is, to make ‘natural’ the habit of looking for a reason for 
each statement that happen to emerge in the mathematical field. The second 
dimension consists in developing the awareness of the different nature of the 
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possible reasons coming as an answer to the question “Why?”. Reasons that can 
be produce for explaining, that is for favouring one’s own understanding, 
reasons that can be produces for proving that is for supporting the acceptability 
of a statement with respect to Mathematics, and in particular to its theoretical 
organization. Developing such a complex competence is a demanding task that 
requires the mindful mediation of the teacher. 
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In this article we study two primary school teachers during their interaction 
with textbook mathematical tasks of the first grade of secondary school in order 
to investigate their hypothetical didactical use in the last grade of primary 
school. We explore aspects of their Pedagogical Design Capacity and their 
beliefs regarding issues of mathematical transition. The results of the study have 
shown different types of the teachers’ interaction with the mathematical tasks, 
which are justified by their different beliefs on mathematical transition.  
MATHEMATICAL TRANSITION FROM PRIMARY TO SECONDARY 
EDUCATION: THE CASE OF GREECE 
The transition in mathematics from primary to secondary education is a topic 
that has occupied the field of mathematics education in various ways. In the last 
twenty years, there have been studies that focus on the continuity of the 
mathematics curriculum (Nicolescu & Petrescu, 2015), on the perceptions and 
experiences during the transitional period in the mathematics of teachers and 
students (Attard, 2010), on the knowledge of teachers regarding issues of 
transition (O’Meara et al., 2020), as well as on the cooperation of teachers of the 
two educational levels (Soto et al., 2020). 
The results of the above studies indicate that there is usually a discontinuity 
between the mathematics curriculum of the two educational levels (Nicolescu 
& Petrescu, 2015) and a lack of communication and cooperation between the 
teachers of the two levels (O’Meara et al., 2020). In addition, students 
experience a decline in their math performance and motivation (Athanasiou 
& Philippou, 2006). Attard (2010) maintains that the teacher-student 
relationship and the differences between the two educational levels (such as the 
mathematical content, assessment techniques, teaching practices, students’ 
workload and technology integration) influence the students’ engagement with 
mathematics in this period. 
However, there is a lack of research focusing on primary school mathematics 
teachers on the issues of the transitionin mathematics to secondary education. In 
this paper, we study two Greek primary school teachers in their attempt to 
modify mathematical tasks from the textbook of the first grade of secondary 
school for a hypothetical use in the last grade of primary school. 



Primary teachers’ pedagogical design capacity for a smooth mathematical transition 53 

 
 

In Greece, the transition in mathematics between the two levels takes place 
between the 6th and 7th grades, when the students are between the ages of eleven 
and twelve. Mathematics curriculum, textbooks and teachers’ guidebooks are 
uniform throughout the country, and they are published and approved by the 
Ministry of Education. In Greek primary schools, mathematics is taught by 
teachers who possess a degree of education departments. These departments 
contain courses related to pedagogy, didactics of the courses which are taught in 
primary education and psychology. In some cases, primary school teachers 
experience difficulties in the mathematical content they teach, which is further 
enhanced by the small number of courses in mathematics and mathematics 
education in the departments of education. Furthermore, in Greek secondary 
schools, mathematics is taught by teachers who have graduated from 
mathematics departments, where it is quite possible that they have not attended 
almost any course related to mathematics education. In this paper, we only focus 
on primary school teachers and especially on their relationship with the 
curriculum resources (particularly the tasks), which come from the chapter of 
the equations in the textbook of the 7th grade (1st grade of Greek high school), 
as a tool of primary teachers’ awareness of issues of transition in mathematics 
between the two educational levels. 
PEDAGOGICAL DESIGN CAPACITY (PDC) OF A MATHEMATICS 
TEACHER 
Brown (2009) perceives teaching as a designing process, which includes both 
the lesson preparation stage and the stage of practice in the classroom. 
According to Brown (2002), Pedagogical Design Capacity (PDC) is “teachers’ 
capacity to perceive and mobilize existing resources in order to craft 
instructional contexts” (p. 70). PDC “describes the manner and degree to which 
teachers create deliberate, productive designs that help accomplish their 
instructional goals” (Brown, 2009, p. 29). Brown (2002) developed the 
framework of Design Capacity for Enactment (DCE) for understanding the 
interaction between teachers and curriculum resources. Teachers’ resources 
include the teachers’ subject matter knowledge, goals, beliefs and pedagogical 
content knowledge, while curriculum resources contain physical objects, domain 
representations and procedures. The interaction among teachers and resources is 
a dynamic process, in which different PDC can be justified by the fact that 
teachers with similar knowledge and skills interact and use curriculum resources 
in a different way (Brown, 2009). There are three types of interactions. The 
offloading (when the teacher is based significantly and without pedagogical 
changes in curriculum materials), the adapting (when the teacher shows less 
dependence on curriculum materials during the design and implementation of 
teaching) and the improvising (when the teacher takes the responsibility for the 
teaching design and implementation by creating tasks or pedagogical steps 
without reliance on curriculum materials) (Brown, 2009).  
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In this paper, we adopt Brown’s (2009) approach, considering that the process of 
design is a crucial and dynamic element of an effective teaching, and it 
embodies teachers’ knowledge, beliefs and skills. According to the literature on 
the transition in mathematics from primary to secondary education, we found 
that there is a lack of research focusing on the role of the teaching design during 
the transition period. Furthermore, the approach to the issue of transition from 
the perspective of the teaching design of primary education teachers is an issue 
that has not been sufficiently analyzed in the field of mathematics education. 
More specifically, we cooperated with two primary mathematics teachers in 
order to explore their PDC during their lesson preparation for the 6th grade, by 
using/modifying mathematical tasks from the textbook of the 7th grade. The 
research questions are: 

1. In which ways the two teachers interact with the secondary mathematics 
tasks at the stage of their preparation of teaching? 

2. How these teachers’ beliefs about the transition in mathematics from 
primary to secondary level affect their teaching design? 

METHOD 
Context of the study and Participants 
The present study is a case study (Yin, 1994) and involved two primary school 
teachers of mathematics, whose pseudonyms are John and Mary. We asked them 
to use and modify (if they deemed it necessary) seven mathematical tasks from 
the textbook of 7th grade (from the chapter of equations) (Vandoulakis et al., 
2012) as part of their preparation for a hypothetical teaching in 6th grade for 
a smooth transition in mathematics. We chose tasks from the chapter of 
equations in the 7th grade because there is a corresponding chapter in the 6th 

grade. Τhe selection of these mathematics tasks was based on the similarities 
and differences that they could present in relation to the tasks of the 6th grade, 
based on the criteria ofthe mathematical solvability, as well as their linguistic 
and mathematical complexity (Silver & Cai, 1996). The research took place at 
the end of the school year, in order for the teaching of equations to be 
completed. 
Τhe first primary teacher was John. John was a 6th grade teacher at the time of 
the study. He had more than 25 years of teaching experience and in the past, he 
was a 6th grade teacher for five years. The second primary teacher was Mary, 
with over 13 years of teaching experience and a master’s degree in mathematics 
education. Mary was teaching the 1st grade at the time of the study, but three 
years ago she was a 6th grade teacher. In total, she was a 6th grade teacher for 
three years in the past. We chose these two teachers because they both had a lot 
of teaching experience. Additionally, they displayed interesting differences, 
such as the fact that Mary held a master’s degree in mathematics education and 
that John had more teaching experience in the 6th grade. 
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Data Collection 
The data was collected from a questionnaire and a semi-structured interview. 
The questionnaire contained seven mathematical tasks from the 7th grade 
mathematics textbook (Vandoulakis et al., 2012). The criteria for selecting these 
tasks were explained above. The main question of the questionnaire was to adapt 
the mathematical tasks, if deemed necessary, in order to integrate them 
didactically in the 6th grade for a smooth transition to mathematics between the 
two educational levels. The mathematical tasks provided were the following 
(Vandoulakis et al., 2012): 

Task 1: The side of a square is a. What is its perimeter and how much is its area? (p. 
74) 
Task 2: Write the mathematical expressions in a simpler way: (i) x+x, (ii) a + a + a, 
(iii) 3∙a + 52∙a, (iv) 2∙b + b + 3∙a + 2∙a, (v) 4∙x + 8∙x – 3∙x, (vi) 7∙w + 4∙w – 10∙w (p. 
74) 

Task 3: If x∙y = 
2
9  and  z = 

3
5, find x∙(y∙z). (p. 74) 

Task 4: The difference in the age of the daughter from her mother is 25 years. If the 
daughter is 18 years old, how old is the mother? (p. 78) 
Task 5: Christina spent half of her money to buy 2 notebooks and markers. If it is 
known that each notebook costs 1€ and all markers 3€, what is the amount of 
money that Christina had before these purchases? (p. 76) 
Task 6: A father is four times the age of his son. The two ages together add up to 
half a century. How old is each one? (p. 78) 
Task 7: A worker for a five-day job agreed to get half of his pay in advance and the 
rest to be paid when the job was done. If the payment in advance was 180€, what 
was his daily wage? (p. 77) 

Τhe semi-structured interview was divided into three parts. The first part 
contained questions concerning the beliefs and knowledge of teachers on issues 
of transition in mathematics. The second part concerned the teaching and 
learning of algebra between the two educational levels. The questions of the first 
two parts were based on specific categories of mathematical transition 
(mathematical content, assessments techniques, teaching practices, students’ 
workload and technology integration), as they emerged in Attard’s (2010) study. 
The third part of the interview focused on the changes made in the tasks and 
their justification by the teachers. 
The data collection was realised in two phases. In the first phase, we asked the 
teachers to complete the questionnaire and in the second phase, the semi-
structured interview took place. The aim of the interview was to explore the 
teachers’ resources (according to DCE) regarding the issue of mathematical 
transition, the teachers’ justifications of the modifications of the tasks and the 
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teachers’ explanations of their didactic use in the classroom. The first author 
was the interviewer. 
Data Analysis 
For the analysis of the data, we relied on the theoretical framework of DCE 
(Brown, 2009) and the concept of PDC (Brown, 2002). We firstly decoded the 
teachers’ interviews and then identified their beliefs, goals and knowledge about 
teaching and learning mathematics during the transition period. Subsequently, 
we identified broader categories of beliefs regarding specific issues of transition 
(i.e., beliefs about the role of curricula in the transition, beliefs about the role of 
mathematical tasks in the textbooks of the 6th and the 7th grade).  
In the next phase, we studied the task changes made by the teachers, and tried to 
identify the reasons for these changes from the third part of the interview, and 
the way of their hypothetical use in the classroom. In this phase we examined 
whether, which and how the above categories of beliefs are related to the task 
changes and their hypothetical use in practice.  
Finally, we synthesized all data in order to identify how teachers interact with 
resources. The combination of data regarding teachers’ beliefs, their knowledge, 
their profile and their interaction with the curriculum resources of the 7th grade 
contribute to the exploration of their PDC. 
RESULTS 
Firstly, according to our data analysis, both teachers seemed to be concerned 
with issues of mathematical transition. Both teachers agreed that in Greece the 
transition in mathematics from primary to secondary education is not completely 
smooth and that the transitional period covers mainly the 5th and 6th grade from 
primary school and the 1st grade from secondary school. 
We observe that the two teachers displayed a different profile. John was more 
experienced, both as a teacher and as a 6th grade teacher. In addition, he was 
teaching at the 6th grade at the time of the study. John considered that the 
“teacher should build bridges between the two levels” (belief about the role of 
teacher in the transition period), that is why he used 7th grade mathematical 
tasks in his teaching. On the other hand, Mary had less teaching experience in 
the 6th grade, but she showed a greater academic depth in teaching mathematics, 
probably because of her master’s degree. 

Task/ Teachers John Mary 
Task 1 Offloading Offloading 
Task 2 Adapting Offloading 
Task 3 
Task 4 

Adapting 
Adapting 

Adapting 
Improvising 
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Task 5 
Task 6 
Task 7 

Offloading 
Offloading 
Offloading 

Offloading 
Adapting 
Adapting 

Table 1: Interaction between primary teachers and 7th grade tasks. 

Table 1 shows the ways of interaction that occurred between the 7th grade 
mathematics tasks and each teacher. We notice that in some tasks the way of 
interaction is the same (Tasks 1, 3, 5), while in other tasks (2, 4, 6, 7) Mary 
showed a smaller degree of dependence on these. These differences could be 
justified by the different approach/beliefs they expressed concerning 
mathematical transition.  
More specifically, John considered that “the students of the 6th grade could 
respond satisfactorily in the cognitive demands of 7th grade tasks” (belief about 
the demands of tasks between the two levels). Mary believed that “the tasks in 
the 6th grade should be linguistically and cognitively more accessible to the 
primary students in relation to the corresponding ones in the 7th grade” (belief 
about the demands of tasks between the two levels). Consequently, in some 
tasks she changed the language and lowered their mathematical complexity. 
Therefore, we may claim that she created her own pedagogical steps in her 
hypothetical use of the tasks in a classroom. Maybe that is why she mainly 
interacted on a greater degree of independence with the tasks than John, who 
believed that no extensive changes are required. 
The case of John 
In the interview, John explained that “the curricula as well as the mathematics 
textbook of the 7th grade should be adapted more to the goals of the 6th grade of 
primary education” (belief about the role of curricula and mathematics textbook 
in the transition period). Therefore, we expected that John would show a greater 
independence in his planning with the given tasks. Actually, we noticed that he 
designed his lesson as a mixture of ‘offloading’ and ‘adapting’ of the given 
tasks. 
John believed that “the equation in secondary education is used more as 
a mathematical tool, while in primary education it should arise through a verbal 
problem” (belief about the concept of equation in the two educational levels). In 
more detail, he emphasized that “I want to go through the textual data to the 
formation of the equation with the use of a variable, so I focus more on the 
symbolism than on the solution of the equation” (belief about the didactical 
approach of equation in primary education). Tasks 5, 6 and 7 were word 
problems, which are solved with the help of the equation. For this reason, John 
made almost no modifications, therefore his interaction with the tasks can be 
categorized as ‘offloading’. Furthermore, the fact that he relied closely on the 
given mathematical tasks of the textbook of the 7th grade is justified by his 
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belief that “there should be some exactly the same tasks in the 6th and 7th grade 
mathematics textbooks, as a way of a smooth mathematical transition (belief 
about the role of mathematics tasks in textbook for a smooth transition). 
The case of Mary 
The analysis of Mary’s interaction with the given tasks led us to no particular 
type of interaction. Mary believed that “the mathematical tasks in the 6th grade 
should contain an easier linguistic background than the 7th grade mathematics 
tasks and also the 6th grade tasks should offer questions that will gradually help 
the student to solve them” (beliefs about the demands of tasks between the two 
educational levels). As a result, she often adjusted the given tasks with 
appropriate changes to make them less demanding. Hence, the interaction of 
Mary with the 7th grade mathematical tasks could be characterized, in some 
cases, as ‘adapting’ or ‘improvising’.  
For example, when Mary analyzed her planning for the hypothetical lesson, she 
said that she wanted to “adapt the mathematics task to the primary students’ pre-
existing knowledge and experiences” (belief about the didactical approach of 
tasks in primary education). Thus, in several mathematical tasks (tasks 3, 6 and 
7) she modified them linguistically and lowered their mathematical complexity. 
In one case the changes were so many, that in fact she modified her original 
goals and she said that in the class she would approach the task differently than 
she should in the 7th grade. In other words, she interacted with the task with 
a high degree of independence (‘improvising’). This was Task 4: 

The difference in age of the daughter from her mother is 25 years. If the daughter is 
18 years old, how old is the mother? (Vandoulakis et al., 2012, p. 78) 

Mary suggested three replacements of the word “difference”. For instance, she 
suggested “if the daughter is 25 years younger or when the mother gave birth to 
the daughter, she was 25”. What is worth noting is that during the interview 
Mary said that she would motivate her students to solve it with simple 
operations and not with the use of equations. In other words, she significantly 
changed the original goal of the task. She claimed that “the equations are one of 
the most difficult concepts in the 6th grade, because students cannot understand 
what a variable is, and that one part of the equation is equal to the other” (belief 
about the concept of equation in primary education). Therefore, it is implied that 
there is a discontinuity in terms of cognitive requirements and students’ pre-
existing experience with equations based on the mathematics tasks between the 
6th and 7th grades’ mathematics textbooks. 
DISCUSSION AND CONCLUSION 
The present study is part of a wider study on the mathematical transition from 
primary to secondary education in Greece. The purpose of this paper was to 
explore aspects of the Pedagogical Design Capacity of two primary school 
teachers when they interact with mathematical tasks of the textbook of the first 
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grade of high school with the aim of their hypothetical teaching use in the last 
grade of primary school. Specifically, we focused on the ways of interaction 
(‘offloading’, ‘adapting’ and ‘improvising’) (Brown, 2009) between teachers 
and tasks and in the way their beliefs on mathematics transition affect these 
interactions. 
The results of this study suggest that there was no dominant way of these 
teachers’ interactions with mathematical tasks from the 7th grade textbook. This 
is illustrated by the fact that the teachers’ different beliefs on aspects of 
mathematical transition between the two educational levels also had different 
impact on their actions on the tasks. The first teacher (John) seemed to support 
his teaching design with a greater adherence to the 7th grade mathematical tasks, 
because he believed that students can cognitively succeed in them. The second 
teacher (Mary) considered that the 7th grade tasks were quite demanding for the 
students of the 6th grade, thus she demonstrated a greater degree of 
independence from the tasks. 
Furthermore, our study has showed the importance of planning for the 
mathematical transition as well as the complexity of these in Greece. Issues such 
as the role of the mathematics curriculum, textbooks, and word problems 
between primary and secondary education, as well as the demanding nature of 
the concept of equation in the Greek educational system were also showcased in 
our study. These issues are aligned with the findings of other studies about 
issues of mathematics’ transition period (Attard, 2010; Katsomitros, 2021; 
Nicolescu & Petrescu, 2015). Further research is deemed necessary. It would be 
important to study the implementation of these tasks in the classroom, in order 
to observe whether there would be any other modifications of these in the 
classroom and whether teachers would continue to interact with them in the 
same way. 
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A STUDY ON THE USE OF MATHEMATICAL SENSES 
AND CRITICAL THINKING OF STUDENT TEACHERS 
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This work explores, by means of a two-phase qualitative research study, the use 
of spatial, measurement and number senses of 67 student teachers. The first 
phase consisted of an instruction of the participants on the mathematical senses 
from a teaching and learning perspective. In the second phase they were asked 
to solve a task whose resolution required the use of different components of the 
mathematical senses. We analyse their responses and errors in their written 
productions from the second phase. Our findings reveal a low reading 
comprehension leading to task misinterpretations and a poor use of 
measurement and spatial sense, producing multiple mistakes on data handling 
and geometric representations. Conclusions are drawn about the use of critical 
thinking. 
INTRODUCTION 
For several decades, international institutions and commissions of programs in 
Mathematics Education (e.g., National Council of Teachers in Mathematics 
[NCTM], Organization for the Economic Co-operation and Development 
[OECD], Programme of International Students Assessment [PISA], etc.) have 
joined forces to reflect on the notion of mathematical competence. Different 
procedures and instruments have been designed and used to assess the 
mathematical competence of students and to promote its development and 
improvement from the elementary grades. In the framework of PISA, 
mathematical literacy is defined as  

An individual’s capacity to formulate, employ and interpret mathematics in 
a variety of contexts. It includes reasoning mathematically and using mathematical 
concepts, procedures, facts and tools to describe, explain and predict phenomena. It 
assists individuals to recognise the role that mathematics plays in the world and to 
make the well-founded judgements and decisions needed by constructive, engaged 
and reflective citizens. (OECD, 2018, p. 77) 

This conception of mathematical literacy makes it closely related to critical 
thinking, being this associated with the dimensions of information (as a source 
and as product), effective communication and social responsibility (Ananiadou, 
& Claro, 2009).  
The design of the elementary school mathematics curriculum, the planning of 
the teaching and learning processes (Rico, 2016) and the training of prospective 
schoolteachers turn out crucial factors of the objective of enhancing students’ 
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mathematical competence and critical thinking. Linked to these notions and 
being an operational concept to address them is what other authors (e.g., Flores 
& Rico, 2015) call mathematical sense. Ruiz Hidalgo et al. (2019) perceive 
mathematical sense as the set of capabilities related to the mastery in context of 
numerical, geometric, metric and statistical contents, which allow to use these 
contents in a functional way. This concept encompasses four interrelated 
mathematical senses: number sense (Castro & Segovia, 2015; Dantzig, 1954; 
Sowder, 1992), measurement sense, geometric and spatial sense (Clements & 
Battista, 1992; Flores et al., 2015), and stochastic sense (Batanero et al., 2013; 
Ruiz Hidalgo & Serrano, 2015; Watson, 2006). 
Multiple studies (Clements & Stephan, 2004; Kamii & Kysh, 2006; Lehrer, 
2003; Tan Sisman & Aksu, 2016) report the difficulties that some primary 
school pupils find and experience when dealing with certain mathematical tasks 
and their poor use of their mathematical senses. Interestingly enough, other 
works (Baturo & Nason, 1996; Ryan & McCrae, 2005; Tierney, Boyd, & Davis, 
1990) reveal that these difficulties persist in later educational levels students and 
even in student teachers. Since teachers are one of the key bodies of the 
educational system, it is of great interest to investigate these errors and 
misconceptions in student teachers, in order to know more about their nature and 
to consider appropriate actions in this regard. 
OBJECTIVES 
In the context of the task presented in the Method section, the main objectives of 
this qualitative research are: 
O1. To explore the mathematical errors and misconceptions of student teachers 
when addressing a paper-based task involving geometric, measurement and 
number senses; and 
O2. To test the value of that task to promote the use of components of the 
geometric, measurement and number senses in student teachers. 
METHOD 
We conducted a qualitative and descriptive research based on a two-phase 
classroom intervention. 
Participants 
Sixty-seven second year students of the Degree in Primary Education of a public 
Spanish University participated in the study. They were a class group 
undertaking their degree under a bilingual (English-Spanish) modality. This 
means that they were taught in English and had class materials in this language, 
using Spanish only in specific cases. At the time of the study, it was assumed 
that they possessed, in general, the mathematical knowledge and skills 
established in the corresponding Spanish secondary education and high school 
curriculum (Ministerio de Educación, Cultura y Deporte, 2015) as well as in the 
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syllabus of the subject called “Mathematical Bases in Primary Education” 
(University of Granada, 2021) of the first year of their university studies. 
Implementation 
In the first phase of the study, we conducted six interactive instructional sessions 
of 120 minutes each and six practical interactive sessions of 60 minutes each. 
This was carried out along 10 weeks during the academic year 2020-2021. 
Throughout the instructional sessions the spatial, measurement and number 
senses were thoroughly introduced to the participants, exemplifying their 
different components (Castro & Segovia, 2015; Flores, Ramírez, & del Río, 
2015; Moreno, Gil, & Montoro, 2015) through a wide variety of situations posed 
in intra-mathematical and extra-mathematical contexts. 
During the practical sessions, participants were asked to solve and analyse from 
a didactic point of view diverse tasks related to the use of spatial, measurement 
and number senses with the guidance of the researcher. These tasks allowed 
them to: on one hand, put in practice their own mathematical senses; and, on the 
other hand, to reflect on the design of mathematical tasks for elementary 
students based on the mathematical senses demanded in their resolution. Figure 
1 shows one of the tasks that the participants were working on during these 
sessions.  

 
 

 

 

 

 
Figure 1: Example of task proposed in a practical interactive session. 

Each practical session was structured as follows: (1) presentation of a number of 
tasks to the whole class group by the researcher; (2) active discussion on the 
questions of the tasks in small groups upon completion; (3) resolution of the task 
by one or more volunteer students (with the help of the researcher, when 
necessary) in front of the rest of the group; (4) sharing of the work, joint 
argumentation of the validity and invalidity of other given responses and 
summary of conclusions. 
In the second phase participants were presented a task (shown in the following 
subsection) via paper worksheets to solve individually. The sheets provided to 
the students to write their answers were deliberately not gridded, in order to 
encourage the use of their own measurement references (of length and area) 
when estimating and handling proportional relations in their floor plan drawings. 
However, they were allowed to use the ruler at their discretion. 
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Research instrument and information source 
According to our research objectives, we presented to the participants the 
following task. 

Erika and Laure have just bought together a new flat with a total area of 137 m2 and 
3 very spacious rooms. They are determined to do renovation works to modify the 
distribution of the flat. They would like to maintain as they are the living room —
which has an area of 21.8 m2—, the kitchen —13.3 m2— and the hallway —7 m2—
. Regarding the bedrooms, they plan to have four: one of them, the main one, with 
(a) twice the area than any of the other bedrooms (the three of them with the same 
area) and (b) an access to another room, used as dressing room, with an area 
equivalent to one third of the area of the main bedroom. In addition, they will 
expand the two bathrooms, making them equal in area and, jointly, being equal in 
area to the kitchen. 
(1) What will be the area of each bedroom (the main and the others), the dressing 
room and each bathroom? 
(2) Draw a possible floor plan of the flat, respecting the relationships between the 
dimensions of its rooms. 

Additionally, the original task asked the participants for the identification of the 
mathematical contents and components of mathematical senses involved in their 
resolution processes. Likewise, it requested a reflective discussion on the 
suitability of the questions (1) and (2) for primary school students according to 
the official Spanish mathematics curriculum for this educative stage. These 
questions have been omitted in the task statement shown above since the present 
study focuses on the analysis of the participants responses to the items (1) and 
(2). 
For our design of the task, we considered the criteria of (a) diversification of 
geometric, measurement and algebraic contents and components of the 
mathematical senses involved in its resolution and (b) setting the task in a 
realistic context. Regarding (a), the task potentially requires handling with 
numerical relations, use of algebraic language, equation solving, use of 
geometric concepts and relations, visualisation and representation skills, 
proportionality considerations, comparing and estimating measures, etc. 
Concerning (b), making major renovation works in a newly acquired flat 
(especially an old one) is a common practice among owners and investors. 
Moreover, the task is considered to include the three components of critical 
thinking identified by Maj-Tatsis and Tatsis (2021) in their review of studies on 
this topic: reasoning, problem solving, and identifying the suitability of problem 
solutions. 
Data analysis 
During the implementation of both phases, a variety of written participants’ 
productions were collected. In this work we analyse the ones collected in the 
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second phase. Participants’ written responses to the previously presented task 
were considered our units of analysis.  
Comprehensive data reviews enabled the examination of the solution processes 
and embedded proposals of solutions in participants’ written responses, being 
the identification of errors and misconceptions the main focus of the analysis. 
These reviews led to classifying errors into the following four categories: errors 
related to reading comprehension and interpretation of the task (L), errors in the 
use of number and algebraic senses (A), errors in the use of measurement sense 
(M) and errors in the use of geometric sense (G). 
RESULTS 
From the 67 participants, 10 (14.9%) of them did not provide any response to 
the task and 9 (13.4%) initiated their solving processes but did not manage to 
propose a solution. Part (1) of the task was answered by 48 (71.6%) participants 
and part (2) by 33 (49.2%). Only 14 (20.9%) participants provided a correct 
response to part (1) and 8 (11.9%) to part (2). Table 1 shows their most frequent 
errors and Figure 1 illustrates some of them. 

Errors ni fi (%)  
L1. Consider a different number than 4 as the total number of 
bedrooms 

10 14.9 

L2. Subtract the dressing room area to the main bedroom area 7 10.5 
L3. Consider the main bedroom area twice the joint area of 
the other 3 bedrooms 

7 10.5 

L4. Consider 13.3 m² as the area of each bathroom 5 7.5 
A1. Formulate wrong relations between areas of different 
rooms (e.g., x/3 for dressing room area where x stands for the 
standard bedroom area) 

18 26.9 

A2. Not taking into account some rooms (dressing room, 
bathrooms…) when equaling the sum of the known and 
unknown rooms areas of the flat to its total area 

6 9 

G1. Draw a non-realistic flat floor (represent the hallway as a 
room itself and not as a corridor; do not consider access area 
to rooms) 

23 34.3 

G2. Do not include some parts of the flat in its representation 12 17.9 
M1. Do not respect the proportionality between the area 
measures of the flat rooms in their representation 

16 23.9 

 Table 1: Most frequent student teachers’ errors when addressing the task.  
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Note: ni = Absolute frequency of participants that made a specific error. fi = Relative 
frequency in percent. Error labels allude to the categories specified in the subsection 

“Data analysis”. 

 
Figure 1: Participants’ productions illustrating errors specified in Table 1. Note. 1: M1; 

2 and 3: G1; 4: L3; 5: L1 and G2; 6: L4. Labels refer to errors described in Table 1. 

DISCUSSION 
Next, we discuss our results according to our research objectives and the 
categories of errors of our data analysis. For this, it is important to note that part 
(1) of the task was answered by 48 (71.6%) participants and part (2) by 33 
(49.2%). 
Firstly, it is noteworthy that the number of participants who made at least one 
mistake related to reading comprehension and interpretation of the task 
statement amounts to 24 (35.8%), which is equivalent to the half of the group 
who responded to the part (1), and that a total of 29 mistakes were registered in 
this category. The difficulties to properly understand the task statement and 
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being able to autonomously eliminate ambiguity where appropriate could be 
related to a lack of reading habits on the part of some student teachers, a fact 
pointed out by research studies on the topic (e.g., Applegate & Applegate, 
2004). It would be of interest to collect data on the participants to this respect in 
future studies in order to explore a possible correlation. 
Concerning our first research objective, a total of 22 participants (32.8%) failed 
in algebraically formulating the problem, appearing in some cases the reversal 
order error (Rosnick & Clement, 1980), probably due to a direct-translation 
strategy based on the syntax of statements as pointed by other authors 
(González-Calero, Berciano, & Arnau, 2020). Both results are aligned with 
those reported by Taplin (1998). 
Most of the participants struggled with the representation part and only few of 
them (8, representing 11.9%) were able to produce a realistic and valid floor 
plan of the flat. A large number of participants (23, representing 34.3%) drew 
non-realistic floor plans by representing the hallway as a room itself and not as 
a corridor or by not considering any access area to the different rooms. This 
seems to be aligned with the findings of Kiliç (2017). This together with the 
inconsistency in the representation of the rooms’ areas according to the area 
measures that they algebraically obtained reveals a poor use of geometric and 
measurement senses as well as of critical thinking, that enable solvers to detect 
unrealistic solutions. 
Lastly, it should be noted that very few participants provided written evidence of 
checking and validating their responses. It is needed to continue emphasizing the 
importance of this practice also at these educational levels, train critical thinking 
skills to identify inconsistencies and contradictions (including one own’s) (Paul 
& Elder, 2002), and work on the evaluation and internalisation phases in 
problem solving (Yimer & Ellerton, 2010). 
Our main findings show relevant lacks in the comprehension reading and text 
interpretation as well as in the use of mathematical senses by student teachers. 
We stress the importance of reinforcing the work on mathematical senses with 
student teachers during their training, with both foci: their instruction in teaching 
and learning processes of mathematics through these senses and the 
strengthening of their own mathematical senses. In this spirit, working on word 
problems is presented as a suitable and interesting option (González-Calero, 
Berciano, & Arnau, 2020). 
Regarding our second research objective, by virtue of the analysis of the student 
teachers’ performances, we highlight the value and interest of the task for our 
original purposes. It promoted the use of a diversity of components of their 
mathematical senses, regardless of whether this use was made appropriately or 
not by the student teachers participating in the study. 
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In our research we studied the way pupils prepared several word problems and 
the way prospective primary school teachers subjectively perceived this process. 
The paper presents outcomes of this research. We wanted to investigate whether 
and how prospective primary school teachers are able to analyze the way pupils 
constructed the word problems and to assess the significance of such 
composition in primary mathematics education. This competence is considered 
to be one of the factors that contribute to the formation of the professional 
identity of the prospective teacher. As a research method, the analysis of 
authentic statements of prospective teachers expressing their expectations was 
used. This analysis was complemented by the authentic problems worded by the 
pupils.  
INTRODUCTION  
The mathematical and didactic aspects represent an important part of 
multidisciplinary pre-graduate teacher training for primary school teachers. The 
prospective teacher training that considers teacher as reflective practisian to be 
one of the starting points of teacher training (Schön, 1987; Wubbels 
& Korthagen, 1990) refers to the requirement for a teacher to closely watch the 
process as well as the results of own teaching activities and think about and 
reflect the feedback. The reason is to understand own activity better in order to 
further enhance its impact (Janík et al., 2013, p. 183). The reflection may be 
concentrated on several aspects of the teacher’s thinking and acting. In this 
research, we focused on reflection of curriculum represented by word problems. 
Word problems and their solution are traditionally considered one of the most 
challenging components of school mathematics. Rendl, Vondrová et al. (2013, 
p. 50) consider this issue one of the critical points of school mathematics as seen 
by teachers as well as pupils.  
THEORETICAL FRAMEWORK 
The model of reflective practice often appears in the context of constructivist 
teaching and learning, in which knowledge acquisition is usually linked to 
reflection of practical experience (Korthagen & Vasalos, 2005; Janík et al. 
2013). Discussions about reflective education of prospective teachers and its 
effectiveness have led to the formulation of new concepts (Pollard & Anderson, 
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2008). This way of training teachers develops their knowledge base, which is 
considered a key aspect of the way to teacher profficiency. It is based on 
Shulman’s (1987) concept of knowledge base for teaching: content knowledge, 
pedagogical content knowledge and curriculum knowledge. Harel and Kien 
(2004) emphasize that knowledge of mathematical content significantly affects 
other components of the knowledge base. The acquisition of knowledge and 
beliefs of prospective teachers as part of their professional development can be 
described from different perspectives (Leder, Pehkonen & Tӧrner, 2002). 
Wilson and Cooney (2002) relate them to the overall development of teacher 
competencies as a set of personal characteristics and professional dispositions of 
the teacher. They emphasize that the development of competencies is 
a challenging didactic skill for teachers, in which they should demonstrate how 
they develop their competencies in real life and in self-reflection. Our 
perspective complies with the realistic approach to teacher training (Korthagen 
et al., 2011). At the beginning, beliefs of prospective teachers regarding what the 
process of educating pupils should be represent “opinions without any 
background or rationale, which, however, are rather resistant to changes” 
(Korthagen et al., 2011, p. 82). In the next phase, prospective teachers acquire 
first professional experience, solve educational situations and gradually develop 
their relationship to the profession. Professional beliefs, individual conception of 
the teaching profession and professional identity are formed (Pajares, 1992). The 
object of our interest was the way prospective teachers reflected the composition 
of mathematical word problems. Vondrová et al. (2019) emphasize that word 
problems show that mastering mathematical operations acquired in mathematics 
teaching can become an important tool for understanding the surrounding reality 
and can be a tool for solving real life situations and tasks. Greer, Verschaffel, 
and De Corte (2002) understand word problems as pieces of text that contain 
quantitative information and describe a situation with which the reader is 
familiar. Questions of “mathematical symbolization” (Vondrová et al., 2019) - 
the ability to express word problems in mathematical (numerical) expressions 
are often associated with the problem of reading comprehension. Some authors 
show that we can support successful solution of tasks by letting the solvers to 
compose their own word problems. (Cai & Leung, 2011; Kovács & Kónya, 
2021; Silver, 1997; Singer, Ellerton, Ponte, & Henriques, 2013; Tichá 
& Hošpesová, 2010). In school teaching, teachers often provide support to 
pupils solving the problems, for example, by rewording the problems, 
constructing an easier variant, wording questions of ‘secondary’, related tasks. 
Therefore, we agree with Tichá and Hošpesová (2015) and others (Leung 
& Silver 1997; Pittalis et al., 2004; Sierpinska & Osana, 2012; Osana & Pelczer, 
2015), who consider the inclusion of word problem composition in teacher 
training to be beneficial for development of teacher competencies. 
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METHODOLOGY 
Aim and method of research 
In preparing our qualitative research, we used a similar format as in our 
contribution for CME 2020, which we follow up on. We aim at bringing 
a deeper insight into the way prospective primary school teachers subjectively 
percieve the way pupils compose word problems. As a research method, we 
used the analysis of comments written by prospective teachers, and subsequent 
semi-structured interviews of the prospective teachers during joint reflection. 
The advantage of the written statement is that the mediation effect of the 
researcher is smaller compared to the interview and the respondent works at his 
own pace (Elisabeth, 2007). We sought answers to research questions through 
a thematic analysis of individual statements (Braun & Clarke, 2006). The group 
of research respondents consisted of 45 primary school prospective teachers of 
the Faculty of Education, Masaryk University in Brno. The research was carried 
out in autumn 2021. 
We worded two research questions: 

a) How can prospective primary school teachers analyze and reflect the word 
problems composed by primary school pupils?1 

b) What do prospective primary school teachers think about the way primary 
school pupils compose word problems and how do these opinions change 
in the course of their education?  

Stages of research realisation 
The research had the following three stages:  
Stage 1 – preliminary: Giving information about the aim of the research, 
Discussion with prospective teachers about the importance of word problems 
and their composition as a tool for the overall development of personality of 
pupils. Three types of activities were carried out:  

• Analysis of the language and the context of the ‘authentic’ word 
problems, taken directly from real life (relationship between reality and 
the mathematical model of the word problem); 

 
1 One of the expected outcomes in the current curriculum – Framework Educational Programme for 
Basic Education (FEP BE) – is directed towards the independent composition of problems by primary 
school pupils: The pupil solves and composes problems in which he/she applies the acquired 
numerical operations. The standards of education at the end of primary mathematics education state 
two indicators for a given expected output: the pupil understands the text of a simple problem 
(distinguishes information important for solving the problem) and solves the problem; the pupil 
composes a simple word problem according to the pattern.  
 



74 EVA NOVÁKOVÁ 

• Own attempts of prospective teachers to construct meaningful word 
problems of a given structure such that its solution includes a certain 
calculation. We expressed the structure of the problem by a mathematical 
expression (notation), for example (a + b) × c; 

• Estimates, in which prospective teachers guesses the expected number 
and quality of word problems that pupils of the 5th year of primary school 
would compose.   

Finally, prospective teachers were asked to hand word problems to their pupils 
and afterwards to assess them during their pedagogical practice at the primary 
school. 
Stage 2 – teaching: Prospective teachers in the role of the problem givers, 
commentators and facilitators during the process of solution of the problems by 
pupils during their own teaching practice. Pupils were given the following 
problem: 

Create meaningful word problems for the following mathematical expression (real 
life situations). Create as many different word problems as possible.  

a) 50 + □ = 135 

b) (10 + 5) × 5 =  
Example: 
a) Martin wants to buy a gift for 135 CZK to his mother. He already has 50 CZK. 
How much more does he have to save? 
b) There are 5 rows of trees in the garden. There are 10 apple trees and 5 pear trees 
in each row. How many trees grow in the garden in total? 

Stage 3 – analytical: Prospective teachers in the role of assessors and evaluators 
of pupils’ work. At the end of the course, prospective teachers analyzed records 
written by pupils or their comments and compared them with their own 
expectations. They individually reflected their own findings and together 
presented their attitudes to the implementation of the activities.  
RESEARCH RESULTS 
Attempts to analyze the problem composition aimed at assessing the success of 
the work, as well as the interpretation of pupils’ reactions to the unusual nature 
of problems during teaching and in written records of solutions. Composing 
word problems is a suitable motivational tool for pupils’ creative activity as well 
as a tool for diagnosing pupils. This is an opportunity for critical thinking. 
According to prospective teachers, problem composition is difficult for pupils, 
mainly because the activity is new for them, which means that they are not 
acquainted with it.  
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Some pupils composed creative and funny problems, showed a good 
understanding of the assignment, although some were very distant from reality:  

My dad promised me 135 CZK, but so far he only gave me 50 CZK. How much 
does he owe me? 
A plot of land costs 135 CZK. Dad has saved 50 CZK. How much more does he 
have to save?  

There were big differences between pupils. Many of them asked the teacher 
questions during the class. They needed further explanations. If they tried to 
compose their problems, they started with performing the given numerical 
calculation, and only then they were usually able to compose the problems by 
changing the context according to the pattern.  

The farmer planted 5 rows of vegetables. There are 10 carrots and 5 cucumbers in 
each row. How many vegetables grow on the farm in total? 
There are five rows of candies in the sweet shop. There are 10 packs of 
marshmallows and 5 packs of bompars in each row. How many packs of candy are 
there? 

The prospective teachers were also surprised by some almost illegible text and 
large number of grammatical mistakes that appeared in the texts. 
Here are some authentic statements of prospective teachers: 

The activity only confirmed what I had thought:  it was completely unknown to 
them, incomprehensible, and therefore it was difficult to work with the pupils on it. 
Word problems are used only to be solved, so that they always have only one 
numerical solution. Pupils usually only solve word problems with one numerical 
solution.  
I think that it was something they are not used to and that this urge to think 
differently was a bit painful. 
I was glad that there were at least some pupils who tried to compose the problems. 
The assignment seemed unusual to them, but in the discussion they realized that it 
was necessary to think hard and not just copy the numbers from the assignment, 
choose a suitable arithmetic operation and solve the problem. 

From the reflections of prospective teachers, we extracted three levels of 
attitudes towards the word problem composition:  
a) Manifestations of reserved attitude towards usefulness of word problem 

composition done by pupils. Prospective teachers prioritize the way pupils 
can solve the presented problem, whether it is quick and without mistakes. 
They do not perceive the activity as an instrument for the development of 
pupils’ personality and mathematical literacy but rather as something 
unnecessary or even inappropriate in the process of teaching mathematics. 
Only clear and comprehensible methodological instructions are required, 
which problems are suitable, how to assess and evaluate their solution. 
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These prospective teachers remain at the level of their own preconcept, 
which has been created in the role of a pupil. 

b) Mere statement of criticism that pupils were not able to compose the 
problems. These prospective teachers do not think about the cause of the 
failure. They do not consider searching for the relationship between 
mathematical model of the word problem and its language expression in 
a meaningful context important for their own practise and development.  

c) Prospective teachers start to approach word problems, their composition and 
relationship between the problem and its solver in a different way. They 
realize the purpose and benefits of utilisation of word problem composition 
and other similar activities aimed at developing of critical thinking from the 
personality development of the pupil point of view. He takes into account 
own experience:  

When I myself learn to compose word problems, I have to combine, trial and 
error, substitute. I think to myself about possible difficulties of pupils, about 
what needs to be bewared and similarly. When I just solve the problems, I only 
shortly think of the problem wording and I can easily miss related enriching 
context.  

DISCUSSION AND CONCLUSION  
We used the chance to discuss selected problems with participants of the 
research in order to give them a chance to think about the issue of word problem 
composition in broader context. Prospective teachers facing pedagogical 
practice are beginning to realize that they compose word problems in 
mathematics teaching practically on daily basis. This can be the reason why they 
are often convinced that they can easily compose and word suitable problems on 
the spot in the class. We believe that looking at problems composed by someone 
else (pupils) can be a chance for critical self-reflection, compared to their own 
skills to compose problems.  
In our research, prospective teachers used the model of the problem structure, 
expressed by numbers and numerical operations, as a starting point for creating 
word problems (see FEP BE). In teacher training, other methods can be used as 
tools for composing word problems. Other research (Pittalis et al., 2004; Nesher 
& Herskovitz, 1994; Hošpesová & Tichá, 2014) presents other ways of 
composing word problems, e.g., using graphic schemes similar to branch strings 
(diagram for schemes) or based on a certain situation loosely described by 
a story or a picture.   
The analysis of the word problems composed by pupils done by prospective 
teachers indicated that the process of acquiring subject didactic competencies is 
only initiated during the studies. The comments of prospective teachers 
regarding the word problem composition by pupils in primary mathematics 
education is unique. The author believes that this is also related to their 
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perception of the role of problems (not only word problems) in teaching. The 
nature of our research, the scope of the sample of respondents and a certain 
degree of subjectivity, given the different approach of prospective teachers to 
the problem composition, do not entitle to unambiguous, categorical judgments. 
However, our findings suggest that independent problem composition is not 
a common phenomenon in school practice, that for many students the required 
activity was very unusual to the degree that they had never met it before. We 
believe that the inclusion of word problem composition in teaching offers 
suitable motivation, work and diagnostic tool for the creative activity of pupils 
or for the diagnostics of pupils. 
The author considers the utilisation of activities connected with the composition 
of problems of a given structure in the teacher training as one of the instruments 
of a deeper insight of prospective teachers into the content of school 
mathematics, represented by the problems. Our experience confirms that this 
didactic knowledge of content (in the sense of the Shulman concept) is one of 
the important components of teacher education. It can help the prospective 
teacher to remove the stereotype of simple, easy-to-solve "textbook" type 
problems that are uninteresting in their context and mathematical structure. 
Prospective teachers can realize the structure of problems, gain the necessary 
insight into their structure and stop perceiving them only as a sequence of 
calculations that lead to obtaining the result. In teacher training, it appears to be 
a method with a strong motivational content that respects constructivist 
approaches.  
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What do trainee teachers do when they support children to learn mathematics? 
The presented research project aims for (further) development of mathematical 
support activities of trainee teachers in primary schools. Pursuing this question 
observations of teacher actions in everyday teaching situations were conducted. 
With this paper we present initial analyses.  
INTRODUCTION 
The demand of the UN Convention on the Rights of Persons with Disabilities 
for participation for all, has an impact on educational plans and teaching in 
schools. The heterogeneity of students has received increasing attention in 
education. For mathematics learning it is important to support the mathematical 
understanding and knowledge of all children. “What teachers therefore do – 
matters” (Hattie, 2010, p. 22), and this includes the whole spectrum from 
mathematically interested and gifted children to children with difficulties in 
learning mathematics.  
THEORETICAL BACKGROUND 
Within the theoretical background we (1) state our view on heterogeneity and 
(2) refer to a constructivist learning and teaching perspective, since we regard 
these aspects fundamental to support children to learn mathematics.  
Heterogeneity in learning mathematics 
The perspective of mathematics didactics on heterogeneity takes different 
aspects into account (Komm & Huhmann in press). Central points are the 
findings on children’s mathematics learning and the related considerations on 
teaching mathematics.  
In mathematics didactics, models have been developed that focus on the 
prerequisites and learning of mathematically gifted children (Käpnick, 1998) 
and of children with difficulties in learning mathematics (Kaufmann, 2003). For 
both areas there is no common definition or modelling, but there is consensus 
regarding different areas of influence. It can be stated that giftedness and 
difficulties in learning mathematics are influenced by co-cognitive as well as 
intra- and interpersonal factors (Benölken, 2014). Spiegel and Walter (2005) 
concretize this heterogeneity by talking about “vertical heterogeneity”, which 
focuses on the different performance spectrum of the students, and “horizontal 
heterogeneity”, which considers the different ways of proceeding and thinking 
of the children with regard to mathematical content areas.  



(How) do trainee teachers support mathematical thinking? 81 

 
 

Learning and teaching mathematics 
Learning and teaching mathematics is based on the constructivist (learning) 
paradigm (Winter, 1989; Wittmann, 1981). This means that knowledge can be 
acquired actively through an active-discovering, self-acting approach with the 
learning content. Acquisition of knowledge and skills cannot happen through 
information transfer from the outside, one's own perceiving and acting, 
analyzing, reflecting, and verbalizing are central for this (Huhmann, 2013). 
There is consensus on how mathematics learning must be designed so that 
children have the opportunity to construct their own mathematical 
understanding and knowledge: therefore, first the teacher has to focus on the 
development of understanding and the development of basic competencies. 
Second, referring to the constructivist (learning) paradigm, the principle of 
active-discovery learning in order to enable the individual exploration of 
mathematical content, so that children can follow their own ways of thinking 
(Häsel-Weide & Prediger, 2017). And third, avoiding of “small-step” learning 
instead focussing holistic learning so that children can recognize connections 
(Gaidoschik et al., 2021).  
With regard to heterogeneity in learning mathematics, it is important to note that 
students have different needs. To develop mathematical understanding and 
knowledge it is important to see patterns, structures, and relations. In her study 
of children’s pattern and structure skills at the beginning of primary school, 
Lüken (2011) was able to show that there is a connection between the ability of 
identifying and using patterns and structures and the mathematical performance. 
For example, studies with regard to arithmetical basic competencies showed that 
the development of numerical competencies and the ability to structure are 
closely related (Häsel-Weide, 2016) and that recognition of structures and 
relations is important for children to be able to detach themselves from counting 
(Rechtsteiner, 2013). Therefore, children with difficulties in learning 
mathematics need competent learning support when actively exploring holistic 
contexts in order to open up connections and thus acquire a basis for 
comprehension-based learning. In contrast mathematically gifted children are 
good at recognizing and using structures, possess characteristics of good 
problem solvers, are often able to structure facts themselves, and use heuristic 
tools in a purposeful way as well as problem-solving strategies (Fuchs, 2006). 
A teacher has to take these characteristics and aspects into account when 
planning lessons and accompanying the children to support their mathematical 
thinking. Therefore, suitable tasks, representations and an adequate cognitive 
activation have to be considered.   
METHODOLOGY  
The observation presented here provides insights into a dissertation project. It is 
linked to a project to the further development of the Second Phase of Teacher 
Education in cooperation with three different State Seminars for Teacher 
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Education and In-Service Qualification. The teacher education for the primary 
level (in the federal state of Baden-Württemberg, Germany) consists of two 
independent phases: first phase - university studies; second phase - a one-and-a-
half-year teacher training at the Seminar for Teacher Education. In this phase, 
they teach at a school frequently supervised by lecturers.  
Research question 
Within a qualitative research approach, we name the following question: What 
are the supporting actions of trainee teachers, when they (intend to) support 
mathematical learning within a heterogeneous classroom?  
To pursue this question trainee teachers of these State Seminars were asked for 
their participation in the research project. Those who had volunteered to 
participate were asked to teach a lesson in arithmetic and submit a lesson plan in 
advance. Due to the voluntary participation, a positive selection can be assumed. 
Then participatory classroom observations (Boer & Reh, 2012) were conducted, 
so far in six different cases. Two cameras were used to record the lessons. In 
addition, the trainee teachers were equipped with a small body camera and 
a microphone to directly catch the teacher’s support actions with individual 
children. This was followed by semi-guideline-based recall interviews (Baur 
& Blasius, 2014), in which the participating trainee teachers viewed their own 
supporting actions in video excerpts. These video excerpts, the corresponding 
transcripts and transcripts of the recall-interviews will be used for the qualitative 
content analysis (Kuckartz, 2012).  
Excerpts from the data collection and initial analyses are presented in the 
following. 
FIRST FINDINGS 
We observed a characteristic form of support actions of (trainee and pre-service) 
teachers in learning situations with cognitive conflicts between students. The 
following example illustrates these typical support actions. Typical means that 
a teacher usually acts in this way in situations of cognitive conflicts. Thus, our 
focus of the analysis is on the trainee teacher's support actions. Moreover, the 
children's actions are described because they form the starting point for the 
trainee teacher's support actions. 
The learning situation took place in a first-grade class just before the Christmas 
holidays in a rural primary school. The focus is on the processing of a group of 
children to the task “Find terms which make 10”. The children worked on this 
task in groups of two or three. The focus was on adding. The groups of children 
were given a blank sheet on which they wrote the terms they found. Optionally, 
the children could get arithmetic chips to work on the task. The teacher 
approaches a group of three children (George, John, Betty). He looks at the 
children’s sheet and points to the term 10 =1+5+4. (This term is unconnected to 
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any other term on the sheet up to this moment). In the following transcript, 
gestures and actions are included. 

 
Figure 1: Sheet from this group. Till then they found the terms in the frame.  

 
Teacher: Who came up with that one? 
John points to George. 
Teacher: George. Great! 
George: John said it makes nine 
Teacher: Shall we get some chips and try it together? 
George: But I do find it makes ten. 
                      […] 
Teacher: Shall we get some chips and try it? 
Kids nod. 
Teacher: Yes, then I'll go get some. 
The teacher fetches arithmetic chips (more than 10). 
Teacher: So, what do we calculate? 
The teacher places the arithmetic chips in front of the children. George, who has 
written down the task 10=1+5+4, shows his classmates what he has calculated. 
He accompanies his action verbally. Successively he takes the required number of 
chips from the set placed by the teacher. The chips are all placed in blue colour. 
The subsets are each represented with a corresponding number of chips. 

 
Figure 2: George counting the chips.  
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George: 1 plus 5 plus 4. makes (chips are counted off by George) one, two, three, 
four, five, six, seven, eight, nine, ten. (Addresses John directly) See! 

The teacher looks at John. 
Teacher: George is right, isn't he?  
Turns to the girl. 
Teacher: Or Betty? 
Betty: Yes. 

Analysis of the situation 
There is a cognitive conflict: is the result 9 or 10? The trainee teacher starts with 
the children's question. He enables the solving of the problem by initiating the 
linking of the symbolic and the acting level. Therefore, he offers arithmetic 
chips to create the different subsets of the term 1 + 5 + 4. The idea is to change 
the perspective with a representation transfer: from the symbolic level to focus 
on the quantities by laying quantities of each subset. Based on this the learner 
can perceive and identify the quantities of each subset. After that, in the concrete 
situation the learner starts counting successively from the first summand 
followed by the second and third one, to determine the cardinality of the total set 
of the three subsets. With this he proves that the result is 10. 
The teacher initiates a representation transfer, so that the students have to link 
different levels of representation. His support is a form of self-help, allowing 
and enabling students to find the answer on their own (Winter 2016). In the 
situation of the cognitive conflict this supporting action enables a renewed 
cognitive activation of the students: a process of action with material is initiated. 
The associated transfer of representation is an indicator to capture and also to 
develop children's individual understanding. 
The trainee teacher’s view of the situation 
The excerpt from the recall interview refers to the support situation presented 
above. 

Then I fetched the arithmetic chips and had George represent his calculation method 
[…] respectively explain his thoughts acting, so that the others could follow. Of 
course, that was a bit unskilful, because he only used the blue arithmetic chips; it 
would have been better if he had done blue, red, blue. Betty was a bit absent, 
I noticed that too. That’s why I asked her again at the end. And then came the 
classical yes. [....] But otherwise I think, that the question, whether the calculation is 
correct or not George could illustrate and solve through the arithmetic chips. […] 
Betty was actually left out. 

Analysis of this part of the recall-interview 
Overall, the situation of the recall interview can be characterized as a process 
description by the trainee teacher. He describes that he “fetched the arithmetic 
chips and had George represent his calculation method […] respectively explain 
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his thoughts acting”. He argues, “so that the others could follow”. His focus is 
on playing the ball back to the children to solve the conflict, especially on 
George explaining it to the others. It remains implicit why he chose the material 
arithmetic chips. The change of the level of representation is neither named nor 
argued in terms of didactics or content, as, on the other hand we have shown 
above in the part analysis of the situation. So, we cannot know, if the trainee 
teacher chose the representation transfer consciously with respect to the content 
or if he chose it like an unreflected procedure because it is something to do in 
such a situation. An alternative procedure only on the symbolic level would 
have been to start from the term 1+5+4 and to transform it to 1+4+5 and further 
to the well-known task 5+5=10. The representation George made, is evaluated 
by the trainee teacher as “a bit unskilful, because he only used the blue 
arithmetic chips”. Why this representation is not suitable, is not reasoned. 
Instead, the trainee teacher stated, “it would have been better if he had done 
blue, red, blue”, what means, to change the colours blue and red to distinguish 
the different subsets. Again, it remains implicit why the trainee teacher evaluates 
this representation as a better one. Why is a spatially perceivable separation of 
the three subsets only with blue arithmetic chips not suitable? Again, we cannot 
know, if the trainee teacher chose the feature ‘change of colours’ consciously 
with respect to the content or if he chose it like an unreflected procedure because 
it is something to do in such a situation. Then he describes that he noticed, 
“Betty was a bit absent”. Because of that the trainee teacher “asked her again at 
the end” with the aim of drawing her attention back to the mathematical activity. 
But he uses Betty’s absent situation to ask a suggestive question, “if George is 
right”. She can only answer with “the classical yes”, because “Betty was 
actually left out”. To get her attention back to the content by cognitive activation 
an appropriate task would be: Use the arithmetic chips to create the for the term 
4+5+1. 
Analysis of narrower and wider text context 
Regarding our analysis of this situation, we will use the narrower and wider text 
context of the recall interview by taking into account the trainee teacher’s view 
on further support situations, in which he initiates a representation transfer. We 
use this as further information to sharpen the focus of the analysis of these 
situations and to consolidate our analysis of his actions. With the recall 
interview we intend to capture the trainee teacher's view of his support actions. 
What is the goal of his support activities? Does he perceive the mathematical 
thinking of the children? Does he identify and describe a connection between his 
support actions and the children’s mathematical thinking? 
The following statement from the trainee teacher refers to his general support 
actions during the lesson independent from specific supporting situations. The 
italicizations are made by the authors. 
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But I offered the arithmetic chips to all children, and if they didn't find anything 
else themselves, I also encouraged them to throw the arithmetic chips, for example 
[...], so that they simply have this action again. So I practically offered the 
[representation] level further down, for those who need it and those who just don't 
need it and work on the, what was it, symbolic level, they could also do that. So, 
practically I offered all levels and then students can choose for themselves or use it 
for themselves the way they need it. 

The trainee teacher offers arithmetic chips to all children again. It remains 
implicit what has happened up to this point until “they didn't find anything else 
themselves.” He seems to assume that the children’s task processing has been 
completed temporarily, but it remains unclear which task processes of the 
children on which levels of representation are meant here. His terms he used 
“again” and “level further down” give clues as indicators to this interpretation. 
His further impulse “to throw the arithmetic chips” opens up the possibility to 
find number decompositions through this random experiment that have not been 
found yet. Another purposeful possibility to find number decompositions, would 
be the activity “sorting the found number decompositions”. By sorting, further 
solutions can be found because relationships and structures are perceived. For 
this, however, a large number of arithmetic chips is needed, since all number 
decompositions are placed as sets (i.e., for all number decompositions of 10 in 
two summands, 110 chips are needed). 
The trainee teacher argues his supporting activity “representation transfer with 
arithmetic chips” with the fact that each child can thus choose and use the level 
that he or she needs. His description “offered the level further down” raises 
questions: What does “further down” mean? How does the trainee teacher look 
at the different levels of representation? Is there a hierarchic view? In 
mathematics education the learner’s own transfer of representations within the 
same as well as between different levels of representations is an essential 
indicator to develop understanding. But the levels of representation are not 
hierarchized, the relations are significant. The complement “for those who need 
it” also reinforces this interpretations. Furthermore, he notes “then students can 
choose for themselves or use it for themselves the way they need it”. What does 
he mean in particular with these descriptions? This remains still implicit. 
Considering the narrower and wider text context of the recall interview, in 
which the trainee teacher was questioned about his support actions, it becomes 
apparent that he mainly remains on the level of narrative descriptions with his 
statements and feedbacks to his support actions and the lesson. This is also 
confirmed by those text passages with further follow-up questions and inquiries 
on specifications and analysis of his support actions. Moreover, socially 
desirable responses are made by noting that “of course there would be more 
suitable options”. Or the trainee teacher refers to learning opportunities “in 
a following lesson”. This, however, he does not specify further. 
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Thus, it remains implicit in which way, from his point of view, the 
representation transfer processes lead to comprehension-oriented learning and 
are an indicator of understanding. So which content concepts does he have in 
mind when he noticed the cognitive conflict right in the learning situation? The 
starting point provides a concept on the symbolic level. There we talk in an 
abstract way about an arithmetic term, different summands, and the sum. On this 
level for him there is no suitable way to clarify the cognitive conflict. This 
concept is linked with a representation transfer to the concept of decompositions 
of a whole in different parts or a composition of different parts to a whole. So 
“parts” offer two different perspectives: Parts as whole units, each consisting of 
uncountable size. And parts as whole quantities, each consisting of countable 
single elements.  
The support situation in this lesson focuses on the second perspective: 
decompositions of a natural number in two or three or … parts as subsets or 
vice versa on compositions of two or there or … parts as subsets to a whole, the 
natural number 10 as total set of 10 single elements.  
However, in both ways it is about comparing a set with quantities of 10 elements 
with subsets of different amounts of elements by laying, sorting and structuring 
the arithmetic chips. All in all, this different concepts use different 
interpretations. And which of these does the trainee teacher have in mind and 
uses for his support action when noticing the cognitive conflict? It can be stated 
that George was able to represent and prove his mathematical thinking to his 
calculation by using the arithmetic chips on the acting level. And also, John’s 
question, which the trainee teacher wanted to clarify with the children, could be 
solved with the help of the acting level. Despite the analysis of the observed 
support situation, it still remains unclear, if John and Betty gained understanding 
during George’s representation processes for decompositions of a total set of 10 
into three parts, and also if this was even intended by the trainee teacher. 
RESULTS  
The example illustrates positively that the trainee teacher chose a substantial 
task for his lesson. Furthermore, with his supportive action he concretizes 
a constructive understanding of learning: The starting point is the cognitive 
conflict of the children. He reflects this back to the learners with the change of 
the representation level for their own processing and solving. However, only 
two of the three learners deal with this, one child is left out. 
On the level of our analysis of the videographed teaching situation we made 
a description of the situation and mainly we analyzed from a didactic point of 
view.  We pointed out which content-related backgrounds are significant and 
taken into account in the trainee teacher’s support activities. 
On the level of our analysis of the recall interview, in which the trainee teacher 
viewed and commented on his support situation, we identified that he mainly 
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made a process description of the situation. This was also confirmed by the 
analysis of the narrower and wider text context. So, in what way is critical 
thinking an element for his professional actions to develop supporting activities? 
It remains implicit and unclear whether he acted consciously, i.e., he chose his 
support action and used it purposefully founded on didactical knowledge or 
whether he chose it like an unreflected procedure because it's something to do in 
such a situation. 
In addition to the fundamental question what teachers do when they (intend) to 
support, our example shows how important it is to look at the underlying 
reasons, why teachers do what. This helps on the developmental path from 
‘intending to support’ to a well-founded assurance ‘that they support’. Only in 
this way it is possible to implement conscious and goal-oriented support 
activities, especially with regard to subsequent and further support activities, but 
also with regard to the availability of a flexible support repertoire for the trainee 
teachers. For the professionalization of teachers critical thinking and reflecting 
on (one's own) lesson planning and ways of acting to support children is 
essential in all phases of teacher education – therefore, opportunities must be 
created! 
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This study focuses on adults’ knowledge of activities that can promote early 
counting and enumerating competencies. Prior to an intervention, and then 
again afterwards, 18 adults were requested to suggested activities that could 
promote children’s counting and enumerating competencies. Before the 
intervention, participants did not realize that counting and enumerating are two 
separate competencies. After the intervention, adults designed activities that 
were purposeful and that had the potential to actively engage children in 
specific competencies. 
INTRODUCTION 
The importance of promoting mathematical development during early childhood 
is supported by studies that found early mathematics competencies to be 
a predictor of later school success (e.g., Duncan et al., 2007). In addition to the 
learning that takes place in preschool, the home environment can have 
a significant impact (Anders et al., 2012). In a previous study (Levenson et al., 
2021a) we investigated adults’ beliefs (none were early childhood educators) 
regarding supporting children’s engagement with various numerical activities. 
Findings indicated that in general, participants had positive beliefs towards early 
mathematics. Yet, adults may not know how to foster young children’s 
mathematics competencies (Cannon & Ginsburg, 2008).  
In an effort to increase adults’ knowledge of activities that can support young 
children’s number competencies, an intervention was designed and implemented 
with a group of 18 adults. This intervention was part of a larger study that 
investigated adults’ knowledge and beliefs related to early years mathematics 
(e.g., Levenson, et al., 2021a). The aim of this part of the study was to 
investigate adults’ knowledge of counting and enumerating activities before and 
after participating in the intervention. 
COUNTING AND ENUMERATING 
Verbal counting and object counting are separate but related competencies. In 
this paper, we will refer to verbal counting as counting and object counting as 
enumerating. Counting is the skill of reciting numbers in the conventional order, 
(Baroody et al., 2006). The relationship to language may be seen in the 
difficulties of English-speaking (and Hebrew-speaking) children when learning 
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the number words from 11 till 20, and learning that 29 is followed by 30 (Han & 
Ginsburg, 2001). According to the Israel National Mathematics Preschool 
Curriculum [INMPC] (2010), before first grade, children should also be able to 
count backwards, and count by twos, fives, and tens (also called skip counting). 
Counting backwards is a prelude to learning subtraction, while skip counting 
lays the groundwork for multiplication (Sarama & Clements, 2009).  
Verbal counting can be practiced by reciting the number words in unison with 
a parent or caregiver, or when playing games, such as “hide and seek,” where 
counting is part of the game (INMPC, 2010). Body movements and sounds can 
aid when learning the number sequence. For example, The Big Math for Little 
Kids program (Greenes et al., 2004) encourages children to use different body 
movements and sounds to represent different decades from 1 to 100, such as 
making funny faces when reciting numbers from 11 till 19, and twisting their 
bodies when reciting the twenties. Body movements and sounds may add 
motivation, which in turn may facilitate the learning of verbal counting.  
Enumeration refers to counting objects for the purpose of saying how many. 
Gelman and Gallistel (1978) outlined five principles of counting objects. The 
first principle, called the stable-order principle, is based on being able to recite 
the counting numbers (i.e., verbal counting). The one-to-one principle involves 
assigning one count word to each object. Common, related mistakes occur when 
one object is assigned more than one count number, or an object is skipped over, 
and not counted (Fuson, 1988). The third principle is cardinality, which involves 
knowing that when counting objects in a set, the last number mentioned 
represents the number of objects in that set. A child who has not yet understood 
this principle, may simply state any number when asked how many objects are 
in a set, or recount the objects which have just been counted (Fluck 
& Henderson, 1996). The fourth principle is the abstraction principle, indicating 
that any set of discrete objects can be counted. Finally, the order-irrelevance 
principle means knowing that one may enumerate the objects in any order (e.g., 
from right to left, from left to right, etc.) and that enumerating objects in 
different ways results in the same cardinality. Notably, children may show 
knowledge of one principle such as understanding of cardinality, while violating 
another principle, such as one-to-one correspondence principle (Fuson, 1988).  
Because enumerating involves several sub-competencies, activities that aim to 
promote enumeration might consider each sub-competency. For example, 
although parents may read books to their children that aim to promote children’s 
enumeration, few counting books explicitly or even implicitly emphasize 
cardinality (Ward et al., 2017). It is up to the adult reading the book to focus on 
different sub-competencies. Yet, parents rarely provide cardinal labels after 
counting when reading a number book (Mix et al., 2012). In fact, when 
specifically choosing such books, more parents choose books based on their 
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assessment of how fun and enjoyable it would be for their children, than on the 
mathematical content and challenge it would provide (Gaylord et al., 2020) 
The types of objects counted may impact on children’s acceptance of the 
abstraction principle (Gelman & Gallistel, 1978). Counting objects that are 
different in color, size, or function can help children recognize that these other 
attributes do not affect counting (Greenes et al., 2004). Counting objects in 
different formations may promote the order-irrelevance principle (Gelman 
& Gallistel, 1978). In Tsamir et al.’s (2018) study, when 4- to 5-year-old 
children were requested to count seven bottle caps placed in a circle, two 
children, who had previously correctly counted the bottle caps when placed in 
a row, claimed that they did not know what to do and gave up.  
RESEARCH AIM AND QUESTIONS 
Prior to this intervention, we found that adults believe they have an important 
role in promoting children’s numerical knowledge, yet significantly less believe 
that they needed guidance to do so (Levenson et al., 2021a). No differences in 
these beliefs were found between parents, adults who have some other 
connection with young children, and those who claimed to have no connection 
with young children. We also found that adults are not aware that verbal 
counting is a competency that needs to be promoted on its own, and not 
necessarily as part of object counting (Levenson, et al., 2021b). 
The current study focuses on adults’ knowledge of activities that can promote 
both counting and enumerating competencies. The aim is to investigate adults’ 
knowledge of these tasks, before and after taking part in an intervention. 
Specifically, we ask: Before taking part in the intervention, do adults 
differentiate between counting and enumerating tasks? After taking part in an 
intervention, what types of activities do adults offer for promoting children’s 
counting and enumeration principles, and do those tasks take into consideration 
sub-competencies? 
METHOD 
Setting and participants 
The setting for this study was an elective course entitled Early childhood 
numerical thinking: Theory and research, attended by students working towards 
their master’s degree in mathematics education.  There were 18 participants (not 
the same as in our previous studies), of which six were parents of children 
between the ages of three and six years, nine had a family relation that age (e.g., 
grandchildren, nephews, nieces), and three had neighbours with young children. 
None were early childhood educators. We chose this context for our study, 
wishing to include at this point in our research only adults whom we knew to 
have a positive disposition towards mathematics. There were three aims to the 
entire course: to raise participants’ awareness of number competencies 
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developed prior to first grade, to increase their knowledge of children’s 
development of those competencies, to increase their knowledge of tasks that 
might promote early number knowledge and competencies. Three content areas 
were reviewed: counting and enumerating, comparing sets, and number 
composition and decomposition. In this study we report on the first content area. 
The course included 13, 90-minute sessions. It was designed by all authors of 
this study, was taught by the first author of this study, with the second author 
attending all lessons. All lessons were video recorded and transcribed. In this 
study we focus on counting and enumerating competencies, the subject of the 
first four lessons.  
During the first lesson, participants watched and then analyzed a video of 
a three-year old boy and his grandmother, engaging in various counting 
activities while baking cookies. Analysis of this video, as well as other video 
clips viewed during the course, focused first on the child’s ability to carry out 
the activity (e.g., Could the child count the cookies on the tray, and what were 
his difficulties?), as well as the adult’s role in the activity (e.g., What exactly did 
the grandmother ask her grandson to do? How were the cookies arranged on the 
tray?). During the second, third, and fourth lesson, participants read and 
discussed related research (e.g., Baroody et al., 2006; Gelman & Gallistel, 
1978), and viewed and analyzed together YouTube videos of preschool children 
counting and enumerating. We discussed children’s ability to carry out 
a particular skill, as well as how a task may be designed and implemented to 
focus on a specific skill. At the end of the fourth lesson, participants were given 
a home assignment, to design a task they would implement with a preschool 
child, that aimed at promoting counting and enumerating competencies. This 
assignment is one of the research tools of this study.  
Tools 
Prior to beginning the course, participants were asked to fill out a questionnaire 
(see Levenson, et al., 2021b, for more details). In this study, we analyze 
responses to the following open questions: (1) The preschool mathematics 
curriculum states that by the end of kindergarten, children should be able to 
count till 30. What counting activities would you implement with children to 
promote this skill? (2) What enumerating activities would you implement with 
children to promote their ability to enumerate eight objects? Participants had 
plenty of empty space to write their responses and took as much time as they 
needed to fill in the questionnaires. 
After the fourth lesson, participants were given the following assignment to 
complete at home: Plan an activity for a young child that can promote counting 
and enumerating competencies. State the competencies you wish to promote, 
what items you will use, how they will be placed, and how you will use them. 
State what questions you are likely to ask the child. 
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FINDINGS 
Prior to the intervention 
Participants’ descriptions of counting activities were categorized according to 
the numerical competencies they would elicit from a child (see Table 1). 
Although adults were requested to describe counting activities, only four adults 
focused solely on verbal counting. Three other adult combined verbal counting 
with other skills, and nearly half described enumerating activities, (i.e., counting 
objects) indicating that they did not differentiate between counting and 
enumeration.  

Category F Examples 
Counting only 4 A13: “Counting forwards, backwards.” 

A15: “Counting together out loud.” 
Counting and 
recognition of 
number symbols 

1 A6: “Consecutive counting, counting even 
numbers, counting by tens. Writing numbers till 
30 and recognizing the written numbers.” 

Counting and 
enumerating 

2 A11: “Especially playful activities that require 
counting. Counting blocks, counting while 
playing hide and seek, counting the number of 
children in the kindergarten, etc.” 

Enumerating only 8 A1: “Hand out up to 3 balloons to each child and 
ask to count the total amount of balloons.” 
A8: “I would ask children to count objects.” 

I don’t know 3 A14: “I don’t know.” 

Table 1: Frequencies of types of activities suggested for promoting counting (N=18). 

When asked to suggest enumerating activities, half of the participants indeed 
described enumerating activities only (see Table 2). Four adults claimed not to 
know of any activities; three of which were the same adults who claimed not to 
know any counting activities. Interestingly, A6 added the skill of recognizing 
number symbols, both in the counting and enumerating activities. Two adults 
offered counting only activities when asked for a counting activity and 
enumerating only activities when asked for an enumeration activity. Notably, 
none of the adults specifically related to sub-competencies such as one-to-one 
correspondence or cardinality.  

Category F Examples 
Enumeration only 9 A8: “[I would place objects] in a row, and then in 

a pile.” 
A15: “I would ask the child to bring me eight 
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objects.” 
Enumeration and 
recognition of 
number symbols 

2 A6: “Identifying a written number (numeral) and 
asking the child to give me that number of 
objects.” 

Ordinal numbers 1 A18: “An activity with Hannukah candles. First 
candle, second candle, … 

Number 
operations 

2 A13: “Addition and subtraction.” 

I don’t know 4 A14: “I don’t know. 

Table 2: Frequencies of types of activities suggested for promoting enumerating 
(N=18). 

After the intervention 
We now describe and analyze the activities designed by three participants, 
submitted after the fourth lesson of the course. These adults were chosen as they 
exemplify different trajectories of learning, that is, they started with different 
degrees of knowledge and ended with different degrees of knowledge. 
A14 was the father of baby girl (under a year old) and an uncle to children 
between the ages of 3 and 6 years. Before the course, he claimed not to know 
any activities that would be suitable for promoting either counting or 
enumerating skills. After the fourth lesson, he planned the following activity for 
a child, he specified as 3.5 years old: 

Aim and setup of the activity: The aim of the activity is for the child to count 
backward from seven. You need to place seven dolls of different sizes on a bed and 
start to sing, like the song about five monkeys jumping on a bed and one falls off…, 
but here there are seven dolls, and one falls off, so how many are left? 
Activity: Each time the doll falls off the bed, you ask how many dolls are left. That 
will promote counting backwards, and the child can count in whichever way she 
likes. 

In analyzing A14’s activity, we first note the stated aim of having the child 
practice counting backwards. While the song does start with seven and ends 
with one (or zero, depending on how you sing it), it does not necessarily 
encourage counting backwards. If there are seven dolls and one falls off, you 
only need to know the number which precedes seven, to know how many dolls 
are left on the bed. You do not need to sequentially count down from seven to 
zero. Furthermore, A14 states at the end that the child can “count” in whichever 
way she likes. This hints of the possibility of asking the child to enumerate the 
dolls left on the bed.  
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To summarize, A14’s activity is a playful way to engage children with numbers. 
It involves jumping, dolls, and singing. A14 is aware that counting backwards is 
a competency worth supporting in young children. However, the activity focuses 
more on a different numerical competency, that of knowing which number 
precedes some other number, than on counting sequentially backwards.
A13 is the father of a young child. Looking back at Tables 1 and 2 we see that 
A13 described a counting activity when asked to do so, but for an enumeration 
activity he listed number operations. His planned activity for a child between the 
ages of three and four was as follows:

Aim and setup of the activity: The aim of the activity is to encourage the child to 
count backwards from ten to one. The activity relies on the child’s knowledge of 
number symbols. The activity requires a drawing of hill with numbers going up the 
hill from 1 to 10 and then numbers going down the hill from 10 to 1 (see Figure 1). 
At the top of the hill, appears the number ten.
Activity: You tell the child that we have a ball that went over the hill, and so we 
must retrieve the ball. In order to do so, we have to climb the hill while counting 
forward, and then climb down the hill while counting backward.

Figure 1: Counting up and counting down.

A13’s aim of practicing to count backwards is met in this activity. He assumes 
that the child will identify the number symbols, and although this is not stated 
specifically, having the numbers to follow while going down the hill, will indeed 
support the child who does not yet know the backwards sequence of numbers. 
Furthermore, if a child does know how to count backwards, but does not yet 
identify number symbols, then this activity will promote this competency as 
well. A13 also wrote, “Because the activity is like a story-game, the child will 
be engaged, and we will have reached our aim through a positive experience.” In 
other words, one of A13’s aims is to provide a positive mathematical experience 
for the child.
A8 was an aunt to young children. As can be seen from Tables 1 and 2, although 
both of her suggestions were for enumerating activities, when asked specifically 
for an enumeration activity, A8 adds details regarding the arrangement of the 
objects.

Boy

Ball
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After the fourth lesson, A8 planned the following activity for a child she 
specified as between the ages of four and five years. 

Aim and setup of the activity: The aim of the activity is to encourage children to 
count forwards and backwards from 1 to 10, and to allow children to enumerate 
amounts from 1 to 10.  Objects needed for the activity are large hoops, balls, and 
a basket (it doesn’t matter what size or color the objects are). 
Activity: A path on the floor is laid out with 10 hoops. In each hoop there is 
a number from 1 to 10 in numerical order. At the end of the path there is a ball and 
in the beginning of the path there is a large basket. The children are requested to 
jump from one hoop to the next while counting out loud, one, two, three and so on 
till they reach ten. Then they pick up the ball, and go back down the same path, this 
time counting backwards 10, 9, 8 till they reach the end, throw the ball in the basket 
and say zero. After that, each child is requested to count/enumerate the balls in the 
basket and say how many balls are in the basket. In other words, the first boy will 
count one ball, the second two balls, and so on. 

A8’s planned activity is in line with her stated aims of promoting two counting 
skills – counting forwards and counting backwards – and enumerating. Although 
not specified in the aims, we recognize that A8 also includes identification of 
numerals in her activity. The activity is playful, involving jumping and throwing 
balls. Note that A8 separates the counting activity from the enumerating activity. 
The child is not asked to say how many jumps took place. The jumping is more 
of a motivation to keep the counting moving forward. The enumeration part of 
the activity is separate. A8 specifically writes that the child will be requested to 
“count/enumerate” the balls. By using the term “count” A8 recognizes that 
a child may not understand the meaning of the term enumerate because it is not 
a day-to-day concept. However, she herself knows that this is an act of 
enumeration. Furthermore, by specifically stating that she would ask the child to 
say “how many” balls there are, she is promoting the cardinality principle. 
Finally, stating that the balls can be any size or color can promote the 
abstraction principle. Thus, although A8 does not state these principles as aims 
of the activity, we can identify these principles in her plan. 
DISCUSSION 
In our previous studies, we found that many adults were not aware of the 
difference between counting and enumerating (Levenson et al., 2021b). In those 
studies, adults did not necessarily have a mathematical background. Although 
participants in this study were mathematics education graduate students, prior to 
the course, they too were not aware that verbal and object counting are separate 
competencies and that each includes separate sub-competencies. Furthermore, 
some of the adults in this study mentioned additional competencies, such as 
ordinal numbers, identifying number symbols, and number operations, when 
asked to suggest counting and enumeration activities. While those other 
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competencies are noted in the preschool curriculum (INMPC, 2010), and may be 
related to counting and enumerating, they are separate skills. 
While we recognize that this study was limited by the small number of adults 
who attended the course and cannot be generalized, the activities described 
above by the three participants exemplify how interventions affect different 
people in different ways. After four lessons focused on counting and 
enumerating, some, like A14, may have increased their awareness of early 
number competencies, but may still not be able to plan an activity that aims to 
promote a specific skill. Recall, however, that A14 stated in the beginning that 
he did not know of any counting or enumerating activities. Others, like A13, 
might have already been aware of a specific competency, but are now able to 
plan an appropriate activity. Finally, there are those like A8, who can now plan 
an appropriate activity that purposefully aims to support several competencies. 
All three participants added details to their activities that were not present prior 
to the course. Furthermore, in line with Greenes et al., (2004), all three designed 
activities that would engage the children in an active way, while allowing them 
to physically experience the sequence of numbers, either by seeing the 
decreasing number of dolls on the bed (A14), or by traveling up the hill as the 
numbers increase (A13). Although they did not state so explicitly, the activities 
of A13 and A8 could also be used to encourage one-to-one correspondence, as 
the children go from one number to another, saying one number for each time 
they climbed or jumped forward. We hypothesize that the increased quality of 
participants’ suggested activities, stemmed from the emphasis on mathematical 
tasks during the course. Parents are interested in receiving information regarding 
mathematical activities to do with their children at home (Sonnenschein et al., 
2021). Thus, workshops for adults that focus on mathematical activities, may be 
a way to enhance the mathematical environment at home. 
Acknowledgement 
This research was supported by The Israel Science Foundation (grant No. 
1631/18). 
References 
Anders, Y., Rossbach, H. G., Weinert, S., Ebert, S., Kuger, S., Lehrl, S., & von 

Maurice, J. (2012). Home and preschool learning environments and their relations 
to the development of early numeracy skills. Early Childhood Research Quarterly, 
27(2), 231–244.  

Baroody, A. J., Lai, M., & Mix, K. S. (2006). The development of young children’s 
early number and operation sense and its implications for early childhood 
education. In B. Spodek & O. Saracho (Eds.), Handbook of research on the 
education of young children (vol. 2, pp. 187–221). Erlbaum. 



100 ESTHER S. LEVENSON, RUTHI BARKAI, PESSIA TSAMIR, DINA TIROSH, LEAH GUEZ SANDLER 

Cannon, J., & Ginsburg, H. P. (2008). “Doing the math”: Maternal beliefs about early 
mathematics versus language learning. Early Education and Development, 19(2), 
238–260.  

Duncan, G. J., Dowsett, C. J., Claessens, A., Magnuson, K., Huston, A. C., 
& Klebanov, P. (2007). School readiness and later achievement. Developmental 
Psychology, 43(6), 1428–1446. https://doi.org/10.1037/0012-1649.43.6.1428 

Fluck, M., & Henderson, L. (1996). Counting and cardinality in English nursery 
pupils. British Journal of Educational Psychology, 66(4), 501–517.  

Fuson, K. C. (1988). Children’s counting and concepts of number. Springer-Verlag.  
Gaylord, S. M., Connor, D. O., Hornburg, C. B., & McNeil, N. M. (2020). Preferences 

for tactile and narrative counting books across parents with different education 
levels. Early Childhood Research Quarterly, 50, 29–39.  

Gelman, R., & Gallistel, C. (1978). The child’s understanding of number. Harvard 
University Press. 

Greenes, C., Ginsburg, H. P., & Balfanz, R. (2004). Big Math for Little Kids. Early 
Childhood Research Quarterly, 19(1), 159–166.  

Han, Y., & Ginsburg, H. P. (2001). Chinese and English mathematics language: The 
relation between linguistic clarity and mathematics performance. Mathematical 
Thinking and Learning, 3(2), 201–220. 

Israel National Mathematics Preschool Curriculum (INMPC). (2010). Retrieved 
February 25, 2022 from https://edu.gov.il/minhalpedagogy/preschool/subject/math/ 
Pages/math-curriculum.aspx 

Levenson, E., Barkai, R., Tsamir, P., & Tirosh, D. (2021a). Adults’ interactions with 
young children and mathematics: Adults’ beliefs. In M. Inprasitha, N. Changsri, 
& N. Boonsena, (Eds). Proceedings of the 44th Conference of the International 
Group for the Psychology of Mathematics Education (Vol. 3, pp. 216-225), Khon 
Kaen, Thailand: PME. https://pme44.kku.ac.th/home/uploads/volumn/pme44_vol3.pdf 

Levenson, E., Barkai, R., Tsamir, P., & Tirosh, D. (2021b). Exploring adults’ 
awareness of and suggestions for early childhood numerical activities. Educational 
Studies in Mathematics, 109, 5-21. 

Mix, K. S., Sandhofer, C.M., Moore, J. A., & Russell, C. (2012). Acquisition of the 
cardinal word principle: The role of input. Early Childhood Research Quarterly, 
27(2), 274–283.  

Sarama, J., & Clements, D. (2009). Early childhood mathematics education research: 
Learning trajectories for young children. Routledge. 

Sonnenschein, S., Stites,M., & Dowling, R. (2021). Learning at home: What preschool 
children’s parents do and what they want to learn from their children’s teachers. 
Journal of Early Childhood Research, 19(3), 309-322. 

Tsamir, P., Tirosh, D., Levenson, E., & Barkai, R. (2018). Engaging young children 
with mathematical activities involving different representations: Triangles, patterns, 
and counting objects. Center for Educational Policy Studies Journal, 8(2), 9–30.  



Activities suggested by adults: counting and enumerating 101 

 
 

Ward, J. M., Mazzocco, M. M., Bock, A. M., & Prokes, N. A. (2017). Are content and 
structural features of counting books aligned with research on numeracy 
development? Early Childhood Research Quarterly, 39, 47–63. 



 

 



 
 

 

 

 

 

 
 
 
 
 

Students manifesting 
critical thinking 

in the mathematics classroom 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Part 2 



  



 

LEARNING TO REASON MATHEMATICALLY 
WITH MEANING 

João Pedro da Ponte 
Universidade de Lisboa, Portugal 

 
The aim of mathematics teaching is to get students not only to learn 
mathematical concepts and procedures but also to develop the ability to think 
mathematically. Thinking mathematically involves being able to perform 
mathematical reasoning, that is, to make inferences in which, from a certain 
information given, new conclusions are reached. In mathematics, deductive 
reasoning assumes a fundamental role, allowing the validation of knowledge, 
but an equally important role is assumed by inductive and abductive reasoning, 
essential for the creation of new knowledge. Mathematical reasoning has 
particular characteristics given the nature of the objects of this science, as 
abstract entities constructed from real-world experiences or from experiences 
with previously known mathematical entities. The links among mathematical 
objects and among them and real-world objects allow the attribution of meaning 
to concepts and reasoning. I present results of recent research work in 
mathematics education, seeking to highlight key reasoning processes used in 
mathematics, generalizing and justifying, and show how these processes can 
develop within the framework of an exploratory approach to mathematics 
teaching. 
INTRODUCTION 
One of the main objectives of mathematics teaching is to develop students’ 
ability to reason. This idea raises several issues that we need to consider: What 
are the key aspects of mathematics reason that we can expect from mathematics 
students? How can the work in the classroom promote its development? These 
are issues that I propose to discuss taking into account theoretical issues and 
analyzing concrete examples. 
REASONING AND REPRESENTATION 
It is commonplace to say that “mathematics requires reasoning” and also that it 
“develops reasoning”. However, the term “reasoning” is polysemic, as seen by 
the various meanings given to it by the dictionary: 

To reason: 1. make use of reason to figure out, judge or understand; 2. chain 
thoughts logically; 3. present reasons; 4. ponder; reflect; think (From Latin 
ratiocinári) (Porto Editora Dictionary) 

To figure out, judge, understand, think logically, present reasons, ponder, 
reflect... These are many meanings that are far from coinciding! From the outset, 
the question arises whether “reasoning” will be the same as “thinking” or will 
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be, more specifically, “thinking in a certain way”. In fact, I assume that one 
should attribute to “reasoning” a more specific meaning than “thinking”. In this 
perspective, reasoning is to make inferences in a reasoned way, that is, to obtain 
new information from information given, making it by a justified process. This 
understanding is in line with another dictionary, which says that reasoning is to 
establish inferences or conclusions from facts known or assumed to be true. 
I would just add that this should be done in a reasoned manner and not more or 
less random. If, in response to a question, a person says the first thing that 
occurs to him/her without analyzing all the pertinent information, it is not 
reasoning, it is simply making blind guesses. Thus, all reasoning is thinking, but 
there is thought that is not reasoning. We think when we describe an object, 
when we report an event, when we express a feeling, or when we make a wish, 
but these actions do not require reasoning. 
There is reasoning in mathematics and also in other areas of knowledge as well 
as in everyday life. Of course, the question arises: is reasoning in mathematics 
different from reasoning in other fields, it has anything specific? Let us look at 
some general aspects of the reasoning as it develops in the most diverse areas. 
The study of reasoning is a field of Philosophy, with its roots in ancient Greece, 
namely with its formalization in the rules of Logic. Aristotle is the first theorist 
who establishes this discipline and, already in the twentieth century, the 
development of Mathematical Logic led to great developments and practical 
applications, particularly in computers. For what interests us here, I will confine 
myself to note that there are essentially three types of reasoning: deductive, 
inductive and abductive. 
Deductive reasoning is characteristic of mathematics, where it occupies 
a fundamental place. In this science, we assume a set of statements as true 
(axioms or postulates) and assume a set of rules of inference, to obtain new valid 
statements (theorems). Thus, “reasoning deductively involves mainly chaining 
assertions in a logical way and justifying this chain” (Ponte, Branco & Matos, 
2008, p. 89). As long as the chain of deductions is free from errors “deductive 
reasoning produces conclusions that are necessarily valid” (Oliveira, 2008, p. 7). 
As Oliveira (2002) points out, deductive reasoning constitutes “the structuring 
element, par excellence, of mathematical knowledge” (p. 178), and through it 
mathematical statements are validated. Its importance is such that Davis and 
Hersh (1995) even claim that deduction is the seal of mathematics. 
The fundamental role of deductive reasoning is mainly the validation of 
knowledge. However, the new discoveries, in most cases, do not arise through 
deductive reasoning but rather from other types of reasoning, namely inductive 
and abductive reasoning. George Pólya (1990) eloquently valued the role of 
inductive reasoning. As he indicates, induction is the inference of a rule from the 
observation of what is constant in several particular cases. Abduction, in turn, is 
a process of inference that is based on an unusual fact that seeks an explanation 
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for its occurrence. The great theorist of abductive reasoning is Charles Sanders 
Peirce (1931–1958), who states that “[abduction] at the end is nothing but 
conjecture... it is the process of choosing a hypothesis” (Vol. 7, p. 219). 
It is true that deductive reasoning has a fundamental place in the validation of 
mathematical true statements, but it is the inductive and abductive reasoning that 
leads to the discovery of these statements. Thus, students should learn to reason 
deductively in mathematics but should also learn to reason inductively and 
abductively (Rivera & Becker, 2009). Thus, it is of great importance to know 
how the teacher, in the mathematics classroom, can contribute to students 
developing their reasoning ability in these three dimensions. To this end, I will 
focus on three fundamental processes: conjecturing and generalizing, 
fundamental processes of inductive and abductive reasoning, and justifying, 
a fundamental process of deductive reasoning. Conjecturing is proposing that 
something must be true. It may refer to a particular object, or to a whole range of 
cases – case in which we have a generalization. Justifying is to give reasons why 
some statement is true. 
It should be noted that it is impossible to directly access the mathematical 
reasoning of students – to know this reasoning it is necessary that they 
communicate it, which is only possible through different representations. As the 
NCTM (2000) indicates, “Teachers can gain valuable insights into students’ 
ways of interpreting and thinking about mathematics by looking at their 
representations” (p. 68). In addition to making the reasoning known, the 
representations are an essential support for the realization of reasoning. Without 
representing mathematical concepts in some way, it is impossible to make 
inferences about them. 
As Bruner (1999) indicates, these representations can be active (objects such as 
manipulated materials or actions such as “counting by fingers”), iconic (images, 
figures and diagrams) or symbolic (mathematical symbols, other symbols and 
natural language). Representations play a decisive role in learning because, as 
the NCTM (2000) points out, “When students gain access to mathematical 
representations and the ideas they represent, they have a set of tools that 
significantly expand their capacity to think mathematically” (p. 67). 
Models for the study of reasoning in the classroom 
For a long time, studies in mathematical education on reasoning processes 
focused exclusively on deductive reasoning (Balacheff, 1888; Galbraith, 1995; 
Hanna, 2002). Most of these studies tended to see inductive and abductive 
reasoning as obstacles to mathematical reasoning. More recently, there has been 
a significant change in this regard – rather than being seen as conflicting, these 
different forms of reasoning have come to be seen as complementary. 
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Lannin, Ellis and Elliot (2011) developed a model in which the “central idea” is 
that “mathematical reasoning is an evolving process of conjecting, generalizing, 
investigating why, and developing and evaluating arguments” (p. 12). In this 
model three poles stand out, the first being “conject and generalize”, the second 
“investigate why” and the third “justify or refute”. It is a model that combines 
deductive aspects and inductive and abductive aspects.  
A comprehensive discussion about mathematical reasoning was provided by 
Jeannotte and Kieran (2017). These authors consider three main kinds of 
reasoning processes. Some processes concern the search for similarities and 
differences, and include generalizing, conjecturing, identifying regularities, 
comparing and classifying. Other processes are related to validating, such as 
justifying, proving and making formal proofs. Finally, there is exemplification 
that the authors consider having a heuristic value. 
Another model is from Ponte, Mata-Pereira and Quaresma (2013), and seeks to 
frame the reasoning with two other fundamental processes, representing and 
sense making (Figure 1). The authors stress that mathematical reasoning 
necessarily relies on representations and requires sense making regarding the 
objects and actions involved. This model is based on the entire process of 
conducting an investigation or solving a mathematical problem, beginning with 
the formulation of questions, moving to the formulation of conjectures and 
solution strategies (generalization), going to the application of these strategies 
and the test of conjectures, up to the validation process (through justification). 
Thus, conjecturing, generalizing and justifying stand out as essential aspects of 
mathematical reasoning. 

 
Figure 1: Conceptual framework for analyzing mathematical reasoning of Ponte, 

Mata-Pereira and Quaresma (2013). 
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ANALYSIS OF STUDENTS’ REASONING 
Students’ reasoning can be communicated orally or in writing. Let us look at 
some examples of reasoning that is apparent in students’ written responses to 
mathematical tasks. Figure 2 shows a justification by counter example, an 
important process of mathematical justification. The student indicates that the 
answer to the question is negative because a case can be given in which the 
statement is false. It is interesting to note that the student made several changes 
of representation to give his answer. First, it converted the fractions 74 and 52 
towards quotients (7:4 and 5:2) and then he converted these quotients into 
decimals (1.75 and 2.5). It is in this representation that the student considers that 
the justification becomes convincing since 1.75 is undoubtedly less than 2.5. 
 
Question – If a fraction has numerator and denominator greater than another fraction, 
is it necessarily greater than this second fraction? 

 

No. Because the example of… 

 

and  

 

 

and that is not true 

Figure 2: Answer of Marco (grade 5) to the question. 

Another example of students’ reasoning is given in the answers indicated in 
Figure 3. To the first question, is it 24 =

8
16?, the student answers affirmatively 

and, without being asked, he immediately proceeds with a justification, based on 
a change of representation: 24 is equal to 0.5 and 816 is equal to 0.5, therefore 24 is 

equal to 816 , since two quantities equal to a third one are equal to each other. In 
the answer to the second question, the student further details her justification 
and presents a curious generalization: “A number divided by its double is equal 
to 0.5”. 
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Figure 3: Justification and generalization of Catarina (grade 5). 

Let us see now how reasoning may be promoted in the classroom through the 
exploratory approach (Ponte, 2005; Ponte & Quaresma, 2020). In this approach, 
students’ learning is supported by the work on tasks in which, using prior 
knowledge, they develop new ideas, concepts and representations, and are 
prompted to establish new conjectures and generalizations and to justify them. 
Tasks need to be mathematically fruitful and allow for students’ involvement. 
Usually, the work develops in three phases: (i) Launching of the task; (ii) 
Students’ autonomous work, in which they work in interaction with their 
colleagues, supported by the teacher; and (iii) Whole-class discussion, in which 
different students’ solutions are presented and discussed, and a final synthesis is 
made, so that all students in the class appropriate the main ideas. 
Let us look now at some situations of an actual mathematics classroom. The 
examples are drawn from the work on the task “Edges of pyramids and prisms” 
(Figure 4), proposed to 12-year-old students (grade 7). 

1. Do all pyramids have an even number of edges? Justify your answer. 

2. And regarding prisms, will they have an odd or even number of edges? 
Justify your answer. 

3. Can you find another property regarding the total number of edges of 
a prism? What is that property? 

Figure 4: Task – Edges of pyramids and prisms. 

This task is oriented towards the realization of generalizations and justifications. 
Question 1 requires a generalization and a justification on the number of edges 
of pyramids. Question 2 begins by asking for a generalization about the number 
of edges of a prism and then asks the student to justify the answer. Question 3 
calls for an additional generalization of the number of edges of a prism. The first 
two questions are oriented, specifying the generalizations or justifications to be 
made, while the third question is open, asking for the formulation of a property, 
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without specifying which one. The students are seated at double tables and, as it 
is usual in mathematics classes, they work in pairs. 
Launching the task 
At the launching, the teacher considers important to ensure that the students 
know the mathematical terms of the statement. He begins by asking a student to 
read the statement of question 1, which leads to a small discussion about the 
meaning of “edge”: 

Teacher: OK, this is the first challenge you’re going to have to think about. Is 
everyone comfortable with what edges are?  

Jaime: No...  
Teacher: Ana, what is an edge? 
Ana: It is this from the pyramid.  
Teacher: “It is this.” Can anyone define what an edge is? Other than that, “it is 

this.” Diogo.  
Diogo: That part of the sides.  
Several students: That’s the sides.  
Teacher: Is the sides of the pyramid? What is it? The faces?  
Irina: The lines that determine the sides.  
Teacher: The lines that determine the sides…  
Bernardo: The segments.  
Teacher: The segments, we already approaching a more correct mathematical 

language. They are the segments that join any vertices of the 
pyramid. So, when I join one vertex to the other, that line is called 
edge and it is a straight segment... So, think if the number of edges 
of a pyramid is always even. 

In this dialogue, by asking questions, the teacher sought to lead the students to 
develop students’ appreciation for a precise description of the concept of “edge”. 
In the last intervention, he restates the challenge provided by this question. 
Students’ autonomous work on a task 
During students’ autonomous work (in question 1), the first main goal is that 
students reach a generalization. The teacher circulates around the room, 
observing the students’ work and interacting with them. His interventions have 
different objectives, depending on what he observes. For example, for students 
who have trouble in formulating a solution strategy, the teacher gives 
suggestions that help them reach a generalization for themselves: 

Teacher: Give examples, give examples to see what happens. 

In the work on question 2, during students’ autonomous work, the way the 
generalization is made is also a concern for the teacher. In a dialogue with 
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a student, he helps this student to formulate his generalization more clearly, 
while recalling the need to justify it: 

Duarte: It is the triple. 
Teacher: What is the triple? 
Duarte: Of the edges… 
Teacher: Of the number… 
Duarte: Of the number of edges of the base. 
Teacher: Think about it and try to put that phrase there. The idea is already there. 
Duarte: With the formula? 
Teacher: You can write the formula too, but first you must justify it. 

Still during students’ autonomous work, for the students who quickly solve the 
task, the teacher proposes extensions. Thus, speaking with a pair of students 
who had already reached a generalization, he formulated a new challenge 
suggesting the students to formulate this generalization in a more formal 
language: 

Teacher: Do we manage to get here an expression… An algebraic expression? 

During the students’ autonomous work, the teacher’s actions alternate between 
guiding, when he asks questions that lead students to clarify their statements 
(“What is triple?” …) and informing/suggesting, when he points out paths that 
students can follow (“You can write the formula too, but first you must justify”). 
In the case of students who are able to answer the questions proposed in the task, 
the teacher formulates new challenges. In this phase of the work, the teacher 
seeks not to suggest solution strategies that could lead to decrease the degree of 
challenge of the task. 
The teacher begins the whole-class discussion of question 1 by encouraging the 
students to share their ideas. He requests the participation of a student, Marta, 
whose answer is represented on the board. The student’s justification is based on 
the analysis of two particular cases: 
Whole-class discussion 

Teacher: [Let us] begin with Marta. So, first, read the question, so we’re all talking 
about the same thing.  

Marta: [Reads the question] Yes, it’s correct, because all the edges added up give 
an even number. Even so, the triangular pyramid has a base with 
three [edges], odd, the total number of edges is always even. 

Teacher: You wrote something else. 
Marta: So, in the triangular pyramid the number of edges is six. At the base, the 

number of edges is three, so, [the total number of edges] is always 
double. 

Teacher: And you concluded that through an example?  
Marta: No, two. 
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The teacher asks Marta to explain her reasoning. The student’s generalization is 
correct. She uses two examples to justify this generalization, which is 
mathematically invalid, but the teacher, at this moment, decides to accept and 
value her contribution. 
Later, during the whole-class discussion of question 1, the teacher promotes 
a reflection on the validity of this justification. He asks the students to identify 
valid and invalid mathematical justifications, highlighting what validates them: 

Teacher: So, we’re in mathematics, aren’t we? And Marta is saying, I have an 
example here that works, I have another example here that works, 
so, yes, it’s true. In mathematics two examples are enough to prove 
that something is true? 

Several students: No. 
Teacher: It could be two things that work, three, four, five, a thousand . . . But 

[that is not enough for us]. 

The argument that justifies this answer for all pyramids is the possibility of 
associating, in a biunivocal way, to each edge of the base, a side edge. This is 
intuitive, but the argument could be made explicit. The teacher does not 
introduce this discussion, possibly taking into account the age level of the 
students. 
Later, in the discussion of question 2, which refers to prisms, the teacher keeps 
encouraging the sharing of ideas. He begins by asking a student to read the 
question and then her answer: 

Rita: It can be even or odd. If the [number of] base edges is even, it’s even. If the 
number of base [edges] is odd, it’s odd. Thus, it depends on the 
number of edges of the base. 

The student presents a correct generalization. In order to obtain a justification, 
the teacher asks for the explanation of the “why”: 

Teacher: And how did you get to that conclusion?  
Rita: Doing edges times three. 
Teacher: And why times three? 
Rita: Because we have to know, we have to add [the edges of] the base, plus the 

side edges, plus [the edges of] the other base. 

During the whole-class discussion, the teacher asks the students to present their 
solutions, starting with partial or incomplete solutions, which he seeks to value. 
However, he also promotes moments of reflection in order to draw attention to 
the limitations of these responses. His questions highlight generalizations and 
justifications. For the most part, they are guiding questions (“And have you 
concluded this through an example?”…), although there are also informing 
questions (“And that’s a property”...). There are also some challenges, 
particularly when the teacher seeks to lead students to formulate their answer in 
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a more formal language or when he asks the students to justify their answer 
(“Why?”). In each question, the teacher seeks that the students’ contributions 
lead to the formulation of a correct answer, which he finally synthesizes in 
a small informing action. 
Making the exploratory approach work 
Thus, in the exploratory approach the students work on tasks for which they do 
not have an immediate solution method – to solve them they have to construct 
their own methods, using previous knowledge. They have opportunities to 
construct or deepen their understanding of concepts, procedures, representations 
and mathematics ideas. The students assume an active role in the interpretation 
of questions, in the representation of information and in the design and 
enactment of solution strategies. They are called to present and justify their 
reasoning. In this approach, the teacher, instead of teaching directly procedures 
and algorithms, showing examples and assigning exercises to practice, proposes 
students a work of discovery, and promotes moments of negotiation of meaning, 
argumentation and collective discussion.  
The exploratory approach has two main supports: The first is the choice of 
appropriate tasks that may promote the construction of concepts, the formulation 
of strategies for solving problems, conjectures and justifications. The second is 
the establishment of an environment of classroom communication that enables 
students’ participation and reflection, through the launching, autonomous work 
and whole-class discussion.  
This approach stresses the construction of concepts, the modelling of situations 
and also the use of definitions and properties of mathematical objects for 
reasoning – conjecturing, generalizing and justifying. It pays attention to 
computational aspects of mathematics, but values conceptual aspects – that is, 
considers important to get results, but even more important to understand the 
general strategy that was used and its justification.  
Role of the teacher 
The teacher, paying attention to the reasoning processes underlying the solution 
of mathematical tasks, contributes to the development of students’ reasoning. 
For example, in primary education (grade 1 to grade 6), the teacher may ask 
students to formulate and test conjectures concerning simple mathematical 
situations as well as to explain ideas and processes and justify mathematical 
results. The teacher may make explicit the use of examples and counterexamples 
and may use an exhaustive of collection cases as justification processes. This 
can be done, for example, through actions such as: 

• To ask for the explanation of mathematical reasoning orally and in 
writing. 

• To request examples, counterexamples, and analogies.  
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• To propose the investigation of regularities and numerical relationships in 
tables, seeking the formulation and testing of conjectures. 

• To ask, “How did you do it? Why do you think what you did is right?” 

• To ask, “What happens if...? Will this always happen?” 

• To request the presentation of arguments as well as examples and 
counterexamples.  

• To encourage students to make generalizations by presenting examples 
and other particular cases and to pose questions such as, “What will 
happen next? Is this valid for other cases?” 

Later on, in secondary school (grade 7 to grade 12), the teacher can carry out 
these same actions and others such as: 

• To ask students to identify particular cases, formulate conjectures and 
generalizations and test their validity.  

• To provide situations in which students reason inductively (formulating 
conjectures from data obtained in the exploration of regularities) and 
deductively (demonstrating these conjectures).  

• To highlight the role of definitions in the deduction of properties, for 
example in the study of quadrilaterals.  

• To raise questions that lead to the reduction of absurd as a method of 
demonstration.  

• To request the justification of statements through mathematical concepts, 
properties or procedures, or their denial through counter-examples. 

CONCLUDING REMARKS 
To provide more attention to the development of mathematics reasoning, 
through an exploratory approach, is a necessary condition for mathematics 
learning with understanding. It must be noted that reasoning is a capacity that, 
although not exclusive of mathematics, may be promoted in an important way 
by the work in mathematics. It is important to note, also, that the work with 
mathematics reasoning is not exclusive of the most advanced grades – it may 
and should begin in the elementary grades. 
To promote the students’ mathematical reasoning, the teacher may carry out 
a practice that creates opportunities for students to make conjectures, 
generalizations and justifications. These opportunities depend, in essence, on 
two aspects: on the characteristics of the tasks proposed in the classroom and on 
how these tasks are tackled in the classroom. Tasks, in addition to explicitly 
asking for conjectures, generalizations and justification of responses or solution 
processes, may have different degrees of challenge. To favour the contrast 
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between different strategies and representations, it is useful to propose tasks 
with questions that allow a variety of solution processes.  
The exploratory class allows students a key role in working in tasks and in 
expressing their reasoning. In this class, the teacher begins by proposing a task 
(introduction), followed by a period in which the students work in groups, in 
pairs or individually (autonomous work), and this leads to a collective moment 
of presentation and justification of results (whole class discussion). Thus, 
explicit appreciation of mathematical reasoning in the classroom can be done 
naturally from this type of work. Emphasizing reasoning constitutes a significant 
change in mathematics teaching, introducing a new emphasis in the work in 
mathematics, which may lead students not only to develop their reasoning but 
also to assume a more positive perspective on what mathematics is as a human 
activity. 
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We designed an interactive cryptography-based activity requiring students to 
code using powers of integers and to devise a strategy decoding messages. We 
analyse the strategies that participants developed and compare their 
understanding of logarithms with a control group of traditional intermediate 
algebra students. Our results show that our study group outperforms the control 
group in understanding logarithms and basic computational skills. 
INTRODUCTION  
This study is a part of a larger project supported by NSF Noyce 1660521 grant 
that included the development of active learning activities promoting 
mathematical engagement, excitement, and students’ creativity. In this paper we 
describe cryptography-based activities targeting early algebra curricular 
experiences related to introducing and understanding the concept of the 
logarithm. Even though teachers strive to prepare their students to use 
mathematics in powerful ways in various contexts often students’ ability to 
transfer abstract knowledge to application is not effective. Often after being 
taught logarithms, students continue to struggle to recognize or apply logarithms 
in even simple situations, which suggests that they have not understand this 
fundamental concept fully. As research shows, logarithms are quite abstract and 
difficult for the students (Webb, 2011), even though they are presented with 
many real-world applications including interest rates in finance, earthquake 
measures (Richter Scale), population growth, etc. Since understanding 
logarithms is important for more advanced mathematics and science concepts, 
finding pedagogy to introduce them early in curriculum and in a meaningful way 
is crucial. In general, problem solving and creative thinking are necessary for 
professional success in the fast paced, technology intensive global setting of the 
21st century. At every level of mathematics education, there have been 
criticisms about the excessive amount of structure imposed on learners, 
especially at the school level, where students are rarely encouraged to solve 
open-ended problems, strategize, or pose their own questions. In 1989, the 
National Council of Teachers of Mathematics addressed the need for standards 
that include modeling, creativity, and independent thinking, but over two 
decades later the situation in American schools is not much better, as 
mathematics education still concentrates on basic skills and traditional problem 
solving. While for a long-time problem-solving strategies have been advocated 
(Polya, 1957), they are not leading pedagogy in our schools (Drew, 2011). 
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Studies show that contemporary students prefer innovative rather than 
traditional pedagogy (Star et al., 2008), learning with multiple representations 
(Ainsworth, 2006), through activities related to their interests in engaging 
environments (Kuh, 2003). There have been some efforts to implement new 
pedagogical strategies (inquiry-based or problem-based learning) to improve 
students’ skills and to move them towards discoveries (Vygotsky, 1987). 
Recently, mathematics education community started to research the issues 
related to understanding logarithms and developed some activities and examples 
supporting learning of the concept (see Campo- Meneses et al., 2021; Kenney 
& Kastberg, 2013; Siebert, 2017; Suerda & Otero, 2019). However, most of 
them concentrate on computational or technical aspects (Reed, 2016; Weber, 
2019) without giving students a chance to explore and formulate their ideas of 
logarithms (as inverse operations). For this study, we designed and implemented 
an engaging and conceptually interesting cryptography-based activity that can 
be introduced even in pre-algebra lessons. This activity supported personal 
explorations and asked participants to formulate their own definition of 
logarithms and strategies to calculate them. At the end of the activity, through 
the group discussion the formal definition and usual notation were introduced to 
assure the common language with the mathematical community. We analyse 
data collected during the activity and compare performance of participants with 
a control group of intermediate algebra students with similar background. 
METHODOLOGY  
A group of 20 intermediate algebra high school seniors (who did not yet have 
a lesson on logarithms) participated in the study. To engage learners from the 
start we posed the problem of sending secret messages in such a way that 
outsiders have problems decoding them. There were two 50 minutes sessions 
dedicated to the cryptography-based activity with the study group, and two days 
later the post-test was administered.  
Description of the activity 
Twenty students were divided into 10 pairs. In each pair students were called A 
and B (in cryptography, people sending messages to each other are usually 
named Alice and Bob). Matching participants into small groups A’s and B’s 
works as well. The following four parts were implemented in order. 

a. We introduced to students the well-known cypher numbering the letters 
(A=1, B=2, C=3…, Z=26.) In each pair, A’s were asked to send 
a numerical code for a short message (a word they selected) to B’s, who 
were supposed to decode the message. B also sent a coded message to 
A to be decoded. All the numerical codes for messages were also posted 
on the board where all participants could see them. During the discussion 
that followed all participants decided that this way of communicating 
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while nice and easy is not secure, as others were able to decode the 
massages of each pair. 

b. To make the cyphers harder, each A was assigned a base number, and 
each B was assigned a different base number (note that each pair had their 
own set of base numbers, and members of each pair knew both). To code 
a message, students had to raise their base number to the power that 
symbolized a letter they wanted to send. For example, if a student A with 
the base number 2 wanted to send CAT as a message to B, he/she had to 
compute 23, 21, 220 (participants could use calculators) and sent these 
numbers to B, who had to figure out how to decode them. The numbers 
were also posted on the board where everyone in the study group could 
see them. To decode the messages, student had to introduce their own 
methodology (at this time they did not know that they calculate 
logarithms!). There were several approaches developed to decoding: 
making a table for all possible powers of the base, calculating consecutive 
powers of the base up to the number received in the message, guessing 
and checking the powers by calculating. Students sent and decoded 
several messages. During the discussion that followed all participants 
decided that this way of communicating is more secure than the first one, 
as other participants were usually not able to decode the massages 
between a specific pair as they did not know the base numbers. 

c. During the discussion, the logarithmic notation was introduced, and the 
messages sent between students now looked like log381 as they could 
choose different basis for their codes. At this stage, students were allowed 
to use their own strategy or the logarithmic tables for computations (but 
not the log function on their calculators).  

d. Students were asked to graph on the board y=ax and y = logax for the base 
a that they used for decoding the messages in Part b, and compare the 
graphs. All students could see these graphs and they were able to analyze 
the similarities and reflections, formulating logs as ‘inverse functions’ to 
exponential functions.  

Note that participants were not given any suggestions how to decode the 
messages, they had to invent their own strategies to figure out values of 
exponents used, effectively calculating the logarithms from the beginning. As 
the activity was introductory on the pre-algebra level, we worked only with 
positive integers. However, for more advanced students, positive fractions can 
be used as base numbers. To introduce negative powers, one would need to 
renumber the alphabet (for example (A = -10, B = -9, C = -8…, Z = 15.) At first, 
some of the students were frustrated with decoding tasks asking them to work 
without specific strategy and requested formulas to be used. Gradually, they 
developed their own methods of figuring out the coded messages. While the 
activities proved to be quite challenging, learners were fruitfully engaged and 
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tried to simplify their strategies at every stage. We have collected all participants 
work including white board graphs, the instructor’s observations as well as their 
post-test answers (that was also administered to the control group). The post-test 
was focusing not only their ability to calculate simple logarithms, but also their 
understanding of the definition of logarithm and related basic concepts. Here are 
the post-test questions that we assess later.   

1. Calculate log5125 = 
2. Which number is larger, log28 or log216? 
3. Which number is larger, log381 or log981? 
4. Does it make sense to use number 1 as a base for the logarithm? Explain 

your answer. 
5. Can we use number 0 as a base for the logarithm? Explain your answer. 
6. Calculate log101000.  Define logarithm log10x in your own words. 
7. Is the concept of logarithm easy to understand for you? 

RESULTS  
We analysed data from all 20 students taking part in the cryptography activity 
(Study Group), their strategies to code and decode secret messages and their 
answers on the post-test. The same post-test was administered to a control group 
of 24 students, who were introduced to logarithms using the traditional lecture 
mode presentation. Note that study group participants were receiving (usually 
large) numbers which encoded secret messages and were not given any 
directions how to decode them. Since they were encoding their messages first, 
they gained some experience of how the encoding process works. Hence 
knowing the base for the code given to their partners, they could develop some 
methodology for solving the problem of decoding their messages. For example, 
after receiving 64 as a message from a partner using the number base 2, they 
could try to raise 2 to different powers to figure out that 26 = 64. Hence the 
message received was 6, i.e., letter F was sent to them. Initially, students either 
guessed the power and checked if the answer is right by computing it, or they 
started calculations by raising the base number to consecutive powers (21=2, 
22=4, 23=2⸱2⸱2=4⸱2=8, 24=2⸱2⸱2⸱2=8⸱2=16, etc.).   
We start by analysing strategies used.  While participants had no problems with 
encoding, their decoding methodologies varied and changed throughout the 
activity. Initially, about half of them tried to guess the exponent to which the 
base number was raised and checked if they were correct by calculating it (38 
too much, 35 too little). Most of them noticed that the numbers may repeat and 
tried to organize their calculations. The other half just systematically raised the 
base number to consecutive powers till they reached the desired number. This 
group also noticed that it is useful to organize their calculations and list them in 
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some order. Table 1 shows gradual modification of strategies during the activity. 
Calculating logs refers to Part 3 of our activity, when students were changing 
their base number often. 

Strategies Tables for ax    Guess and Check  Calculations     Combination 

Initial decoding        0%                       50%         50%                     0% 

Final decoding       70%                      20%         20%                   30% 

Calculating logs       80%                      10%         10%                     0% 

Table 1: Strategies used to find x to decode a message given by a number ax. 

As stated in Table 1, at the end the majority of students organized their numbers 
as tables, often including the new codes for the entire alphabet (which help them 
to decode the messages instantaneously). For example, one of the tables for base 
number equal to 3 started as follows. 

A =31 = 3         B =32 = 9       C = 33 = 27        D = 34 = 81…. 
Hence, decoding 81 as 4 in the case of base 3 was immediate. Note that when 
decoding the final message in Part b of the activity, a majority of students used 
their own tables, or a combination of several methods (depending on how 
complete their tables were). For example, a student may have a table with 
powers of 3 up to 320 and the number to decode was larger than 320. He/she may 
calculate consecutive powers or guess the exponent and check (with the 
calculator). Since the numbers tended to be very large, the participants were 
forced to organize their calculations. The 30% of participants using the 
combination strategy split into 3 almost equal groups each using two of the 
methods. After learning the definition of logarithms in Part c, students’ 
strategies changed to relay more on tables (with varying base numbers) or on 
one strategy that they preferred, see Table 1.  

Sample size 20 Correct Codding          Decoding         Engagement       

Initial tasks              19                         15                High                

Final tasks 

Discussion  

            20                         20 

            18                         12 

             High                

          Moderate         

       Graphs/functions             20                         16                         Moderate 

Table 2: Correctness of tasks and engagement.  

The instructor monitored the engagement level during the activity. As shown in 
Table 2, participants were highly involved in coding and decoding problems 
throughout the activity, and at least moderately involved during creating 
exponential and logarithmic graphs and discussions. This may be related to the 
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fact that a new abstraction level was introduced, and some students needed more 
time to understand it. 
Note that almost all students coded the messages correctly at every stage, and 
one made several computational errors. Only 75% of students decoded all 
messages correctly, while the remaining 5 (25%) usually did not complete the 
decoding process on time, especially when their partners changed their base 
numbers. However, all students in this group decoded at least 50% of the 
messages received. During the discussion phase, 18 students described the 
coding process correctly, while 12 (60%) students explained the decoding 
methodology correctly in precise mathematical language. All students were able 
to graph the exponential functions using their calculations, while only 16 of 
them provided proper graphs for logarithmic function. We observed that most of 
them were confused with the fact that to graph y = loga x they had to use many 
large values of x and did not know values of y for many small x’s. 
The post-test was given to the study group (20) and the control group (24) and 
participants were not allowed to use calculators as the numbers were relatively 
easy to handle. Before the activities both groups were compatible and both 
improved understanding of logarithms through the activity or through the 
lecture.  Our interesting result shows that the study group performed better on all 
the questions, and statistically significantly better overall on the post-test as 
compared to the control group (with the p-value below .001). Which means that 
their understanding and skills were significantly enhanced by the participation in 
the cryptography-based activity. Here we present and compare detailed results 
of student performance. 

 Correct                Incorrect    Partial Credit      

Study Group (20)     95%                      5%             0%                

Control Group (24)      50%                      41%          8%    

Table 3: Correctness of calculating log5125.  

Note that almost all students in study group were able to figure out log5125 = 3, 
while only 50% of the control group calculated it correctly, with 2 people 
obtaining partial credit for expressing the result as an exponential equation only. 

 Correct                  Incorrect    Partial Credit      

Study Group (20)   100%                        0%           0%    

Control Group (24)      67%                      12%      11%    

Table 4: Comparing log28 with log216.  

As table 4 shows, all students in the study group figured out that log28 = 3 is 
smaller than log216 = 4, hence they considered comparison of two logarithms 
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with the same (small) base as easy. At the same time, only 16 (67%) students in 
the control group answer the question correctly and 11% did the calculations but 
did not finalize the comparison and received some partial credit. 

 Correct                Incorrect    Partial Credit      

Study Group (20)     85%                      5%          10%               

Control Group (24)      50%                      42%         8%    

Table 5: Comparing log381 with log981.  

The next task was to compare two logarithms with different base numbers, see 
table 5. The study group outperformed the control group with 17 students (85%) 
able to figure out that log381= 4 is larger than log981=2, and some with partial 
credits for proper calculations but no conclusions. On the other hand, only 50% 
of control group performed the task correctly.  
Table 6 shows students’ answers to the question: Should 1 be used as a base for 
the logarithm? The students who had experience with the cryptography provided 
extensive explanations (such as ‘if we use 1 as a base, then coding does not 
work because 1x=1,’; ‘cannot use 1, as for example log1 3 = does not exist, 
because 1x always equals to 1, not 3’). 80% gave correct explanations, 15% gave 
partial explanations, and 5% (one student) gave no explanation. In the control 
group only 6 students (25%) gave a correct explanation while the rest either did 
not answer the question (50%) or gave incorrect answer, see table 6.  

 Correct                Incorrect    Partial Credit      

Study Group (20)     80%                      5%          15%               

Control Group (24)      25%                      75%         0%    

Table 6: Do logarithms with base 1 make sense? 

However, explaining why number 0 cannot be a base for the logarithm turned 
out to be a confusing question as a large majority of incorrect answers (70%, 
i.e., 31 out of total 44 total number of students in both groups) stated that “since 
any number in power 0 is equal to 1 then log01= 1 follows from 10 =1”.  

 Correct                Incorrect    Partial Credit      

Study Group (20)     50%                    50%              0%               

Control Group (24)      12%                    88%           0%    

Table 7: Do logarithms with base 0 make sense? 

Still half of the students in the study group gave a correct justification, while 
only 12% of study group provided any satisfactory explanation. All students 
perceived this question as unusual, and they had hard time analysing it. Many 
stated that this ‘never happens’. The summary of the results is in Table 7. 
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The task to calculate log101000 = 3, was done correctly by 90% of all students. 
Then they were supposed to define log10x in their own words. Here are examples 
of answers accepted as correct:  

log10x is a number n that is used as an exponent in 10n to obtain number x; 
10 in some power equals x. This power is a number called log10x. 

Table 8 shows that all but 2 students in the study group came up with some 
definition, and 80% (16 students) stated it correctly. While only 25% (6 
students) from the control group gave an acceptable definition. This was 
a surprising result, as the study group learn logarithms hands-on through the 
cryptography activity and did not spend much time on formal definitions. The 
control group was introduced to logarithms by a formal definition from the very 
start of the lecture, but they did not master their understanding after two lecture 
sessions with examples and problem solving. 

  Correct                   Incorrect      Partial Credit      

Study Group (20)      80%                      10%               10%               

Control Group (24)       25%                      75%                         0%    

Table 8: Definition of logarithm log10x   

The last question on the post-test was asking students to assess how hard 
logarithms are. Only 5% of students having experience with cryptography 
considered the concept hard, while 63% of the control group thought that 
working with logarithms is at least medium hard.   

      Easy              Medium hard       Very hard      

Study Group (20)      70%                      25%                5%               

Control Group (24)       12%                      13%           50%    

Table 9: How difficult are logarithms to you?   

This huge difference in assessment of the difficulty of the concept of logarithm 
by the two groups also came as a surprise. It looks like the cryptography-based 
activity removed some of the mystery from the concept, introduced students to 
computations with large numbers and asked them to develop strategies to figure 
out proper exponents to obtain specific large number matching the message 
send. These help them understand the underlying idea of inverse functions of the 
exponential functions.  
All study group participants (100%) reported that they enjoyed the interactive 
cryptography activities and found the discussions helpful for understanding the 
logarithms. The initial coding tasks inspired curiosity in modern applications of 
mathematics. Participants showed perseverance deriving various strategies to 



126 IVONA GRZEGORCZYK 

calculate logarithms and expressed concerns about dealing with large basis and 
large numbers (even when aided by computers).     
Some interesting comments from the study group students.  

Student 1: I liked coding and decoding with numbers. Now I start to understand 
how real coding is done with large numbers, so decoding is hard for 
unauthorized people.  

Student 2: I enjoyed the activity. It showed me how calculating powers and 
finding exponents can be useful for secret messages. Discussions 
helped me understand the logs. 

Student 3: Figuring out the strategy to decode the message was hard. I was 
guessing at the beginning, but than just made a table for all the 
options. I never though math can be so fun.  

Student 4: I tried to send hard messages (with z’s and y’s) to make decoding hard 
and interesting. Logs are ok. I wish we were taught that way!  

Student 5: I liked having different basis and debating the strategies. Cryptography 
made me interested in logarithms and math.  

CONCLUSIONS 
It is important to provide activities requiring critical thinking and original 
strategies in various contexts interesting to the students. It is beneficial to them 
to struggle a bit by developing their own ways and to share them with others to 
come up with definitions for new concepts. Our study provided participants with 
personalized tasks, by giving them their own base number and a choice of 
messages to be send. This made them engaged in the strategy planning for quick 
decoding and interested in calculations with large integers. They were sharing 
their ideas during the discussion periods, developing an abstract definition for 
logarithms. Their comments indicated the suitability of the cryptography-based 
activities as engaging, modern and relevant. Interestingly, the study group 
significantly outperformed students that have learned about logarithms at 
a traditional lecture. They performed better on conceptual and computational 
questions showing overall better understanding of the subjects. Our results show 
that activity-based learning providing students with interesting, independent, 
unpredictable tasks leads to better command of the subject and to development 
of strong computational skills. Therefore, to improve the overall performance 
and attitudes of students towards mathematics, there is a need for further 
development of learning activities in many areas and at various levels. 
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OBSERVING CRITICAL THINKING 
DURING ONLINE PAIR WORK 

Emőke Báró 
University of Debrecen, Hungary 

 
The closures of schools caused by the pandemic and the transition to online 
education put teachers and students in a difficult position. When teachers were 
asked to select their top three concerns about distance learning on students, 
common answers were: students’ social isolation, decreased student well-being, 
and potential learning loss. We elaborated a chapter from the curriculum in 
a problem-based way suitable for online learning with these concerns in mind. 
We also paid attention to the manifestation of students’ critical thinking, 
learning outcomes, and motivation. In this paper, we aimed to analyze a part of 
a lesson in which we paid increased attention to observing critical thinking and 
the teacher’s role during online pair work and students’ reflections about that.  
INTRODUCTION 
Flack et al. (2020) claim that teachers’ top three concerns about online learning 
are social isolation, decreased student well-being, and potential learning loss. 
Therefore, we designed a teaching project in which we transformed a part (one 
chapter) of the curriculum into a problem-based approach, that is suitable for 
online learning and addressing these concerns. This paper highlights social 
isolation; we want to reduce social isolation through pair work and pay attention 
to students’ critical thinking by constantly following their work through 
video/audio recordings. We focused on only one part of a one-hour lesson, 
namely pair work completed with whole-class discussions, in which we 
analyzed students’ critical thinking. We aimed to integrate pair work into an 
online environment and follow these pair discussions during problem-solving. 
We wanted to find out whether the adaptation of the problem-based learning for 
the online environment is successful or not in terms of the appearance of critical 
thinking in pair discussions. We were also interested in the students’ views on 
online pair work, so we analyzed the related issues through semi-structured 
interviews. 
LITERATURE REVIEW 
In mathematics education, a problem is a task that requires the application of an 
unknown combination of tools or a novel combination of several known tools to 
solve a problem and is not obvious to the problem solver (Claus, 1989; Dörner, 
1983). Generally, a common feature of problem definitions is that there is an 
obstacle to achieving a goal in a situation. The way to overcome the obstacle is 
problem-solving and purposeful reasoning (Polya, 1962). The use of 
mathematical problems in mathematics education can be achieved through 
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various educational strategies. In this paper, we define problem-based learning 
in mathematics as requiring students to analyze mathematical problem 
situations, approach their own and their peers’ minds critically, and learn to 
explain and justify their reasoning (Csíkos, 2010; Kónya & Kovács, 2021). 
In the above interpretation, the critical attitude and thinking towards one’s 
thoughts or peers appear. Because critical thinking is a complex concept 
involving cognitive skills and affective dispositions, we can find many 
definitions. 
Semil (2006) claims that critical thinking makes individuals think, question 
issues, challenge ideas, generate solutions to problems, and make intelligent 
decisions when faced with challenges. Therefore, critical thinking skills enable 
one to analyze and synthesize information to solve problems in a broad range of 
areas (Facione, 1990). Three components of critical thinking in mathematics 
were identified: reasoning, problem-solving, and identifying the suitability of 
problem solutions (Innabi & Sheik, 2007). In other studies, critical thinking is 
viewed as a more general competence, including metacognition, intellectual 
perseverance and autonomy, reasoning, and the ability to identify 
inconsistencies and contradictions (Paul & Elder, 2002). In this paper, we use 
Mansoor and Pezeshki’s (2012) definition, according to which critical thinking 
involves deep reasoning and consideration of the received information rather 
than forward acceptance of different ideas. 
All these definitions prove that critical thinking is one of the basic components 
of the skills needed to handle certain situations. According to this view, critical 
thinking is just as important as information search and organization skills, 
effective communication, and social responsibility (Ananiadou & Claro, 2009). 
Our research questions were formulated based on these defining skills.  
RQ1. How does critical thinking appear in the online pair discussions? 
RQ2. How do students reflect on the pair work in relation to a task that requires 
critical thinking? 
RQ3. Can the teacher be a critical observer of the pair work in the online 
environment? 
THE SETTING OF THE EXPERIMENT 
The investigation included two seventh-grade classes, a total of 61 13-14 years 
old children from Transylvania, Romania (Class A - 31 students, Class B - 30 
students). The same person teaches the two classes. The instruction language is 
Hungarian, as Hungarian is the mother language of the students. The teacher 
was herself the researcher, too, delivering action research, aimed to design a unit 
from the curriculum in a problem-based way. The title of this unit was: 
Equations and problems that can be solved by equations, containing six lessons. 
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We used the online pair work method three times during this period. After the 
experiment, we conducted a semi-structured interview with 12 students. The 
students were selected randomly from three different categories regarding their 
learning outcomes: above average, average, below average, two from each 
category per class. 
In order to document the experiment, different research instruments were used. 
Due to the pandemic, all lessons were held online, using Google Meet and 
editable shared documents. The shared documents allowed the teacher to 
monitor the students’ works in real-time. The lessons were recorded, which 
helped the teacher in reflecting and analyzing. The students recorded all the 
discussions during the pair work and sent them to the teacher. The teacher also 
made a written record. Every worksheet filled out by the students was 
photographed, their notebooks were scanned, and every online document they 
were writing in was saved. These documents helped us to interpret students’ oral 
manifestations. 
In this paper, we analyze the pair work connected to the following two tasks 
(Mason, 1988):
Task 1: The following pattern is given, make a table showing the number of 
points and line segments in each figure. Find a rule and a correlation between 
the number of points and line segments. Explain the rule! 

Figure 1: Pair work, task 1.

Task 2: The patterns are laid out from square tiles in the figure below. Make 
a table showing the number of tiles in each figure.

Figure 2: Pair work, task 2.

a. How many tiles will there be in the 9th figure?
b. How many tiles will there be in the 20th figure?
c. Which figure will have 98 tiles?
d. Generalize: how many tiles will there be in the nth figure?
Based on Mansoor and Pezeshki (2012), we examine critical thinking from two 
perspectives: (1) conjecture and reasoning; (2) consideration of the received 
information rather than forward acceptance of different ideas.
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RESULTS 
Conjecture and reasoning  
In most cases, pairs managed to identify the rule(s). For example, in Task 1, the 
standard answer was “the number of line segments increases by five,” but in 
both classes, some pairs formulated a rule such as “6 ∙ 𝑛𝑛 − (𝑛𝑛 − 1)”, where 𝑛𝑛 is 
the number of the points, or even counting further “5𝑛𝑛 + 1”. In Task 2, almost 
every pair came to the rule “4 ∙ 𝑛𝑛”, where 𝑛𝑛 is the number of the figure.  
It was also interesting that some pairs desired to discover more than one rule. 
For example, S1 identifies the rule “five times the points plus one”, to which 
S24 replies: “…yes. But I think there is one more. Because it’s also pretty clear 
that 6+5 is 11, 11+5 is 16, 16+5 is 21, and so on […], but your rule is also 
good”. S20 claims, “I have two solutions”; S17 asks, “is there anything else?” or 
S34: “What other rule could we discover…?”.  
One of the students’ tasks was to explain the rules they found. Analyzing the 
recordings, we found out that students react to the question “why?” in three 
different ways, so we sorted the ability of the reasoning into three categories: 
1) They explain the rule, and the reasoning is correct. 
Pair S19-S4 (Task 1): 

S19: […] because the first one has six [line segments], and then every 
time it increases plus 5 comes, cause… 

S4:  Because there will be a joint side! 

Pair S6-S21 (Task 1):  
S6:  For three, it is like 6 times 3, that is 18, but there are two joint sides, 

so minus 2. I think that is how it is. 

Pair S14-S29 (Task 2):  
S29:  You divide it into two parts for long lines and shorter ones… 
S14: Well, yes…  
S29:  You call the top two long lines; those are the full rows. And the 

shorter ones are the vertical ones. […] So twice the number of the 
figure plus two - so these are long ones - plus twice the number of 
figure minus two. 

2) They would like to explain the rule, but they can’t. 
Pair S44-S58 (Task 1): 

S44:  But the point is why? Why does the number of sections increase by 
five? 

S58:  That is a very good question… 
S44:  I don’t know why either, but I think the rule is right. 
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3) They have no need for an answer: after revealing the rule, they leave the 
breakout room because they think they have finished.  

Interestingly, we could not find a recording in which students would like to 
explain the rule, but the reasoning contained a mistake. We would wonder if this 
category would be omitted even for a larger sample. 
Consideration of the received information 
Regarding the consideration of the received information, we found two main 
patterns. 
1) Students with different learning outcomes 
Listening to the students’ recordings, we have recognized a phenomenon that we 
were already familiar with (Báró, 2021). Namely, students with lower learning 
outcomes tended to accept their partners’ ideas just because they usually get 
better marks, even if the students’ solution with better results was wrong and 
their solution was the right one (pairs: S53-S43; S56-S45; S8-S23; S56-S41). 
Critical thinking failed in these situations because the partner’s higher math 
grade became an influencing factor; hence the review and analysis phase was 
missing. In a worse case, students with lower grades are not even thinking about 
the solution or answer because they know their partner will find a solution 
(pairs: S5-S20; S15-S30; S32-SS48).  
2) Students with similar learning outcomes 
We observed that pair works are more effective between students with similar 
learning outcomes. If they are on the same level, they are more willing to correct 
their partners, add another idea, or question what has been said. The following 
dialogue exemplifies the appearance of critical thinking, where students correct 
each other. 
Pair S9-S27 (Task 1):  

S27:  So how will it be here? So five times the number of points then 
multiplied by… no… 

S9:  No need to multiply! 
S29:  We do not multiply… 
S9:  Five times the number of points plus one. 
S27:  Yes. For example: in the first one, five times 1 plus 1 is 6. 

Checkmark here. 
S9:  Yeah. 
S27:  The second one…5 plus the number of the points plus 2… it is not 

11! 
S9:  But… no, no, no! Five times the number of points plus one. 
S27:  Yes, because it will be 2 ∙ 5 + 1 = 11;  3 ∙ 5 + 1 = 16;  4 ∙ 5 + 1 =

21. 
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Students’ reflections on the pair work 
Based on the interviews, we explored students’ attitudes towards pair work. 
Analyzing the answers to the question “Do you usually prefer to work alone, in 
pairs, or in groups?” we found that above-average students have an ambivalent 
or negative attitude towards pair work, while others have responded positively.  
The higher achievers tended to answer “alone” or “it depends on whom I am 
working with and the type or the quantity of the task.” The following extract 
reveals one of the reasons why an excellent student prefers working alone to 
working in pairs or groups. This answer is strongly connected to failing critical 
thinking, i.e., low achievers accept the opinion of high achievers. 

T:  Do you usually prefer to work alone, in pairs, or in groups? 
S32:  Alone. 
T:  Why? 
S32:  Well, first of all, I don’t like to put my opinion on someone else, and 

I don’t like it if someone else wants to convince me of what I don’t 
think is true. It usually happens- not only in math teamwork- that 
I say something I don’t want others to accept, but they accept it […], 
but I want everyone to add in the meantime.[…] 

T:  What do you think? Why do they accept your idea 
straightforwardly? 

S32:  I don’t know. Only because I am a good student doesn’t mean I am 
always right. Maybe someone else’s opinion would be much better, 
and overall the work of more people would be better, and I don’t 
expect it to be what I say. […] And I accept that if someone goes 
beyond that and says even better, […], but there are times when they 
just let it be what I say. 

In contrast, students with average or below-average learning outcomes preferred 
working in pairs or groups rather than working alone, saying that “my main 
characteristic is that I am not confident and if my partner thinks the same, it is 
good because it is possible that I can get a little more confidence”; or “for 
example, I knew the answer to one, and she knew the other, and that’s why we 
complemented each other and explained things to each other”. 
The role of the teacher in and after the pair discussions 
The sub-point c of Task 2 requires making an intelligent decision at the end of 
the problem-solving. After identifying the rule “four times the number of the 
figure” and calculating how many tiles are needed in the 9th and 20th figure, at 
sub point c, the students need to think backward at first, dividing 98 by 4. Then, 
observing that the answer is not an integer, they have to make the decision “this 
problem does not have a solution”.  
The teacher was monitoring the pair work through a shared document with the 
students’ answers and she noted the answers that needed correction. Some 
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students (e.g., S38-S59) were not attentive enough, interpreting the question like 
“how many tiles are needed in the 98th figure?” and answering 392 because 98 
times 4 is 392. A common mistake was not drawing the conclusion, just dividing 
and answering “24.5”.  
Pair S10-S16 (Task 2c): 

S16:  So which figure will have 98 tiles? 
S10:  Well… 
S16:  I think we have to divide 98 by 4.  

[…] 
S10:  Yes, I think so; we have to divide by 4. That is not a decimal 

number? 
S16:  Indeed. It is 24.5. 
S10:  I think so too.  
S16: But it cannot be otherwise. Let’s write it down.  
S10:  Ok, it’s 24.5 then.  

Thanks to the class discussion after the pair work, we had the chance to clarify 
these situations and correct the eventual mistakes. However, it was not even the 
teacher’s job to correct them; the students reacted to each other’s pair work. 
During the class discussion, one aspect of problem-based learning became more 
emphasized; they approached their peers’ minds critically. For example, when 
one of the pairs showed their solution of “392 tiles” mentioned above, the 
answer came right away from another student: “No…the question is not about 
how many tiles will be! But in which figure will be 98 tiles?! So, you have to 
divide 98 by 4”. These pairs, that solved the problem correctly also reasoned 
correctly, explaining and justifying their reasoning as the second aspect of 
problem-based learning: “and there won’t be a figure with 98 tiles, because 98 
cannot be divided by 4”; “This is not an integer, […] so there will not be a figure 
like that.”; “24.5. So there is no such figure. That’s our luck!”  
What is the teacher’s role in such a lesson? As it seems, the teacher does not 
participate in the pair conversation (only monitoring), not even in the class 
discussion that follows the pair works. However, it does not mean that the 
teacher is not part of the lesson; she just goes into the background, who 
coordinates the conversation. She listens to the discussions critically, analyses 
and synthesizes the information coming from the different pairs, and, when 
necessary, intervenes. If a problematic situation appears, she asks clarifying 
questions or clarifies them herself. In other words, the teacher is a critical 
observer who will only intervene if the situation is troubling. In this way, if the 
pair work slips away, it can be repaired in the class discussion phase.  
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SUMMARY 
In conclusion, we can claim the adaption of pair work for the online 
environment was successful. Audio records of pair discussions allowed us to 
listen to students’ problem-solving processes. We also had the opportunity to 
map their critical thinking or even discover why critical thinking could fail in 
certain situations by analyzing their conversations. In these two classes, we 
observed that lower achievers tend to accept their partners’ ideas, even if that is 
wrong, but they are willing to correct their partners of the same performance. 
We also found out that the interviewed high achievers prefer working alone than 
in pairs, mainly because they feel they are working alone even if they are in 
pairs. This fact is worth addressing, along with many research deals with the 
topic of whether high-performance students prefer working alone (e.g., Walker 
& Shore, 2015). We also observed through class discussions that generally, 
students were happy to correct each other in a larger group, analyze their 
partner’s or classmate’s solution and evaluate the received information. The 
teacher had to intervene only in troubled situations, being her role the critical 
observer. In this paper, we mainly highlighted the critical situations because we 
want to pay attention to the deficiencies and try to eliminate them in the future.  
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FIRST EXPERIENCE WITH PROBLEM-POSING: WHAT CAN 
BE DONE WITH A MULTIPLICATION TABLE? 
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Critical thinking has been identified as a principal skill to face the world. Thus, 
it should be encouraged in all educational levels, including teacher preparation 
programs. This research is guided by a question: How does problem-posing 
promote prospective teachers’ critical thinking? The participants were directed 
to observe patterns in the multiplication table and pose problems to their peers. 
Data analysis was carried out by observing the dialogues of prospective 
teachers, which might be in the form of either mathematical or non-
mathematical questions, simple responses, and evaluations of their peers’ oral 
manifestations. As a result, this research implies that problem-posing promotes 
the emergence of manifestations stimulating critical thinking. 
INTRODUCTION AND RESEARCH AIMS 
One of the factors contributing to improved education quality in Indonesia is 
a change in the curriculum, from a teacher-centred rote learning method to an 
active student-centred method. Since 1994, the adjustment has been aimed at 
preparing students with some essential skills such as critical thinking to face 
a variety of challenges in their life (Mailizar et al., 2014). 
Even so, while the study by the Indonesian ministry of education and culture 
(MOEC) and World Bank revealed several positive aspects of teaching and 
learning, it also highlighted the teacher-centred nature of many classrooms 
(Tobias et al., 2014). Transition efforts to a student-centred method are still 
shadowed by the persistence of the prior teaching tradition. As students grow up 
to become teachers, it is likely that prospective teachers (PTs) will continue the 
tradition unless they are properly assisted (Chapman, 2012). Thus, to support the 
progression and to reach the aims of the current curriculum, providing PTs with 
several approaches that lead to active student-centred learning through their 
empirical experiences is considered noteworthy. One such approach is problem-
posing.  
This paper reports an introductory lesson on problem-posing which utilized 
a well-known material, the multiplication table. As several scholars stated that 
problem-posing can stimulate critical thinking (Bonotto, 2013; Maj-Tatsis 
& Tatsis, 2021), it is worth knowing how it might happen. To give a clear 
picture of it, it is investigated through the following research question: How 
does problem-posing promote PTs’ critical thinking? 
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THEORETICAL UNDERPINNINGS 
Mathematical problem-posing exists within the central importance of 
mathematics discipline and the nature of mathematical thinking (Bonotto 
& Santo, 2015). One of notable perspectives on mathematical problem-posing 
comes from Silver (1994) who defined it as generating new problems and 
reformulating new problems which can occur prior to, throughout, or after the 
solution of a problem. By examining some existing definitions, Papadopoulos et 
al. (2021) organized the meaning of problem-posing in detail: only generating 
new problems, only reformulating the existing or given problems, both 
generating and reformulating problems, raising questions, and modelling. 
Some scholars connect problem-posing with critical thinking. After 
contemplating numerous studies, Maj-Tatsis and Tatsis (2021) even classified 
problem-posing and problem-solving as substantial components of critical 
thinking. According to Sternberg (1986), “Critical thinking comprises the 
mental processes, strategies, and representations people use to solve problems, 
make decisions, and learn new concepts” (p. 3). The critical approach leads to 
the cultivation of reason to foster rationality (Siegel, 2010) through analysis, 
interpretation, inference, explanation, evaluation, monitoring, and correcting 
reasoning (Facione et al., 2000). Therefore, the approach to infuse critical 
thinking in mathematics education should focus on understanding rather than 
memorization. 
According to Bonotto (2013), problem-posing appears as a promising approach 
to identify and stimulate critical thinking in mathematics. By observing specific 
situations, questions and conjectures can emerge. The process necessitates 
analysing the available data, determining if the problem or question is solvable, 
devising a proper solution, and considering whether it makes sense or not. Thus, 
the enormous richness of this approach extends to the opportunity to discuss 
questions or problems that arise from peers, which then provides an opportunity 
to evaluate and discuss the problem itself and its solution. In this case, it 
supports the practice of three interwoven critical thinking phases, i.e., analyse, 
evaluate, and improve thinking (Paul & Elder, 2014) and contributes to the 
active learning which consists of intellectual, social, and physical activities 
(Edwards, 2015). Figure 1 demonstrates the framework between problem-
posing, critical thinking, and active learning. 

 
Figure 1: The interconnection of problem-posing, critical thinking, and active learning. 
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THE STUDY 
The lesson reported here is an introductory lesson to problem-posing which was 
delivered through a workshop. It is part of the larger research project: 
investigating the role of problem-posing and problem-oriented teaching for 
active mathematics learning. The participants are three Indonesian PTs who had 
no experience with problem-posing prior to the workshop. 
The whole activities consist of looking for patterns in the multiplication table, 
posing problems to the class related to the identified patterns, discussing the 
problems proposed by peers and the instructor, and posing a problem based on 
the current calendar as the homework. The lesson adheres to the three properties 
of problem-oriented learning proposed by Kónya and Kovács (2021), since it 
encourages PTs to analyse mathematical problems presented by their peers or 
the instructor, to critically evaluate their own and their classmates’ thinking, and 
to express and justify their own thinking. 
The lesson was held online, and video recorded. To figure out the role of 
problem-posing in promoting critical thinking, the dialogues were analysed and 
at certain points, interviews were conducted for clarity. PTs’ manifestations 
might be non-mathematical and mathematical which can be classified as simple 
and valuable. Referring to Ennis (1989) that problem-posing includes 
evaluation, critiquing, and drawing a reasonable conclusion, both valuable 
mathematical and non-mathematical questions and responses with reasoning, 
comments, or evaluations are considered critical thinking. Figure 2 portrays the 
category of the emerging manifestations. 

 
Figure 2: Manifestations which belong to critical or non-critical thinking. 

THE LESSON AND DISCUSSION 
The first activity was looking for patterns in the multiplication table. The PTs 
found some patterns which then proposed questions based on their curiosity. 
I and PT represent the instructor and prospective teacher, respectively. 
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1 I:  Now, let’s play with this 10 × 10 multiplication table. Please 
observe it and tell me the pattern you found. 

2 PT1:  I found a square number pattern. 1, 4, 9, 16, 25, and so on. (M-R) 
3 PT2: I found a multiple-of-two pattern on vertical and horizontal 

directions. 2, 4, 6, 8, 10, 12, and so on. (M-R) 
4 PT3:  I found a multiple-of-three pattern. I mean 3, 6, 9, 12 and so on, on 

vertical and horizontal directions. (M-R) 
5 I:  OK. After realizing those patterns, are there any questions or 

curiosities in your mind? 
6 PT2:  Why is the multiplication table arranged like this? I mean, why are 1 

to 10 placed on top and the left? Why are they not at the top and 
bottom? (NM-Q+) 
Maybe it follows the Cartesian coordinate system. Eits… but not 
really. Oh… It maybe. (M-R+) 

7 PT1:  Maybe because Indonesians read the text from left to right and from 
top to bottom. So, it starts from the top left corner. (NM-R+) 
Now, I am wondering. Are there any other patterns besides multiples 
and square numbers? (M-Q+) 

8 I:  Anybody found another pattern? 
9 PT1:  Oh, I found 𝑛𝑛2 + 𝑛𝑛. The numbers can be 

2, 6, 12, 20, 30, 42, 56, 72, 90. (M-R+) 

Figure 3: The found patterns. 

Figure 3 depicts the found patterns. The first appeared question concerns the 
arrangement of the table (line 6), which is not mathematical in nature. It is 
categorized as a non-mathematical question since it is only related to the way to 
represent the table visually; however, there is no indication of mathematical 
reasoning. Regardless of non-mathematical, the question is critical and 
interesting to discuss, directing the class to consider the possible reason behind 
the number arrangement. During the interview, the PT expressed what she was 
thinking. When considering the principal axis in the horizontal direction, the 
arrangement seems to follow a Cartesian diagram. But the idea was dismissed 
because the numbers below 0 are positive, contrary to what is in the Cartesian 
diagram. Then, if she looked at the entirety of the extended table, it looked like 
a Cartesian diagram with modifications to the quadrant positions. The question 
brings up a reasonable response related to everyday fact from the other PT. But 
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basically, there is no rule about the arrangement, and we may rearrange the rows 
and columns. As an example, when we change the second and third columns, the 
header changes, the multiplication rule remains true, but the figural pattern does 
not. Those manifestations exemplify critical thinking since part of it is 
questioning, understanding the logical connection, and carefully examining 
something.  
After discussing the previous question, another PT subsequently expressed his 
curiosity about the other existing patterns which then the PT himself noticed 
𝑛𝑛2 + 𝑛𝑛 pattern. During the interview, he stated that the number sequence he was 
referring to is located on the right side of the 𝑛𝑛2 sequence. Those ideas are 
declared into mathematical expression as a form of representation, which is 
a component of critical thinking (Sternberg, 1986). The class discussion then 
proceeded to the following question which is explicable from a mathematical 
standpoint. 

10 PT2:  Why don’t prime numbers have patterns? I mean the pattern is 
random, scattered. It’s bad to see. (M-Q+) 

11 I:  She said the prime numbers pattern looks bad. It’s not beautiful 
when she looks at it. Ehm… Can you mention the prime numbers? 

12 PT1:  2, 3, 5, 7, 11, 13, 17, 19, and so on. But in this multiplication table, 
the prime numbers are only up to 7. (M-R+)  

13 I: Why? Can you find the rest of the prime numbers? 
14 PT1: They don’t exist. Because prime numbers only have two factors, the 

number itself and 1. So, they must be in multiples of 1. (M-R+) 
15 I: If so, what can you say about the place of the prime numbers in this 

multiplication table? 
16 PT1:  They must be in the first row or the first column. (M-R+) 
17 I:  Then, does prime numbers have a pattern? 
18 PT2:  If I take a glance, they have a pattern. [It represents] a reflection. (M- 

R) 

  
Figure 4: The place of prime numbers. 
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One of the PTs was wondering about the position of prime numbers which is 
scattered according to her (see Figure 4). Examination of the properties of prime 
numbers and their implication for their location in the table indicates mental 
processes that lead one of her peers to explain the issue by utilizing an existing 
mental scheme (line 14). After realizing the prime numbers must be in the first 
column and row, the PT changed her mind that prime numbers have a pattern 
representing a reflection. Can we see it as beauty in a mathematical pattern? 
Nevertheless, the beauty is due to the commutative role in the table, not from the 
pattern of prime numbers because prime numbers basically have no pattern. 
Likewise, the symmetric property has nothing to do with prime numbers. The 
lesson moved on to the next step, posing a problem based on the found pattern. 

19 I:  After observing the patterns, can you make questions according to 
the patterns you found earlier? Please generate questions for your 
friends. The question can be a riddle. 

20 PT1:  My turn to ask. How can you guys convince me, if this table is 
expanded, will 1001 appear in the [row/column header of] two or 
not? (M-Q+) 

21 PT2:  Of course not. The last digit is 1, while the numbers divisible by two 
must be even. A multiple of two means it is divisible by two. It 
requires the number must be even. 1001, the last digit is 1, odd. So, 
it can’t be divided by two. (M-R+) 

22 PT3: I agree with PT2. 1001 is not divisible by two. So, even if the table 
is expanded, it doesn’t fall into the pattern of multiples of two. (M-
R+) 

The proposed question directed the other PTs to answer along with the reason to 
convince him. The lesson facilitated interpretation and critical analysis through 
the opportunity to discover the relationships between data either to ask or to 
respond to questions. The atmosphere increasingly made them comfortable and 
enthusiastic for the next step of the lesson. 

23 PT2:  I want to ask PT1. If 1 continues to the left to negative infinity, and 
in the vertical direction 1 continues to negative infinity, does the 
sequence you found: 1, 4, 9, 16, 25, and so on still has 1 as the first 
term? Or is there another number that starts the sequence? (M-Q+) 

24 PT1:  It will return to 1, right? Because we know that the product of 
a negative number and a negative number will be a positive number. 
So, the extension, if −1 × −1, the result will still be 1. So, the 
answer is still 1 [even though it is extended to negative]. Since the 
number closest to 0 is −1, the sequence will still start with 1. (M-
R+) 

25 PT2: In my opinion, this is a collection of positive and negative integers. 
If we put 0 there, so, it’s 0 × 0 = 0. It should start with 0, the 𝑎𝑎 
(first term), followed by 1 and so on. So, the first term changes. (M-
R+) 

26 PT2&1: (Laughing) 
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27 I: Oh, I think it was a misunderstanding. You both observe this case 
from a different point of view, but the essence of your interpretation 
is in fact the same. 

  
 

 

 

 

 

 

Figure 5: PT1 and PT2 Perspectives. 

Although it is hard to understand at first, the problem includes considerations of 
shifting conditions, such as what happens if the table is expanded. Expanding 
the table to examine the conditions that follow implies a “what-if” or “what-if-
not” strategy by Brown and Walter (2004). As there is no clear picture of the 
expanded table, since they have a clearer idea of the multiplication list presented 
structurally rather than procedurally, this part also came up with different 
perspective of the table appearance and different pattern interpretation of the 
sequence, as illustrated in Figure 5. Following up on the PTs’ problem, the 
instructor asked what about the other patterns. 

28 I:  OK. When the table is expanded, will the table still hold the previous 
arrangement? What do you think? 

29 PT1:  It seems to keep holding the order [of the number], in which the 
diagonal numbers become the symmetry line. (M-R) 

30 PT2:  In square numbers sequence, the structure is still valid, but on the 
other pattern found by PT1: 2, 6, 12, and so on, which is 𝑛𝑛2 − 𝑛𝑛 or 
n2 + n you mean, PT1? I forgot it. It might be different. (M-R) 

31 PT3:  Yes. The structure in the 𝑛𝑛2 + 𝑛𝑛 [pattern] will change but the 
structure in the n2 [pattern] remains valid. (M-R) 

32 PT2: [The structure] will continue. Let’s say the initial table that we 
discuss is in quadrant IV, and above in quadrant II there will be 
1, 4, 9, and so on because the square of a negative number is 
a positive number. (M-R+) 

33 PT3:  The structure in the n2 pattern will remain because from 0 upwards, 
the numbers will return to 1, 4, 9, and so on. In the 𝑛𝑛2 + 𝑛𝑛 pattern, 
the previous structure does not apply because n will be negative. It 
seems the structure is not valid anymore (in quadrant II according to 
PT2). (M-R+) 

34 PT2: I think [the table expansion] will form a new structure. This one: 
2, 6, 12, if the table is expanded, a new structure will appear which 
cannot be connected to the previous structure. (M-R) 
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35 PT1: I just investigated, trying to observe the pattern by considering the 
extension. Evidently, the pattern is still valid. But I still checked for 
small numbers. I mean the numbers closed to 0. I haven’t checked 
for the numbers above −2. For 𝑛𝑛2 + 𝑛𝑛, until 𝑛𝑛 = −2, the pattern is 
still valid. The rest, I haven’t checked it. (M-R+) 

36 PT2:  Oh yeah, still holds [the structure]. (M-R) 

Figure 6: The expanded table. 

The question provokes conjecture, stimulates PTs to provide a reason behind it, 
and leads them to examine their conjecture. As part of critical thinking, they 
must consider the accessible strategy when investigating their conjecture 
(Sternberg, 1986). Thus, analysing problems that arise as a result of the 
modification they generated may facilitate their critical thinking as they feel free 
to discuss the validity of the problem and consider different assumptions 
(Bonotto, 2013). Investigating the extended table, the PTs noticed that the rule 
“𝑛𝑛2 + 𝑛𝑛 numbers on the right side of the 𝑛𝑛2 numbers” also applies in the 
extended multiplication table (lines 35 & 36). Given an extended table and 
geometric rule, the geometric position remains valid. Drawing the inference, the 
existing structure in the initial table applies also in other parts of the expanded 
table, which is followed by considering positive and negative signs. In addition, 
what the PT mentioned (line 30), “𝑛𝑛2 − 𝑛𝑛 or 𝑛𝑛2 + 𝑛𝑛”, drives the author to 
clarify it through interview. Focusing on the right position of the n2 in which the 
other PTs considered as 𝑛𝑛2 + 𝑛𝑛, PT2 saw it as 𝑛𝑛2 − 𝑛𝑛 (see Figure 6). Both 
interpretations can be considered right, but the starting number is different.  
PEDAGOGICAL IMPLICATIONS 
Referring to the problem-posing category proposed by Papadopoulos et al. 
(2021), the activity in this study can be thought of as raising questions based on 
a fixed starting point, which is observing patterns in the multiplication table. The 
activity stimulates the emergence of questions and responses accompanied by 
reasoning, comments, or evaluations of peers’ manifestations which reflect 
intellectual and social aspects of active learning (Edwards, 2015). Hereby, some 
of the wealthy situations that problem-posing learning has in its merits are 
noteworthy: (1) PTs direct the lesson towards critical discussion by asking 
questions that emerge spontaneously from their curiosity, (2) Although the 
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proposed question is probably not mathematical in nature, it might stimulate 
critical attitude and thus, it is still worth discussing, and (3) In contrast to the 
teacher-centred approach, which places the teacher as the sole authority, the 
atmosphere in this lesson brings the PTs as students to be more relaxed in 
expressing their critical attitude or responding to their peers’ manifestations. 
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MANIPULATION POSSIBILITIES AND MANIPULATION 
REALITIES WITH DIGITAL MEDIA BY LEARNING 

MATHEMATICS 
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University of Education Weingarten, Germany  
 

Learning with different media offers different manipulation possibilities and 
different possibilities of media use for learners. Thereby, the question arises: 
Which manipulation possibilities are implemented in the application and which 
manipulation realities can be identified during individual task processes with 
the application? Based on a digital learning environment for elementary school 
students in geometry lessons we will analyze manipulation possibilities and 
realities with the help of the model Representation-Transfer-Spectrum. 
INTRODUCTION  
With digital media, the possibilities of representation have developed fast with 
regard to temporal and local availability. They can be manipulable, 
dynamizable, connected and synchronous. In mathematics education, learning 
with representations and especially the learner’s own transfer processes of 
representations within the same and between different levels of representations, 
are seen as essential to develop understanding in the process of learning 
mathematics (Wittmann, 1981). For this purpose, new forms of representations, 
levels of representations, possibilities of combinations and representation 
transfer processes in teaching and learning contexts have to be 1. identified, 
2. analyzed and 3. evaluated from a mathematical educational point of view. 
Thereby, these questions arise: Which manipulation possibilities are 
implemented in the media and which manipulation realities show learners? 
Which cognitive demands are supported or replaced by digital media or are still 
placed on learners by learning mathematics (Huhmann & Müller, 2020, 2022a in 
press, 2022b in press)?  
THEORETICAL BACKGROUND  
Representing and representations pursue two basic intentions. In representing 
the focus is on doing, on externalizing one's own thinking for communication 
with oneself and with others. Representing for oneself takes place in order to 
relieve and support one's own thinking processes through what is (visually) 
represented, in order to orient oneself in one's own thinking and to shape the 
further thinking process. Representing for others is done to communicate one's 
own thoughts through what is (visually) represented. It also helps to explain 
where words are missing for oneself and for others. The (visual) information can 
support to get into exchange with others, to communicate about one's own 
thoughts and to justify findings about relationships and regularities with the help 
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of what is represented (Duval, 2006). Representations serve for the process of 
representing as a tool to present one's own perceptions and ideas externally. So, 
the intention of representations is to document information which is volatile 
(Huhmann, 2013; Wollring, 2006). Representation transfer processes are always 
required when at least two representations are given. They have to be compared 
on one or between different levels of representation – the levels acting, iconic, 
symbolic (see Bruner, 1971). A representation transfer is also required when 
a new representation has to be constructed based on a given representation. In 
both cases, given elements of one representation have to be related to given or to 
be constructed elements of another representation. A purposeful use of different 
representations can create learning opportunities to explore relationships 
between representations and to recognize basic structures (Kuhnke, 2013). 
In summary, these areas, representing, representations, and representation 
transfer processes lead to comprehension-oriented learning and are an indicator 
of understanding. In the following we will use the term TripleR for these three 
areas – representing, representations, and representation transfer processes. 
Based on the models of acquisition and representation of knowledge (Bruner, 
1971; Piaget, 1972), further models can be found for identifying and analyzing 
representation possibilities and representation transfer processes (Johnson, 2018; 
Ladel, 2009; Lesh et al., 1987). However, these models do not take into account 
which (cognitive) demands are placed on learners by analogue and digital media 
during TripleR or which are supported or replaced by media. 
In summary, we see a research desideratum in the model-theoretical 
identification and analysis of possibilities of TripleR in learning with analogue 
and digital media. 
THE REPRESENTATION-TRANSFER-SPECTRUM  
The model development is based on the fundamental models of Bruner (1971) 
and Piaget (1972) and takes into account the extended possibilities of 
representation that have occurred through digital media. On this basis, we have 
developed an extended model as a representation transfer spectrum, as shown in 
Figure 1.  Learning in terms of perceiving and acting with analogue and digital 
media shall hereby be identified, analyzed, and evaluated from a mathematics 
educational point of view (Huhmann & Müller, 2022a in press, 2022b in press): 

1. Identify: In which levels are representing, the representations and the 
representation transfer processes located? 

2. Analyze: Which cognitive demands are associated with representing, the 
representations and the representation transfer processes? Which 
cognitive demands are placed on learners and which are replaced or 
supported by media? 
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3. Evaluate: Which representing, representations and representation transfer 
processes are suited from a mathematic educational perspective?  

 
Figure 1: Representation-Transfer-Spectrum (Huhmann & Müller, 2020, 2022a in 

press, 2022b in press). 

Learning objects and associated activities can be located in their representations 
in the analogue area, digital area or analogue-digital area. Within these areas, 
a further assignment to the different levels of representation takes place. 
Between these levels we see no hierarchic arrangement. The focus is on the 
reciprocal transfer processes of representations within and between these levels 
of representation. Build on the levels of representation according to Bruner 
(1971), the intersections of the levels of representation are new elements of the 
model. We include these intersections under the term levels of representation 
because representations cannot always be assigned to just one level. If 
representations contain elements from different levels e.g., iconic elements 
(depictions) and at the same time symbolic elements (descriptions) (Schnotz 
& Bannert, 2003), they are to be placed in the corresponding intersection. 
Analogue area: The characteristics of the three levels – acting, iconic, symbolic 
correspond to the known levels from Bruner. If actions are verbally 
accompanied, verbal expressions are supported by gestures, or symbolic 
representations are used to act, we identify these as representations of the acting-
symbolic level. Representations that contain both depictions and descriptions 
(e.g. tables, diagrams, function graphs) belong to the iconic-symbolic level. 
Actions with inherently unchangeable depictions are located in the acting-iconic 
intersection. These can be ordering, sorting and comparing processes of images. 
Actions such as ordering, sorting and comparing processes with iconic-symbolic 
images are assigned to the acting-iconic-symbolic intersection. 
Digital area: The model extension by the digital area is identical to the analogue 
area in its structure, but it differs in specific characteristics. On the acting level, 
there is the fundamental characteristic of the manipulability of objects of action. 
However, these are no longer haptically tangible and movable. Objects are 
manipulated and moved merely by wiping and tapping movements. Objects that 
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are digitally represented as inherently unchangeable images are assigned to the 
iconic level. Objects that are represented as audio or written text in a symbolic 
way in the digital area are assigned to the symbolic level. The acting-iconic 
intersection covers both the user’s own digital actions with inherently 
unchangeable images and representations of digital actions in the form of 
animations and movies based on images. The acting-symbolic intersection 
covers the user's own creating, manipulating, and acting with symbolic 
representations. This involves audio texts and written texts that can be accessed, 
duplicated, and combined with digital media. The iconic-symbolic intersection 
covers inherently unchangeable representations that include both depictions and 
descriptions. The acting-iconic-symbolic intersection covers the user's own 
actions with manipulable representations as well as representations of digital 
actions in the form of animations and videos that contain both depictions and 
descriptions. 
Analogue-Digital area: The analogue-digital area forms a spectrum between the 
analogue and the digital area. This area is to be explored with regard to the 
representations of learning objects and activities in terms of their characteristics 
and possibilities. This involves the identification and analysis of analogue-
digital variabilities - in the sense of variable portions closer to the analogue or 
digital areas as well as with variable focal points in or between the three 
diameters of the respective areas. In this area, augmented reality and virtual 
reality applications, among others, are to be considered in a future-oriented 
manner. 
With regard to the digital and analogue-digital area, there is an urgent need for 
research into these areas, the possible representations of the learning objects, 
and the suitability of the representation-transfer-spectrum to identify, analyze 
and evaluate from a mathematic educational perspective. 
Representation transfer processes become visible in this model by connecting 
the activities located on the representation levels with arrows, so that the transfer 
from an initial representation, which is given to learners, to a final 
representation, which learners are supposed to construct independently or relate 
both given ones, is recognizable. Representations become visible by dots in the 
levels. 
METHODOLOGY 
This project is part of a qualitative study in which the influence of digital media 
on the learners own transfer of representation is researched. The focus of this 
paper is on the question: which manipulation possibilities are implemented in 
the application and which manipulation realities can be identified during 
individual task processes with the application? With the help of the model, 
possibilities and realities of use are to be identified and made visible.  
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RESEARCH DESIGN  
For the analysis of manipulation possibilities and manipulation realities we use 
the activity Architect and Bricklayer (Thöne & Spiegel, 2003) for elementary 
school students in geometry lessons, which is realized with the app Cubes 
(Klötzchen) (Etzold, 2015).  
Description of the task: Learner 1 builds a cube building in the App and 
describes it verbally to learner 2. Without seeing the cube building, learner 2 
must build a cube building in the app based on the description from learner 1. 
Afterwards, both cube buildings are compared with each other. 
This activity was explored in individual interviews with elementary school 
students of 3rd grade. In a pre-workshop with the entire class, different analogue 
representations of cube buildings were introduced, explored and discussed. All 
learners had the opportunity to build cube buildings, make construction plans 
and create shadow pictures of a cube building with analogue media. In addition, 
there were activities that required the transfer of representations between the 
other representations mentioned above. The aim of this pre-workshop was that 
the learners get to know the meaning and the construction of the different 
analogue representations of cube buildings. After this pre-workshop, there was 
a special orientation lesson for the entire class for using the app cubes. The 
learners had the opportunity to get to know and try out the functions of the app 
and to explore the different digital representations of cube buildings within the 
app. 
Using the app for the activity Architect and Bricklayer the focus is on the 3D 
view, as shown in Figure 5 a) and b) on the left side, and on the construction 
plan, as shown in Figure 5 a) and b) on the right side.  

 
a) Home view of the app cubes 

 
b) App cubes with a built cube building 

Figure 2: App Cubes. 

When learners start the app, they see the screen as shown in figure 5a. If learners 
have built a cube building, it will look like Figure 5b. It is possible to build the 
cube building in the 3D view or by using the construction plan. The 3D view can 
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be rotated 360° in all directions, so that the cube building can be viewed from all 
perspectives. The special feature of this App is that if something is changed in 
one view, for example when a cube is added in the 3D view, this change is 
automatically shown in the other view, for example the number at the according 
position in the construction plan. 
Manipulation Possibilities 
First we will visualize the manipulation possibilities that learners have in the 
activity Architect and Bricklayer, using the app Cubes. As you can see in figure 
3, the activity is separated in its individual steps. These are made visible in the 
model Representation-Transfer-Spectrum in terms of representations on the 
corresponding levels and representation transfer processes to be carried out. 
A description of these steps follows under the heading manipulations realities.  
 

 
Figure 3: Possibilities of action - Architect and Bricklayer (Huhmann & Müller, 2020, 

2022a in press, 2022b in press). 

In particular, different manipulation possibilities become visible when the final 
cube buildings need to be compared with each other.  
 

   

a) Comparison of 3D and 3D  b) Comparison of 3D and 
construction plan 

c) Comparison of construction 
plan and construction plan  

Figure 4: Possibilities of action - result verification. 

Manipulation Realities 
In the following, two examples are chosen, which show the manipulation 
realities of learners by performing the task Architect and Bricklayer. Both 
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learners (Example 1 and Example 2) received the same introduction as described 
above to the learning content of cube buildings. The analyses are based on the 
observations made in the video clips of the interviews. 
Both learners were given the task “Build a cube building with 8 cubes and 
describe it afterwards, so that someone can build it without seeing it” verbally.  
Example 1: 
 
 
 
 
 
 

Figure 5: Example 1 - Manipulation Realities. 

Based on the task presentation, on the symbolic level in the analogue area, the 
learner made a representation transfer to the acting level in the digital area in 
order to build the cube building in the app. Next, the learner uses the built cube 
building to describe it verbally and thus performs a transfer of representation to 
the symbolic level in the analogue area. 
The dashed arrow shows the representation transfer of the interviewer who, 
based on the verbal description, performs a representation transfer to the acting 
level in the digital area in order to build the cube building.  
The learner now performs the verification of the results. In the first step, the 
learner has compared the two created construction plans, although he has acted 
the whole time in the 3D view and has not used the construction plan either to 
construct or to describe the cube building.  
Even if the learner has already come to the statement, “It fits”, he checks in 
addition both 3D views. During this task, the learner did not move the 3D image 
at any time. 

 
a) Picture of screencast Learner  

 
b) Picture of screencast interviewer 

Figure 6: Pictures of screencast. 
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Example 2:

Figure 7: Example 2 - Manipulation Realities.

Based on the task presentation, on the symbolic level in the analogue area, the 
learner made a transfer of representation to the action-iconic-symbolic level in 
the digital area, as he created his cube building in the construction plan. With the
help of this, he describes the cube building verbally and thus performs a transfer 
of representation to the symbolic level in the analogue area. 
The dashed arrow shows the representation transfer of the interviewer who, 
based on the verbal description, performs a representation transfer to the acting 
level in the digital area in order to build the cube building. 
The video shows that the view of the learner first moves to the 3D views and 
compares them. In the second step, he looks at the construction plans and 
compares those. 

a) Picture of screencast Learner b) Picture of screencast interviewer

Figure 8: Pictures of screencast.

In summary, it should be emphasized in both examples that the transfer of 
representation from the 3D view to the evaluated floor plan or vice versa was 
taken over by the app and was not performed by the learners.
Compared to the example given here, in an analogue implementation of the 
activity Architect and Bricklayer with only analogue media, all representation 
transfer processes have to be done by the learners on their own. The analogue 
media cannot provide any support with regard to the representation transfer 
processes and the cognitive requirements.
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If the analogue implementation is not explicitly constructed in such a way that, 
in addition it is also possible to construct cube buildings with the help of other 
representations, only the transfer of representation between the actual cube 
building and the verbal description of the cube building would be possible. 
Therefore, the way of solving the task as in example 2 would not be possible.  
FINDINGS AND PERSPECTIVES  
With the help of the model, possibilities of manipulation and use and realities of 
manipulation and use can be made visible, as shown in the example. This 
provides a basis for the second step, the analysis of the cognitive requirements 
that are placed on learners or are supported or replaced by digital media.  
Our findings show, that on the one hand, expected manipulation possibilities 
appear as manipulation realities, as well as combinations of manipulation 
possibilities, as shown in examples one and two - and this became visible in the 
model: Both learners used a combination of the possibilities to verify the cube 
building. They have compared both - the 3D views and the construction plans - 
with each other. Neither of them has used the 3rd option of comparing 3D view 
and construction plan.  
On the other hand, manipulation realities became visible that were not expected 
in advance.  In example 2, the learner created the cube building in the 
construction plan and used the synchronicity and interconnection of the 
representation levels to accomplish the task.  
Furthermore, by detailing the individual steps of the activity, we were able to 
identify the cognitive demands and compare them with regard to an 
implementation analogue.  
Future research will focus on identifying the variety of usage differences and the 
factors that influence this. In relation to the example presented here, the view on 
the individual competences of the learners regarding spatial perception as well 
as the characteristics and complexity of the cube buildings must be analyzed and 
brought into connection with each other. Only manipulation possibilities 
implemented in media do not lead automatically to manipulation realities for the 
learner.  
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Reciprocally designed learning environments in which opportunities for 
perception, action and documentation are closely connected can support critical 
thinking about task solutions and solution sets. In the context of a discovery-
based approach and an understanding of mathematics as an activity, 
perceptions, actions with various objects on the one hand and dealing with 
documentations on the other hand creates numerous possibilities to reflect in 
and on action regarding task solutions and solution sets. How this manifests 
itself in individual learning trajectories of young learners is shown and 
exemplarily made visible by a model focusing on the connectivity of action and 
documentation in substantial learning environments. 
INTRODUCTION 
Against the background of (i) a constructivist and discovery-based approach to 
learning (Freudenthal, 1991; Winter, 2016) as well as a conception of (ii) the 
nature of mathematics as a process-oriented science of patterns and structures 
rooted in common sense, reflecting as a form of doing mathematics is very 
important for critical thinking even in early arithmetics. However, designing 
discovery-friendly and reflection-rich learning environments is a complex task, 
but in the concept of substantial learning environments these aspects can be 
concretized for practical teaching and learning. In this respect, within substantial 
learning environments (Wollring, 2008) the so-called ‘play room’ refers to 
opportunities for physical actions with mathematical objects and the ‘docu 
room’ for dealing with documents. In addition, the ways of connecting play and 
docu rooms influence the possibilities for reflection as mathematical activity and 
can be characterized and modeled by different settings (Huhmann & Komm, 
2022). Through a reciprocal design setting of play and docu rooms (ibid), which 
repeatedly enables interrelated perception, action and documentation, new 
opportunities for reflection in and on action (cf. Schön, 1983) are thus 
repeatedly created (1. designing). Building on this, the question arises as to how 
created opportunities for reflection and discovery in learning environments 
translate into actual realities in practice (2. exploring realities in practice). 
Within a qualitative research project, the aim is to analyze processes of “doing 
mathematics” and reflecting in reciprocally designed settings regarding two 
selected arithmetic learning environments for first graders. The overall research 
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goal is to enable, design and accompany discovery learning in a sustainable way. 
In an exemplified analysis of an individual learning trajectory mathematical 
activities and reflections on task solutions and solution sets are reconstructed 
and visualized. This reveals how the reciprocal design and connection of play 
and docu rooms in combination with the use of appropriate forms of 
documentations translate into actual reflection and discovery realities 
concerning task solution(set)s (3. analyzing relations of 1 and 2). 
THEORETICAL BACKGROUND 
Based on a constructivist understanding of the nature of mathematics that 
suggests a discovery-based learning approach the concept of substantial learning 
environments with a design focus on the connection of play and docu rooms 
embodies an appropriate way for teaching and learning mathematics. 
On the nature of mathematics: Activity-centred understanding of 
mathematics developing 
This understanding was internationally shaped by Freudenthal (1979, 1991). He 
contrasts it with that of finished, ready-made mathematics. Thus, in addition to 
the finished, deductively oriented nature of mathematics, there also exists a form 
of mathematics as activity, which is individually recreated by thinking (Devlin, 
2002). A more precise description of the nature of mathematical activity can be 
derived from the cross-content understanding of mathematics as a science of 
patterns and structures1 (Devlin, 2002). Concrete or abstract activities therefore 
involve the process-oriented exploring, recognizing, discovering, creating 
desirably using patterns and structures. A central and basal cognitive 
prerequisite of such mathematical activity is found in the “elementary logical 
structures” of classification and seriation (Piaget, 1973). The broadly recognized 
process-related competencies such as problem solving or reasoning and proof 
(NCTM, 2000) also emphasize the processual character of mathematics. 
Thereby doing mathematics includes reflecting in and on these activities in the 
sense of critically questioning current thought structures, whereby common 
sense (cf. Freudenthal, 1991) can be seen as a starting point to be reflected on 
again and again. According to Korthagen (2001, p. 58) and applying his 
understanding of doing mathematics we understand reflection as “... mental 
process of trying to structure or restructure an experience, a problem, or existing 
knowledge or insights”.  

 
1 The terms ‘pattern’ and ‘structure’ overlap in meaning and are often not used distinctly. We use the 

concept of structure to refer to the way in which an entity is composed of its parts and the 
relationship between the parts and the whole (Hoch & Dreyfuss, 2004). The concept of pattern also 
refers to the relational structure of different objects, concrete or abstract in nature, but focuses on 
regularities, repetitions, and thus on generalizing validity. 
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On the nature of learning mathematics: Discovery-based approach  
The described understanding of mathematics implies a constructivist 
understanding of learning. Different learning approaches based on this 
understanding can be interpreted as discovery learning. We consider discovery 
learning as the acquisition of knowledge and skills, which is not characterized 
by the transfer of information from the outside, but by one’s own perception and 
action as well as the analysis and reflection, with constant reference to already 
existing knowledge structures rooted in common sense (cf. Neber, 1981 as cited 
in Winter, 2016; Huhmann, 2013). In this process, learners’ observing, 
exploring, trying, and asking questions are central (Winter, 2016), and we see 
discovery as a (mental) activity in the sense of Bruner (1961) and in line with 
Korthagen’s definition of reflection as 

a matter of rearranging or transforming evidence in such a way that one is enabled 
to go beyond the evidence so reassembled to additional new insights. It may well be 
that an additional fact or shred of evidence makes this larger transformation of 
evidence possible. But it is often not even dependent on new information (Bruner, 
1961, p. 22). 

On teaching and learning mathematics: Substantial learning environments 
What implications can be derived from this view of the nature of mathematics 
and of learning mathematics for actual teaching? The concept of substantial 
learning environments reflects these basic attitudes and provides guidelines for 
their practical implementation. One crucial aspect to this is an articulation-rich 
design with opportunities for volatile and non-volatile representations. In this 
context Wollring (2008) introduces two terms: The ‘play-room’ opens 
possibilities to actions and creations with physical mathematical objects and 
thereby offers opportunities to reflect in action (cf. Schön, 1983), thereby the 
play room is characterized by the representational volatility of actions 
(Huhmann, 2013). In the ‘docu(ment) room’, action processes and products are 
kept and represented in a non-volatile way, which encourages reflection on 
action (cf. Schön, 1983). Furthermore, Wollring points out that documentations 
should provide opportunities for reframing. Following up on this, we focus on 
the connection between play and docu rooms:  From the play room there can be 
a connection to the docu room by documenting concretely performed actions, 
processes, and created products. On the other hand, there can be a connection 
from the docu room to the play room, by providing impulses for further (and 
new) actions through dealing with documentations in the docu room.  The 
following results of different degrees of connectivity between play and docu 
rooms (see Figure 1) were empirically identified and have a central influence on 
the opportunities for doing and discovering mathematics (Huhmann & Komm, 
in press) within substantial learning environments: 
(i) Unconnected: Documentations cannot arise from actions with physical 
objects in the play room and do not provide impulses for further actions in the 
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play room. Documents that occur in this setting are created without direct 
reference to the self-executed previous action with physical mathematical 
objects.
(ii) Unilaterally connected: There is the possibility of documenting processes 
and products created or arisen in the play room. However, according to the 
unconnected setting, these documents are not intended to be used for further 
activity in the play room.
(iii) Reciprocally connected: There is the possibility of documenting the 
performed processes and created products from the play room. Moreover, these 
documents can stimulate further, repeated or new actions in the (new) play 
room.

Figure 1: Different degrees of connectivity regarding play and docu rooms.

The degree of connectivity can be influenced by the use of different types of 
documentations (Huhmann & Komm, 2022) e.g., by documentations that can be 
dynamized. Dynamizable means, that the physical carrier medium of the 
document can be broken up into smaller (documentation) units. As a subset of 
dynamizable documentations, easy to dynamize documentations contain special 
potential for a reciprocal design. They consist of various, changeable and 
therefore individual documentation units (“notes”), that can be combined to 
create a larger document and easily be resolved, i.e., dynamized, again. We 
adopt Wollring’s idea of the degree of fixation of documents (2006) and apply it 
to documentation units as objects to be fixed. Reversible fixations, e.g., 
removable adhesives, enable easy dynamization as the effort to disassemble and 
(re)assemble again is low. That is why these documentation units can easily be 
used as mathematical objects for actions in the play room to be (re) structured 
and (re) arranged similar to a concept map. The model in Figure 2 illustrates 
a reciprocal discovery setting within substantial learning environments involving 
easy to dynamize documents. In the play room, new possibilities for perceiving 
and acting can open up again and again, be it with concrete physical objects or 
with documentation units gained through dynamization. Particularly significant 
are opportunities for action such as classifying and serializing documentation 
units, which enable repeated and new (re)structuring in the sense of reflection in
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action. In the docu room, activities such as repeated and new recognition and 
explanation can promote discoveries and stimulate reflection on former actions 
in the play room. In this way, actions that promote elementary logical structures
and thus mathematical activity are made possible, and at the same time there are 
possibilities for documentation and visualization of these actions with little 
effort. The interface on play and docu rooms results from the double use of 
documentation units: on the one hand, as records in the document room and, on 
the other hand, as objects of action in the play room.

Figure 2: Model for discovery learning in reciprocally designed substantial learning 
environments with dynamizable documents (Huhmann & Komm, 2022).

METHODOLOGY
Research design and background
The project is part of a larger research study concerning (i) the (re)design of 
substantial learning environments and, building on this, (ii) the analysis of 
individual learning trajectories, both focusing on the connectivity of action and 
documentation and the use of documentations for critical thinking and 
discovery. Within a qualitative orientation and a design-based approach different 
data collections and analysis have taken place and are still going on. The results 
(i) were incorporated in the theoretical background (see Figure 1 and 2) and 
currently we focus on research questions regarding (ii). In this context we word 
the following research question: How do first grade students discover and reflect 
on arithmetical task solutions and solution sets within reciprocally designed 
learning environments containing easy to dynamize documents?
We made teaching experiments with reciprocally designed substantial learning 
environments and focused on the use of easy to dynamize documentations. 
Therefore, we analysed the individual cases of learning trajectories. For the 
teaching experiments pairs of students worked on the tasks including phases of 
individual as well as partner work. During this time each student was filmed 
from various perspectives. For the data analysis we use qualitative content 
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analysis in a deductive-inductive setting (Kuckartz, 2018). Deductive categories 
are in particular derived as elements from the model of discovery learning in 
reciprocal settings (Figure 1). In addition, the suitable distinction of reflection in 
and on actions, focusing on the individual use of (easy to dynamize) 
documentation, and the discovery and reflection realities that arise within the 
given opportunities due to the specific reciprocal design, serve as a deductive 
starting point. So far, our data base refers to eight case studies with first grade 
students aged six to seven. Always two pairs had to deal with a specific task of 
a substantial learning environment. In the following the two chosen substantial 
learning environments and the selected task as a common initial problem 
situation are described.
Description of substantial arithmetical learning environments
Calculating squares (with “ears”) (see Figure 3) are a known substantial task 
format (Huhmann, 2008). Depending on the abilities of the students they can be 
used with or without ears. Considering the fact, that the test persons were 
students in the middle of the first grade, it was decided to work with the inner 
square only, i.e., without ears. There the following rule has to be considered: 
a + b = c + d. With regard to the intended challenge to reflect not only on task 
solutions but also on solution sets the following task has been chosen as 
a common starting point for the students from the overall great variety of 
possible tasks: Find solutions for a square with two given numbers a and b! In 
a next step the students are asked to reflect on the solution set: How many 
solutions can be found and why? 

                   
Figure 3: Calculating squares with ears.     Figure 4: Calculating Triangles.

Calculating triangles (Wittmann & Müller, 2000) consist of three inner 
numbers a, b and c and three outer numbers, each forming the sum of two inner 
numbers as shown in Figure 4. The chosen task is: Find triangles with identical 
outer numbers! Building on this the students were asked to reflect on the number 
of solutions and corresponding justifications.
For the reciprocal setting both environments are designed with easy to dynamize 
documentations to create opportunities for acting in the play room. Therefore, 
the students had arithmetic chips and a blank format of the square respectively 
triangle to place them within. In addition, the documentation units contained 
always one square or triangle to be filled in. For reversible fixation possibilities 
the students could use removable adhesive. 
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FINDINGS 
We divide the findings in two perspectives: First, an overall look on the 
observed mathematical activities to discover and reflect on task solutions and 
solution sets from a cross-case perspectives regarding both presented learning 
environments. Second, a specific inner case perspective of how an individual 
learning path is shaped within the reciprocal setting dealing with the presented 
task with calculating squares. 
Cross-case perspective 
From a cross-case perspective we can state that in both learning environments 
learners used the opportunities named in the model in Figure 2, with the 
individual variety concerning the intensity and frequency and occurrence. In 
particular, the following activities with regard to various objectives could be 
observed: 

- repetitive actions with arithmetic chips to find solutions and to document 
them, 

- perceiving and refocusing documented solutions to find further ones (also 
by new actions) or to compare newly found solutions with already found 
ones, 

- intuitive or stimulated structuring (serializing and classifying) with 
documentation units to find more or missing solutions, 

- dynamizing documents for (re)structuring to find more or missing 
solutions, 

- serializing documentation units to reflect on the properties of the 
discovered solution set and to justify its cardinality. 

The structuring activities with documentation units could inductively be 
specified into subcategories. Classifying, serializing and a combination of both 
could be observed. The most common and intuitive type of structuring were 
classifications. Significant and frequent classification took place along the 
criteria of correctness of documented solutions, with “correct” and “incorrect” 
as two mutually exclusive categories regarding calculations or applications of 
the rule of the task format. Often this was practically realized by sorting out 
wrong solutions. Classifying according to solvable or non-solvable number 
constellations of a triangle (see Figure 5a) top and bottom) supported reflection 
on characteristics of solution sets. Serialization took place according to the 
chosen outer numbers of the triangles or of one of the bottom numbers (c or d) 
of the square (see Figure 6c)). Figure 5 shows a final document combining 
different classifications and serialization: (i) Classification categories along the 
criteria of solvability with the two categories “solvable” (upper area) and “non-
solvable” (lower area), (ii) Classification along decadic analogies between outer 
numbers of different triangles (triangles placed on top of each other in the upper 
part) and (iii) Serialization within the categories “solvable” and “non-solvable” 
in ascending order of the outer numbers. The reflection of the serialization 
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within the categories “solvable” and “non-solvable” in the docu room led the 
student to the discovery that there are infinite sets: “Ah, it always goes on, 
like…like normal numbers. There is always one and then...like, like in 
counting.”  

 
Figure 5: Final document combining various classifications and serializations. 

Inner-case perspective 
Considering an inner perspective on cases an individual learning trajectory is to 
exemplify the use of the opportunities created in a reciprocally designed 
learning environment in the following table (cf. Huhmann & Komm, in press). 
Tim’s learning path is reconstructed in different phases according to dominant 
activities and discoveries. In the left column, the respective iconic representation 
of the activity is colored in the presented model of discovery learning (see 
Figure 2). The entire learning process thus becomes apparent as a complex, 
reciprocal interplay of individual model components. In the table on the right, 
the individual phases of the learning processes are explained. The analysis 
focuses on the influences and effects of the reciprocal design in connection with 
(re)structuring and reflective elements. The actual numbers for the described 
task, finding (all) solutions for a given combination of a and b were a = 7 and 
b = 4. The pictures in Figure 6 show documentations and actions that arose in 
the course of the learning process and are used to illustrate the explanations. 
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a)                                                b)                                              c)

Figure 6: Actions and documentations within Tim’s learning trajectory.

Finding and documenting first solutions
Tim explores different squares by 
acting with arithmetic chips, and thus 
finds different, not systematically 
related solutions, which he documents 
on a blank template and collects them 
loosely (see Figure 6a)). In this phase, 
he discovers five squares with
solutions for c and d.  

Tim reflects on the documented 
solutions e.g., by visibly laying out the 
individual documentation units for 
perceiving and recognizing previously 
found squares. And with this 
information he creates own ideas for 
further actions and solutions with the 
arithmetic chips.

Finding and documenting further solutions
Tim explores further squares by acting 
with the chips and documents the new 
solutions. So, he discovers four more 
squares. Now that he has found a total 
of nine squares Tim looks at the 
documentation and recognizes pairs of 
solutions that resemble commutative 
swap tasks.
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Structuring process I: Classifying commutative solutions
…and intuitively begins to dynamize 
and act with the documentation units: 
he classifies squares, characterized by 
the commutative structure of the 
numbers c and d (c in one square is 
used as d in the other square and vice 
versa), and puts them on together (see 
Figure 6b)). This classifying activity 
leads to further activities with the 
chips and to the discovery of one 
more, the tenth solution. 

When he documented it, Tim calls out 
“Ready!” and seems to be sure to have 
found all solutions now. 

Structuring process II: Serializing
Following an impulse from the teacher 
Tim begins to dynamize and structure 
his document units. He chooses
a seriation of the squares in ascending 
order by number c, and in descending 
order by number d (see Figure 6c), 
horizontal lines), and documents this 
by fixing his arrangement with 
removable adhesive.
In a common reflection, Tim explains 
his order with pointing on the numbers 
c and d: “That it becomes more here 
and less here”. During the joint 
analysis of his created order, it occurs 
to him that he has not yet found a final 
missing solution, namely the one that 
would mark the end of his order: c = 0 
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and d = 11. Due to this specific 
position, Tim adds the missing square 
to his serialization without the need to 
dynamize his document again. When 
asked for further solutions, Tim now 
answers with conviction: “Because 
there are no more than 11 solutions, 
because I also have the 11 number!” 
(In the previous reflection of his 
document, Tim had pointed out that he 
was counting the pair of numbers c = 4 
and d = 7 not as a solution, since they 
are the numbers of a and b.)

Table 1: Reconstruction and modelling of Tim’s learning trajectory.

CONCLUSION
Our results show how these young learners use the created opportunities in the 
reciprocal learning environments to discover and reflect on arithmetical task 
solution(set)s. The structuring activities with documentation units led to 
arithmetical reflections and insights e.g., concerning an infinite solution set (see 
p.7: “Ah, it always goes on”) or a specific number of possible solutions (see p. 
9: “… there are no more than 11 solutions ...”). The inner-case perspective 
revealed the closely interwoven interplay between the central activities and 
reflections ‘in action’, the respective ‘documenting’, the ‘reflecting on the 
actions on the basis of the created documents’ and the ‘dynamizing of 
documents in order to (re)act’, and could be made visible with the exemplified 
modelling of individual learning processes. The reconstruction of Tim’s learning 
trajectory shows how he reflects ‘in and on his actions’ in the reciprocally 
designed learning environment and therefore how the created opportunities of 
discovery and reflection can lead to individual realities. Based on the use of the 
model to analyse learning trajectories, the question of viewing it as a thinking, 
analysis, and reflection tool for instructional development and research can be 
addressed. Beyond that, the connection of play and docu rooms seems to offer 
chances for various challenges in early mathematics like dealing with 
heterogeneity or combining individual and collaborative learning.
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Critical thinking is one of the most important abilities of International 
Baccalaureate (IB) students. The present study is based on the works of IB 
students that are called explorations. Exploration is a part of mature exam, and 
it is a project, in which students need to solve some real-life problems using 
mathematical tools. The study focuses on the reasons why the exploration seems 
to be so hard to create. In the current study, three groups of students’ 
explorations were analyzed. Particularly, I examined the role of critical thinking 
in the process of writing the exploration and what kind of difficulties students 
meet in modelling real-life phenomena. The analysis has shown that regardless 
of results, the students had difficulties with formulating reflections and stating, 
and proving hypotheses. 
INTRODUCTION  
The notion of critical thinking is not easy to define. There are several features 
that characterize critical thinking in mathematics. Innabi and Sheikh (2007) 
conducted studies that identify three components of critical thinking in 
mathematics, namely reasoning, problem posing and problem solving, and 
identifying the suitability of problem solutions. Moreover, critical thinking can 
be interpreted as a complex concept that involves cognitive skills and affective 
dispositions. It may also involve logical reasoning and ability to separate facts 
from opinion, examine information critically with evidence before accepting or 
rejecting ideas (Irfaner, 2006). Mansoor and Pezeshki (2012) claim that critical 
thinking involves reasoning and consideration of what we have received rather 
than forward acceptance of different ideas.  
Due to the fact that critical thinking consists of many activities such as problem 
solving through information analysis, formulating and verifying hypotheses, 
evaluating evidence and arguments, and searching for an action strategy, it can 
be present not only in mathematics but also in different areas of life (Firdaus et 
al., 2015; Huitt, 1998; Krulik and Rudnick, 1999; Pyzara, 2021; TC2, 2013). 
Another approach was presented by Facione (1990), who defined six cognitive 
abilities as central to the concept of critical thinking: interpretation, analysis, 
explanation, self-regulation and inference. Moreover, he claimed that these skills 
enable people to analyse and combine information to solve problems in many 
areas.  



172 ELIZA JACKOWSKA-BORYC 

The present study focuses on the notion of critical thinking in the process of 
writing projects related to mathematics course in an IB Programme.  
THEORETICAL FRAMEWORK  
The International Baccalaureate Diploma Programme (IBDP) is a programme 
that is devoted for students aged 16-19 in countries around the world. The 
programme aims to develop students who have knowledge on modern problems 
and is divided into six subject groups, with mathematics being one of them. 
Apart from the theoretical concept of IBDP, there are also specific skills that 
characterize all IBDP students. Each of IBDP’s subjects is committed to the 
development of students according the IBDP learner profile. The profile aims to 
develop learners who are: inquirers, knowledgeable, thinkers, communicators, 
principled, open-minded, caring, risk-takers, balanced and reflective.  
Regarding the concepts of critical thinking introduced at the beginning of this 
paper, it is easy to notice that those concepts and definitions commensurate with 
the skills promoted by IBDP organization. Moreover, according to Schoenfeld 
(1992), there are many aspects of mathematics like abstraction, symbolic, 
representation and symbolic manipulation, and being trained in the use of them 
can be developed only with appropriate features. All of them are required in 
IBDP. 
Focusing our attention on mathematics, there are several courses available in 
IBDP: analysis and approaches (standard or higher level), and application and 
interpretation (standard or higher level). The aims of these courses are to: 

• develop mathematical knowledge, concepts and principles, 

• develop logical, critical and creative thinking, 

• employ and refine students’ skills in abstraction and generalization, 

• take action to apply the transfer skills to alternative situations, to other 
areas of knowledge and to future developments in real life problems, 

• appreciate how developments in technology and mathematics 
influence each other, 

• appreciate the contribution of mathematics to other disciplines, 

• independently and collaboratively extend the students understanding of 
mathematics. 

The current study was based on the theory and the methods related to 
mathematics application and interpretation higher level (AIHL). According to 
AIHL, the mathematics education should encourage the development of solid 
written, verbal and graphical communication skills, and also critical and 
complex thinking. Within this concept, in the classroom, students should 
regularly learn mathematics by being active participants in learning activities. 
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Teachers should provide students with regular possibilities to learn through 
mathematical inquiry, by using strategies that stimulate students’ critical 
thinking and problem-solving skills (Huang, Ricci, & Mnatsakanian, 2016). One 
of the goals of mathematics education is mathematical modelling.  
Mathematical modelling is a technique used in problem solving, to make sense 
of the real world. Based on research, engaging students in mathematical 
modelling enables them to be successful in many non-mathematical as well as 
mathematical courses and careers. Moreover, this process requires critical 
reflection throughout the process (Ferri & Mousoulides, 2017).  
Skills allowing for solving problems related to everyday life are the most 
desirable in this course. The main assessment objectives are knowledge and 
understanding, problem solving, communication and interpretation, technology, 
reasoning and inquiry approaches. Students are assessed in four components: 
Papers 1, 2, 3 and exploration. In my research I focused on exploration. 
Mathematical exploration is a component that is internally assessed by the 
teacher and externally moderated by the IBDP examiners at the end of the 2-
year course. The explorations analysed in this paper were assessed by the author 
of the paper. As a part of mature exam, it is marked according to five assessment 
criteria:  

A. Presentation (0-4 points): coherence, conciseness, and organization of the 
project. 

B. Mathematical communication (0-4 points): usage of appropriate 
mathematical language, key terms, multiple forms of representation and 
deductive method. 

C. Personal engagement (0-3 points)  
D. Reflection (0-3 points): can be limited or meaningful, as well as provided 

by substantial evidence of critical thinking. 
E. Use of mathematics (0-6 points): the mathematics demonstrated in 

exploration has to be relevant and commensurate with the level of 
mathematics. 

The aims of the exploration are to encourage students to discover and appreciate 
the power of technology as a mathematical tool and provide opportunities for 
them to demonstrate their mathematical development. The role of the teacher is 
to support students in the process of creating the exploration. She should provide 
oral or written advice on how the work could be improved. Only one feedback is 
allowed, therefore the second draft is the final one. 
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RESEARCH QUESTIONS 
The aims of the study were to examine the role of critical thinking in the process 
of writing the exploration and what kind of difficulties students meet in 
modelling real-life phenomena. Many activities involved in writing the 
exploration are related to critical thinking. The study aimed to answer the 
following questions: 

a) Is the exploration coherent, well-organized and concise? 
b) Have the students chosen reliable resources? 
c) Have the students shown the required knowledge, skills and 

understanding? 
d) Have the students used the deductive method and were the proofs 

logically valid? 
e) Is there evidence of substantial or critical reflection? 
f) What were the main difficulties that have arisen? 

These questions have guided the analysis of the explorations through individual 
students’ works. 
METHODOLOGY 
The research was conducted at the beginning of 2022. The participants were 21 
students of mathematics, aged 17-19, who attended Mathematics Standard Level 
in years 2019-2020, and Applications and Interpretations Higher Level IBDP 
courses in years 2020-2021. The students’ explorations were internally assessed 
and evaluated by the teacher (the author of this paper), and externally by the 
IBDP examiner. These two assessments commensurate.  
The research tool consists of examples of explorations of these students that 
require mathematical presentation, mathematical communication, and reflection. 
These requirements concerned the assessment criteria A, B and D. The results of 
these students were divided into three groups:  

• Group 1: 15-20 points (5 students) 
• Group 2: 9-14 points (10 students) 
• Group 3: 2-8 points (6 students) 

In this paper fragments of explorations from each group are presented. 
ANALYSIS OF STUDENT SOLUTIONS 
The analysis concerned the students’ works that have different topics and 
concerned a variety of mathematical tools. Some choices of mathematical tools 
in explorations of each group were the following: 

• Group 1: optimisation (one and two variables’ functions), calculus and 
applications of integrals, graph theory. 
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• Group 2: bivariate statistics (including linearization), statistics and 
statistical tests (e.g., t-Test).  

• Group 3: modelling with applications of different kinds of models (linear, 
quadratic, cubic, logistic), geometry and trigonometry, statistics. 

Some exemplary topics were the following: 
Group 1: “Applications of Graph Theory in problems regarding transport 
management.” 
Group 2: “Optimisation of areas of boxes for Christmas presents using two 
approaches.” 
Group 3: “Using mathematics to predict the winner of NBA playoffs.” 
The analysis was conducted by considering the research questions in the 
explorations in each group. 
Analysis of explorations from Group 1  
The plan of the exploration was detailed, coherent and organized. It contained 
the contents of exploration and bibliography. The sources were reliable and 
presented many scientific items. Students presented knowledge and 
mathematical skills that were relevant and commensurate with level of 
mathematics (see Figure 1).  
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Figure 1: Fragments of the exploration from Group 1. 

The proofs were conducted in a logical and simple way, but some parts were 
incoherent and needed to be better prepared. An example of proof is shown in 
Figure 2. 

 

 
Figure 2: Fragments of the exploration from Group 1. 

There was evidence of substantial reflection, but it was rather descriptive than 
creative. There were some open questions but sometimes they were not reliable 
or valid (Figure 3, Figure 4). 

 
Figure 3: Reflection of an exploration from Group 1. 

Conclusions (Group 1) 
There were two difficulties that arose for the students from the group 1. The first 
concerned the logical justification in the proofs. The ability of using 
mathematical terms and concepts is not fully developed in this age. Good 
students very often see the solution or justification of a phenomena, but they do 
not know how to present their thoughts in terms of mathematics. Another 
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observation is related to reflections. In most of the explorations from Group 1 
there was substantial evidence of critical reflection. They often developed their 
critical thinking in exploration addressing the mathematical results and their 
understanding of topic. They discussed the implications of their results and the 
applications of mathematical tools.  

 

Figure 4: The conclusion and evaluation of an exploration from Group 1. 

Analysis of explorations from Group 2  

Most of the students in this group prepared explorations that were well-
organized, planned and contained some bibliography. The number of items was 
smaller than in the explorations of students in Group 1. Not all the resources 
were reliable (e.g., webpages that were not referenced). Most of the students 
showed the required knowledge and used different forms of mathematical 
presentations like tables, graphs and pictures (see Figure 5). 
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Figure 5: Mathematical presentation of students’ exploration from Group 2. 

The methods used by the students were deductive and logically valid. Some 
observations and calculations were presented (see Figure 6). 

 

 

 
Figure 6: Deductive method in the explorations from Group 2.  

Students presented the reflections throughout the exploration. Some works 
presented meaningful reflection linking to the aims of project, commenting on 
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what they had learned, considering some limitations, or comparing different 
mathematical approaches. 
Conclusions (Group 2) 
Most projects from Group 2 presented a logical development and they were 
partially well-organized. The explorations contained some relevant 
mathematical communication that was mostly consistent. There was evidence of 
application of deductive method. Reflections were not critical but meaningful 
and notified what students have learned, by considering some limitations. Some 
difficulties appeared in the use of mathematics and by wrong interpretations of 
the chosen tools to the real-life phenomena. Sometimes instead of 
approximation sign they used equality sign, or some theorems without 
considering limitations and constraints. 
Analysis of explorations from Group 3  
Most of the students presented coherent and organised explorations. The 
bibliography (if does exist) was not detailed and contained mostly not reliable 
items (see Figure 7) 

 
Figure 7: Example of not reliable bibliography from an exploration from Group 3.  

Students showed some relevant knowledge that commensurate with the level of 
the course, but the demonstrated understanding was limited. The students did 
not use deductive method and performed only simple calculations. Moreover, 
the evaluation was mostly descriptive and did not contain reflections related to 
the conducted calculations. The results were not analysed in detail. 
Conclusions (Group 3) 
If we look at the bibliography and organization, we can notice that the students 
were not aware of the scale of reliable source. Their critical thinking abilities 
were only bounded to their own observations. The mathematics used by the 
students was mostly correct, but there are some serious mistakes. Moreover, the 
evaluation was descriptive, and reflections did not exist, or were limited. Most 
justifications were far from critical reflections. 
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DISCUSSION 
After considering the explorations from different groups of development, several 
errors in reasoning that repeat in each group were observed: use of unjustified or 
wrong argumentation, wrong approximation and usage of mathematics, 
descriptive reflections and conclusions, not enough proficiency in the 
application of mathematical language.  
The analysis of explorations has shown that there are students, in examined 
sample that have some difficulties in formulating critical reflections, 
applications of deductive method, stating and proving hypotheses, separate facts 
from opinion, and applications of mathematical tools to modelling real-life 
phenomena. More detailed research is required to show if this problem is more 
general.  
It is worth emphasizing that there are some elements of critical thinking that 
were used correctly by the students. The basic concepts of the personal 
development of the students were satisfied. The students acquired mathematical 
knowledge, new concepts and principles especially during the course of the 
study. They developed logical and creative thinking, which were presented 
partially in the conclusions (see Figure 4 as an example). The most crucial 
things in students’ self-development were the application of new mathematical 
tools and new skills in real-life problems, which is one of the main goals of 
mathematical modelling. They also needed to find the contribution of 
mathematics to other disciplines, and they independently had to understand the 
mathematics used. 
Summing up, critical thinking is one of the most demanding skills in modelling 
real-life phenomena. There are many areas that must be developed when an 
exploration is created. The crucial advance of producing the projects is the self-
development of the students. Despite the fact they make mistakes, they shape 
their mathematical skills and ability of critical thinking. 
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Metacognition is an important mechanism involved in critical thinking. The 
paper sheds light on metacognitive activities in teaching mathematics. It 
exemplifies how teachers can promote their students’ metacognition as a means 
for enhancing their critical thinking. In doing so the paper aimes at bridging 
a gap between the theoretical considerations underlying the importance of 
critical thinking and the practical implications for supporting it in mathematics 
education.  
INTRODUCTION 
Despite differences between various conceptualisations of critical thinking, 
researchers agree on its importance in school education (Halpern, 1998; Ku & 
Ho, 2010; Kuhn & Dean, 2004; Magno, 2010). Since critical thinking enable 
students to use “those cognitive skills or strategies that increase the probability 
of a desirable outcome” (Halpern, 1998, p. 450), it is considered both as an 
important goal of teaching and as a means to improve students’ learning (Hu & 
Ku, 2010). There is a variety of cognitive abilities involved in critical thinking 
in learning mathematics, for instance analysing arguments, claims, and 
evidence, making inferences using deductive or inductive reasoning, identifying 
assumptions, asking and answering questions for clarification, and generating 
and selecting alternatives and judging among them (Halpern, 1998). This 
thinking, however, cannot be seen as merely a composition of such abilities. 
Critical thinkers must be able to spontaneously make use of these abilities to 
regulate their learning and understanding. This regulation is a metacognitive 
mechanism. 
Thus, to enhance students’ critical thinking, teachers need to support students’ 
metacognition. The purpose of this paper relates to this requirement. The paper 
explains metacognitive activities involved in learning, and particularly in critical 
thinking, and exemplifies how they can be supported in teaching and learning 
mathematics. In doing so, the paper aims at bridging a gap between the 
theoretical considerations underlying the importance of critical thinking and the 
practical implications for supporting it in mathematics education. 
In the following, the relationships between metacognition and critical thinking 
are explained first. The next section clarifies the meaning of metacognitive 
activities. Afterwards, three aspects of class discussions considered favourable 
to promote students’ metacognition in classrooms’ natural settings are explained 
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and exemplified based on a transcript from a mathematics lesson in Grade 6. 
Finally, challenges in supporting students’ metacognition are discussed. 
CRITICAL THINKING AND METACOGNITION 
Despite the fact that there is no shared conceptualisation of critical thinking, 
researchers seem to agree that it is a higher order type of thinking that requires 
an active control of one’s own thinking processes (Kuhn & Dean, 2004; 
Halpern, 1998; Magno 2010). This control is an aspect of metacognition, i.e. of 
thinking about one’s own thinking and regulating one’s own thinking (Flavell, 
1979). For instance, Halpern (1998) states that when “engaging in critical 
thinking, students need to monitor their thinking process, checking whether 
progress is being made toward an appropriate goal, [and] ensuring accuracy” (p. 
545). To enhance students’ critical thinking, Halpern suggests engaging students 
in metacognitive activities, making these activities explicit and public so that 
they can be examined and feedback can be provided. Similarly, Kuhn and Dean 
(2004) claim that critical thinking “entails awareness of one’s own thinking and 
reflection on the thinking of self and other as an object of cognition” (p. 270). 
To foster critical thinking in regular classes, they recommend encouraging 
students to reflect on and evaluate their thinking, particularly in class 
communication.  

If students participate in discourse where they are frequently asked, “how do you 
know?” or “What makes you say that?” they become more likely to pose such 
questions to themselves. Eventually, we hope, they will interiorize the structure of 
argument as a framework for much of their own individual thinking. (p. 270) 

Researchers’ recommendation that teachers need to support students’ 
metacognitive activities in the classroom in order to enhance their critical 
thinking are in line with results from empirical studies. For instance, Ku and Ho 
(2010) showed that metacognitive activities are an important mechanism 
involved in critical thinking and that their effective use contributes to critical 
thinking performance. Moreover, Magno (2010) provided empirical evidence 
that metacognitive activities significantly improve critical thinking. His study 
indicates that when “learners are able to control their cognitive process, the 
more likely they become critical to facts presented to them. [...] once 
metacognition is activated, learners become more likely to make inferences, 
deduce conclusions, interpret accurately, evaluate arguments, and recognize 
assumptions.” (p. 250-251).  
The following section clarifies the meaning of metacognitive activities. The 
focus is on metacognitive activities that can be observed and promoted in class 
discussions in mathematics lessons. 
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METACOGNITIVE ACTIVITIES  
Metacognition is traditionally defined as a person’s own cognition about 
cognition and regulation of cognition (Flavell 1979). It is generally accepted that 
a distinction can be made between metacognitive knowledge and metacognitive 
skills (Veenman et al., 2006). Metacognitive knowledge refers to the knowledge 
one has about the interplay between person, task, and strategy characteristics. 
Metacognitive skills, on the other hand, refer to the actual regulation of and 
control over one’s learning (Flavell 1979; Veenman et al., 2006).  
When thinking metacognitively, learners make use of their metacognitive 
knowledge and skills to direct their thought processes. This thinking manifests 
itself in their metacognitive activities, i.e. planning and controlling their thought 
processes, and reflecting on them (Cohors-Fresenborg & Kaune, 2007; 
Nowińska, 2016). For instance, when providing arguments to prove 
a mathematical hypothesis, solving a mathematical problem or trying to 
understand a definition of a mathematical concept, learners who think in 
a metacognitive way actively plan how to proceed, control the accuracy of their 
cognitive activities, and reflect on the given task or problem and on the achieved 
results or experienced difficulties. Metacognitive planning activities aim at 
finding an appropriate approach to answer a given question or task, or to solve 
a problem. They include thinking about strategies and methods that could be 
useful in a given situation. Metacognitive monitoring refers to an ongoing 
process of checking the appropriateness and correctness of cognitive activities, 
in particular checking the correctness of an argumentation or the appropriateness 
of methods used in a given situation. Reflection, on the other hand, involves 
activities aimed at deepening and evaluating one’s own understanding of the 
actual object of thinking. Examples include thinking about the meaning of 
mathematical objects, about the usefulness of particular methods, and about the 
difficulties or important decisions experienced in a particular situation. 

Code description 
P1a  (planning) one-step planning activity, e.g. indication of the focus of 

attention with regard to strategies or methods to be used or of 
(intermediate) results or representations to be achieved 

M4 (monitoring) controlling correctness or adequacy of tools or methods 
used in a particular situation  

R4  (reflection) thinking about how and when to use particular strategy, 
tool or method 

Table 1: Examples of metacognitive activities. 

Table 1 provides examples of the metacognitive activities related to learning 
mathematics and the codes to capture these activities in transcripts. These 
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examples are based on the coding system published in Nowińska (2016). 
Prefixes can also be used: r and rd to code reasoned metacognitive activities 
(including mathematical justifications or explanations concerning one’s own 
thinking) or a reasoned demand to engage in a metacognitive activity, and d or 
dr to code a request (demand) for a metacognitive activity or for a reasoned 
metacognitive activity.   
PROMOTING STUDENTS’ METACOGNITIVE SKILLS  
Given the important role of metacognition in critical thinking, the question 
arises of how students’ metacognitive skills, i.e. their ability to use 
metacognitive activities in order to regulate their thinking, can be fostered in 
teaching mathematics. In the following, three aspects of class discussions 
regarded as favourable for fostering students’ metacognitive skills are explained. 
They are chosen for the practical purposes of this paper and will be illustrated in 
concrete classroom situations. When considering these aspects, teachers must be 
aware of the fact that the challenge goal of fostering students’ metacognition is 
to enable them to use metacognitive activities in a self-determined way, i.e. to 
help them develop a habit of mind to spontaneously and adequately regulate 
one’s own cognitive activities and comprehension (Hasselhorn, 1992). 
Therefore, metacognitive activities must be established as a natural feature of 
class culture, and students must feel obligated to engage in these activities.  
First of all, as metacognitive skills develop with practice, teachers are expected 
to facilitate students’ metacognitive engagement (Mevarech & Kramarski, 2003; 
Veenman et al., 2006), e.g. by challenging them to consider whether they know 
how to proceed in a particular situation, whether they understand the goal of 
a particular learning activity, and whether the answers and solutions collected 
during this activity make sense for them.  
However, to develop metacognitive habits of mind, students also need to 
internalize the questions (Kramarski & Mevarech, 2003). Teachers should 
therefore not only tell students in a straightforward way what to do, but also 
provide them with opportunities to regulate their learning activities in a self-
determined way, e.g., by motivating students to interact with each other in class 
discussions, externalize their metacognitive thinking, listen to, hear, and 
precisely respond to their peers’ metacognitive activities (Iiskala et al., 2015). 
Finally, teachers should also challenge the quality of students’ metacognitive 
activities (Kramarski & Mevarech, 2003; Van der Stel et al. 2009). During class 
discussions, this quality is reflected in the extent to which metacognitive 
activities are well reasoned, i.e., combined with explanations and justifications. 
Well-reasoned metacognitive activities enable students to adequately plan, 
control, and evaluate their learning and recognize the need for a reorganization 
of their actual cognitive activities.  
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To make these recommendations clear, particularly for teachers who might want 
to use them to improve their teaching, more details or specific examples from 
teaching practice could be helpful. The following section provides examples of 
metacognitive activities as part of class discussions during mathematics lessons.  
METACOGNITIVE ACTIVITIES DURING CLASS DISCUSSIONS 
The following transcripts document a class discussion videotaped in Grade 6 in 
Germany. The goal of the lesson was to foster students’ problem-solving skills. 
The teacher claimed to be familiar with the construct of “metacognition” and 
wanted to promote metacognition in her class. The task she chose for the 
videotaped lesson is the following “7 Gates Task”: 

A man goes apple picking. To get to the city, he has to pass through 7 gates. At 
each gate, there is a guard who demands a half of his apples and one apple more 
from him. At the end, the man has only one apple left. How many apples did he 
have at the beginning? 

Episode 1 shows the beginning of the class discussion just after each student had 
the opportunity to work on the task on their own for 5 minutes. There, the 
teacher performs various actions to engage her students in metacognitive 
planning, particularly to make them consider how to approach the given task. 
The codes used to capture metacognitive activities in the transcript are explained 
in Table 1. 
Episode 1 Metacognitive planning 

1  T: In this discussion that follows, I would like you to not declare the 
number of apples you consider as your solution. To be honest, […] it 
is not at all exciting to know whether there were 200, 300 or 500 
apples at the beginning. Who needs to know that? What is exciting 
here is: How do you figure this out? And that's what we're talking 
about now. 

  So now try to focus on giving tips on what would be a good 
approach to solve the task. [...] Elena. (dP1a) 

2 Elena:  So, he always gives one more than a half. Therefore, I would first 
calculate the number, uhm… so for example one, uhm, plus the one 
apple. Then you have half and then multiply that by two. (rP1a) 

3 T:  Let's focus on what Elena said. I think she didn't mention her very 
first thought. Instead, she went further ahead and mentioned her 
second thought. What would be the very first clue for someone who 
has no idea how to solve the task? […] Domi. (rdP1a) 

4   Domi: Instead of starting at gate one, we need to start at gate seven. (P1a) 
5 T: This thought is important. Can you justify why it makes sense for 

this task to start at gate seven and not at gate one? (drP1a) 
6   Domi: In principle, you have to calculate backwards. He had only one apple 

left after passing gate seven, which means you have to calculate 
backwards from there, not from gate one. […] (bP1a) 
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7 T: I think when you say you have to calculate backwards, there might 
be one intermediate step still missing here that could be helpful [...]. 
(M4) 

  I would actually say you have to think backwards. (P1a) 
  What is the difference between calculating backwards and thinking 

backwards? Alina. (dR4) 
8   Alina: I think calculating backwards is when you calculate the result back 

from the last gate to the starting gate, so to say, and thinking 
backwards is when you go from the last gate to the first gate. […] 
(R4) 

In her first contribution, the teacher makes it clear that the way of organizing 
one’s own thinking to figure out the solution is the interesting part for discussion 
instead of the solution itself. In doing so, the teacher indirectly stresses the need 
for engaging in thinking about one’s own thinking – here in planning one’s own 
cognitive activities required to solve the task. Finally, she directly demands 
students’ metacognitive planning by asking them to provide tips on how to 
approach the task (dP1a). In her reaction to this demand, Elena tries to describe 
her own approach. However, instead of providing general tips, she describes her 
calculation without explaining how she came up with it. Her contribution 
indicates a reasoned metacognitive planning activity, which is explained by 
referencing the task (rP1a). Since Elena’s metacognitive thinking which led her 
to start with this calculation is not visible in her contribution, the teacher repeats 
her request for metacognitive planning, justifying the need for explaining the 
approach to solve the task in a more precise way. Therefore, her request can be 
seen as a reasoned demand for a metacognitive planning activity (rdP1a).  
Domi responds to this request. His tip that one needs to start solving the task by 
focusing on the situation at the last gate is an indicator of his metacognitive 
planning activity (P1a). The teacher stresses the importance of Domi’s tips and 
uses it as the reason behind her next request. Her contribution can be interpreted 
as a demand for a reasonable metacognitive planning activity (drP1a). In his 
response, Domi justifies his previous tip. His contribution is therefore 
a reasoned planning activity (rP1a). So far, Elena and Domi justified where the 
focus should be when making calculations. The teacher, however, still sees the 
need for further clarifications concerning the calculation suggested by Elena. 
The first statement in her contribution in line 7 indicates that the teacher 
verbalizes her monitoring concerning the appropriateness of the planning steps 
suggested by the students (M4).  Afterwards, she suggests an additional 
planning step (P1a), being metacognitively engaged in the process of solving the 
task. Finally, she engages the students in a metacognitive reflection on the two 
different cognitive activities required to solve the task – making a calculation 
backwards and thinking backwards. To this end, she demands a reflection on the 
mathematical cognitive “tools” (dR4). Alina’s reaction is a metacognitive 
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reflection on differences between one’s own thinking involved in making 
calculations backwards from gate seven to gate one and in “going” backwards 
from the last to the first gate (R4). In the latter case, she probably means “going” 
in the sense of imagining the actions described in the task from the very last to 
the first.  
To sum up, the transcript provides a teacher’s exemplary actions aimed at 
engaging students in metacognitive activities and at challenging their quality. 
The teacher stresses the importance of providing precise explanations for how to 
organize the cognitive process of solving the tasks. Thereby, she uses students’ 
answers as a starting point for deeper, reasonable metacognitive activities. It is 
worth noting that students’ responses become more precise in reaction to the 
teacher’s requests. Episode 1 also exemplifies the meaning of making students’ 
metacognitive planning activities visible in the classroom. This involves more 
than just describing and checking calculations. Calculations are a result of 
metacognitive thinking about how to approach a given task. Here, the teacher 
specifically aims at making this thinking visible for others. 
Episode 2 presents the class discussion after the students worked in pairs to 
finish their solutions. This episode provides examples of the teacher’s actions 
aimed at engaging students in metacognitive monitoring. 
  Episode 2 Metacognitive monitoring 

1  T: Before we discuss your solutions, [...] I would like to discuss how 
many apples there were in front of the seventh gate. [...] Here, Fin 
and Rico listed two possibilities, and that is actually the exciting 
part. Franz, can you explain how you came up with the three apples 
in front of gate seven? (dM4) 

    
2 Fin:  […] I first doubled the number that is there, and then I added one 

apple. 
3 T:  […] How did you come up with the other solution? Rico. (dM4) 
4   Rico: We first added one and then doubled. 
5 T:  They wrote down both solutions because they said that both are 

correct. Can you please comment on this? Elena. (dM4) 
6 Elena:  I would say no, because he always gives a half and then one more. If 

he has three, he can't give a half and then one more. Then he would 
only have a half of an apple. (rM4) 

7 T:  Pass it on, please. 
8   Elena: Mati. 
9 Mati:  I agree with Elena. Since it says there that first half of the apples 

were taken and then additionally one more was taken, I would also 
say that the second solution is likely correct. (rM4) 

10 T:  Pass it on, please.  […] 
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11   Fin: Now I also agree with the second solution. Because [...] it is called 
a backwards calculation, which means you have to change 
something in the calculation. It is said that he first gives a half and 
then he gives one, but calculating backwards always involves 
changing the calculation [...] so that you don't multiply first, but you 
first add and then you multiply. (rM4) 

12   T: You describe it on the algebraic level, I would like to get into the 
story with you. [...] Who’s going to tell the story backwards?  [...] 
(dR4) 

13   Domi: The man walks backwards through the gate, he gets an apple from 
the guard, and then gets as many as he  has in his car at the moment. 
(R4) 

In her first contribution, the teacher precisely describes what the students need 
to control: two different calculations made to determine the number of apples in 
front of gate seven. Afterwards, she asks Fin and Rico to explain how they came 
up with their calculations. Both requests can be seen as demands that have the 
potential to initiate students’ metacognitive monitoring (dM4), particularly their 
thinking about the correctness or adequacy of their calculations. This would 
require for both students not to explain how they calculated the result to be 3 or 
4, but rather explain the thought process that led them to their calculations. This 
explanation would be considered metacognitive monitoring with regard to the 
correctness of the suggested solutions. Unfortunately, Fin and Rico focus only 
on their calculations. Their contributions do not indicate any metacognitive 
activities. In line 5, the teacher explicitly makes both calculations the object of 
thinking for all students, demanding metacognitive monitoring aimed at 
clarifying the appropriateness of both solutions (dM4). In her reaction to this 
request, Elena justifies the incorrectness of the calculation with the result of 3. 
Her contribution can be seen as a reasoned monitoring activity (rM4). In lines 7 
and 10, the teacher motivates the students to take responsibility for the process 
of clarifying the correctness of both solutions. “Pass it on” means that the 
student has to choose a classmate to continue the discussion.  
Mati and Fin (lines 9 and 11) engage in reasoned monitoring activities (rM4). 
Both, however, refer only to calculations they consider correct. The 
metacognitive thoughts that led them to think that the chosen calculation does 
indeed provide the correct way to calculate the number of apples is not visible in 
their explanations. The teacher seems to notice this. That might be the reason 
why she demands to tell the story backwards (line 12). In doing so, she 
motivates the students to engage in metacognitive reflection on how one’s own 
thinking works backwards in the given case (dR4). This is needed as a means to 
showcase how to organize one’s own thinking before writing down a calculation 
that matches this thinking and correctly describes the changes in the number of 
apples. Domi’s contribution provides the result of his thoughts on how to 
organize each step in thinking about the story backwards (R4).  
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To sum up, Episode 2 exemplifies two kinds of activities used by the teacher to 
foster students’ metacognitive skills. Firstly, she provides opportunities to 
engage in metacognitive activities, using the students’ answers and solutions as 
a starting point for her requests to think about the cognitive aspect involved in 
solving the given task. Secondly, she challenges the students to take 
responsibility for their shared learning process.  Interestingly, the students seem 
to be used to doing this. For instance, they seem to be able to hear what their 
classmates say and take into account their classmates’ answers. The result of this 
thinking is visible in the agreement the students communicate at the beginning 
of their own contributions: “I agree with Elena.”, “Now I also agree (…)”.  
DISCUSSION 
The practical purpose of this paper is to shed light on metacognitive activities, 
which are a means to enhance students’ critical thinking, and to exemplify how 
students’ metacognitive skills can be fostered in regular teaching. Both episodes 
from the class discussion provide examples of a teacher’s actions aimed at 
engaging students’ in metacognitive activities and challenging their quality. 
Establishing a discourse-based classroom which obligates students to engage in 
metacognition is one approach to fostering metacognitive skills. This can be 
done not only in the case of discussions focused on problem-solving, but also, 
more specifically, when discussing the meaning of new concepts or relations 
between concepts, or the appropriateness of students’ representations and 
internal conceptions. Another means to promote metacognitive skills in regular 
teaching, not mentioned before, is the use of mathematical tasks that explicitly 
require students to externalize their metacognitive thinking in written form. One 
such task developed by the teacher, as observed in Episode 1 and 2, is the 
following: “Cornelia claims: ‘Once one figures out how many apples there are in 
front of gate 7, the task is almost solved!’ Do you agree with Cornelia? Explain 
your reasoning.”. The task requires the students to reflect on the complexity of 
their approach, involving thinking backwards and calculating backwards, and on 
the difficulties experienced while applying this approach. Two students’ answers 
captured in the class discussion indicate that this task does indeed lead to well-
reasoned reflection: “I agree with Cornelia, because then you know how to do 
the calculation. (...) And then the calculation for the whole task is clear.”; “I 
would say yes and no! (…). Yes, since if you figure it out, you know how to 
calculate the final result. But making the calculations is the reason for “no”, 
because the calculations are not so simple.” 
The challenging goal of promoting students’ metacognitive skills is to enable 
them to engage in metacognition in a self-determined way. Empirical studies 
indicate that teachers often do not know how to promote metacognition. They 
focus more on training students’ cognitive than metacognitive abilities (Dignath 
& Veenman, 2021). Due to the crucial role of students’ metacognitive skills for 
enhancing their critical thinking (Ku & Ho, 2010), and the relevance of critical 
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thinking for a productive participation in a democratic society, this is an 
alarming finding. In this sense, supporting students’ metacognitive skills must 
be regarded as a pedagogical task of a higher relevance in school education.  
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The ability to think critically is one of the basic competences of the modern 
person. Critical thinking involves many activities, including formulating and 
verifying hypotheses, evaluating evidence and arguments, and searching for an 
action strategy. The study presented here concerns checking the difficulties 
(concerning critical thinking) that students of mathematics have with tasks 
requiring the making of a proof. The reasoning presented by students was 
analysed, which was a solution to two tasks – standard and non-standard. The 
study has shown that students have made good use of certain elements of critical 
thinking, such as: explaining reasoning, incorporating assumptions, and 
applying learned strategies. At the same time, they have shown difficulties in 
assessing the correctness of evidence and arguments.  
INTRODUCTION AND THEORETICAL FRAMEWORK  
People learn not only during school attendance, but also acquire knowledge 
and skills throughout their lives. The Council of the European Union has 
compiled a list of the most desirable competences of modern person. They 
should be developed throughout life. The expected skills have been classified 
into 8 categories, referred to as key competences. The journal of laws (ERF, 
2018) states: “Key competences are those competences everyone needs for self-
fulfilment and personal development, employment, social inclusion, sustainable 
lifestyles, successful lives in peaceful societies, healthy life management 
and active citizenship […]. All key competences are considered to be of equal 
importance; each contributes to a successful life in society.” One of the skills 
that are part of all key competences (in particular: mathematical competences 
and competences in the field of life sciences, technology and engineering, 
competences in the field of understanding and creating information) is critical 
thinking. Thus, the ability to think critically is an indispensable competence 
of a modern person, especially a mathematician. 
Critical thinking can manifest itself in different areas of life. This is due to the 
fact that critical thinking consists of many activities such as: problem solving 
through information analysis, formulating and verifying hypotheses, evaluating 
evidence and arguments, and searching for an action strategy (Firdaus et al., 
2015; Huitt, 1998; Krulik & Rudnick, 1999; Pyzara, 2021; Sukmadinata, 2004; 
TC, 2013). 
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According to Facione (2011), the most basic element of critical thinking is 
the ability of interpretation, analysis, evaluation, inference, explanation and self-
regulation. Chance defines critical thinking as the ability to analyse facts, 
generate and organize ideas, defend opinions, make comparisons, draw 
conclusions, evaluate arguments and solve problem (Chance, 1986). Similarly, 
Sukmadinata (2004) states that critical thinking is a skill of reason on a regular 
basis, systematic skills in assessing, solving problems, appealing the decision, 
give confidence, analysing assumptions and scientific inquiry.  
This means that when people use critical thinking (especially in mathematics) 
they: make sound decisions, solve problems by analysing information, are able 
to draw conclusions and evaluate arguments, are able to evaluate the correctness 
of evidence, take into account criteria or grounds for an informed decision, and 
do not apply a rule without assessing its usefulness (Ennis, 1996; Firdaus et al., 
2015; Huitt, 1998; Krulik & Rudnick, 1999; Pyzara, 2021; Sukmadinata, 2004; 
TC, 2013). 
The assessment of critical thinking skills in mathematical problem solving 
consists of three parts (Firdaus et al., 2015; Krulik & Rudnick, 1999): 

• the identification and interpretation of information, 

• information analysis, 

• the evaluation of evidence and arguments. 
Many of the skills that are part of critical thinking are essential in making 
mathematical proofs. These are, among others the ability to reason regularly, 
analyse facts, evaluate arguments, analyse assumptions, take into account 
criteria or grounds for making informed decisions, the ability to draw 
conclusions and clearly explain the reasoning. It is also important to be able 
to evaluate proofs and arguments, allowing you to accept a given reasoning 
as true or reject it. 
Therefore, we can study the critical thinking of students by analysing their 
actions in carrying out mathematical proofs. These types of tasks require many 
aspects of critical thinking (Mingla, 2020). Moreover, Otten et al. (2021) report 
that the proving process has the potential to foster critical thinking in students’ 
current and future daily, real-world experiences. 
Let us recall what we mean by a mathematical proof. “A proof is a deductive 
argument that claims to show a conclusion is a logically necessary consequence 
from agreed upon assumption” (Ciosek et al., 2017, p. 47, emphasis in the 
original). When carrying out a proof, not only deductive reasoning can be 
applied, but also reductive, indirect proof or induction. These methods are often 
combined (Siwek, 2005). 
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Proving theorems and carrying out tasks that require proving is not a simple 
activity. It is difficult for both students and sometimes teachers (Ciosek et al., 
2017; Dąbrowski, 1993; Mingla, 2020; Otten et al., 2021). Ciosek et al., on the 
basis of the analysis of numerous studies, state that “pre-service and in-service 
mathematics teachers have various difficulties in understanding the essence of 
mathematical proof” (Ciosek et al., 2017, p.45). Interestingly, Dąbrowski (1993) 
noted in his research that older students, more often than younger, less 
experienced colleagues, are able to recognize erroneous reasoning as true if they 
used methods known to students (even if there are errors in them). The younger 
students tried to understand the logic of the proof and rely less on the methods 
used. 
The difficulties in understanding the essence of the mathematical proof 
described in the literature include: 

• problems in deciding whether an argument can be considered 
a mathematical proof, 

• considering the empirical argument sufficient to justify the truthfulness 
of the general statement, 

• adopting erroneous arguments, 

• lack of awareness of the adopted basis of reasoning, 

• recognizing correct evidence as incorrect, 

• recognition of the validity of the evidence and simultaneous verification 
of the truthfulness of the statement on the basis of examples, 

• recognition of the truthfulness of a proof based on the recognition of 
known methods or forms of writing, and not on the basis of mathematical 
content (Ciosek et al., 2017; Dąbrowski, 1993). 

Some of these errors may be related to a lack of critical thinking in these areas, 
e.g., in evaluating arguments. 
RESEARCH QUESTION  
The aim of the study was to check what difficulties students have in critical 
thinking when taking mathematical proofs. Being aware of the fact that many 
activities are involved in critical thinking, we focused on those aspects of critical 
thinking that can occur in the performance of mathematical proofs. In particular, 
answers were sought to the following questions: 

a) Have the students completed the mathematical proofs correctly and are 
they using the arguments correctly? 

b) Do students use the previously learned strategy or create their own? 
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c) Are the presented reasonings properly justified? 
d) Do students consider entry criteria? 
e) Do the respondents provide an explanation of how they reached the 

presentation of the evidence? 
f) Do the same difficulties arise when performing a typical task and a non-

routine task? 
The above detailed questions will help to analyse the mathematical evidence 
presented by the respondents from the point of view of critical thinking 
and indicate the difficulties. 
METHODOLOGY  
The study was conducted at the beginning of 2022. The participants were 
19 undergraduate students of mathematics (22 years old), which enrolled 
in arithmetic and number theory classes. The course lasted one semester and 
ended with a written exam. The exam consisted of 10 tasks, two of which are 
a research tool. Thus, the students tried to write the best solutions. The exam 
lasted 90 minutes, so each task took 9 minutes. 
The research tool consisted of tasks that require a mathematical proof. The tasks 
concerned the issues that were discussed and practiced during the classes, which 
means that the respondents had the opportunity to acquire the knowledge 
and skills needed to perform the analysed tasks. 
The first task was a standard task – analogous examples were performed during 
the classes, so it was enough to use the learned method. The second task was 
non-routine but could be solved with the methods used in the classroom (it was 
necessary to apply the known methods in a situation similar to the one analysed 
during the class). The content of the tasks is presented below. 

Task 1. Prove that the number 26𝑛𝑛+1 + 9𝑛𝑛+1 is divisible by 11 for every natural n. 

Task 2. Show that for every natural  𝑛𝑛 ≥ 1  number  √8𝑛𝑛 + 3 is irrational. 

The study was based on the analysis of students’ written solutions. 
The mathematical proofs they presented were considered in terms of those 
activities that are part of critical thinking. In particular, answers were sought 
to the research questions posed. The study did not intend to analyse statistically, 
but to examine individual instances of critical thinking difficulties encountered 
in carrying out mathematical proof. 
Each student’s solution was analysed in terms of difficulties or errors. 
A description of the coding process of the difficulties noted is given below: 

• use of incorrect mathematical transformations – incorrect application 
of properties of mathematical operations or use of false properties 
of operations; 
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• application of the scheme (mathematical methods) without 
understanding it – referencing the remembered dependencies, although 
in a given case they are not true; using memorized arguments, even 
though in this case they do not make sense (they are untrue); 

• use of empirical calculations as a basis for drawing general conclusions 
– the use of empirical checks as a basis for justifying divisibility 
in general cases or drawing general conclusions based on the 
calculations performed for a few initial natural numbers; 

• not all stages of the proof are shown – a fragment of the proof 
(beginning or some elements) is given; 

• use of false argument – use of false, incorrect dependency or a false 
statement. 

ANALYSIS OF STUDENT SOLUTIONS 
The results will be presented firstly in relation to the tasks, and then collectively. 

 
Figure 1: Correct solution of task 1. 

Task 1 results 
Task 1 requires showing the divisibility of natural numbers. This is a typical 
problem. To demonstrate divisibility, the properties of the congruence had to be 
used. An example of a correct solution is shown in Figure 1. The respondents 
coped with this task quite well. Eleven (out of 19) students presented a fully 
correct proof – they used the correct reasoning and justifications, took into 
account the initial criteria and explained how they came to present the evidence. 
All these students applied the solution strategy learned during the course 
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(ten deductive proofs and one inductive proof). It can be concluded that in these 
cases no problems with critical thinking were detected. 
The next two solutions present the evidence with minor errors (e.g., a mistake 
in changing the sign of a number in the notation), but nevertheless show 
the correct line of reasoning and logical justifications. 
There were significant errors in six of the responses. Their authors also used 
the strategies of solutions learned during the classes (mainly deductive proofs), 
but there were two attempts to combine or change the method of carrying out 
the proof. Despite the errors, only two people left the proof unfinished, while 
the others presented a solution, the punch line of which is to prove the thesis 
(unfortunately, there are errors in the reasoning). 

 
Figure 1:  Example of applying a rule without understanding it. 

Examples of significant errors are shown in Figure 2 and Figure 3. 
In both cases, the students applied the previously learned rule without 
understanding it (critical thinking mistake). These people remembered that when 
using the congruence property, it is advantageous to find the congruence 
of a given number to 1. Then you can take advantage of the fact that 
⋀ ⋀ (𝑎𝑎 ≡ 𝑏𝑏 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝  ⟹    𝑎𝑎𝑛𝑛 ≡ 𝑏𝑏𝑛𝑛 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝)𝑎𝑎,𝑏𝑏∈ℤ𝑛𝑛,𝑝𝑝∈ℕ . Thus, the students at one 
point put a 1 in the place for another number, although there is no logical 
justification for doing so. They made further transformations using congruence 
with the number 1, because they simply demonstrated the desired thesis, but did 
not take into account that the argument they refer to is false. 
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Figure 2:  Example of incorrect mathematical transformations. 

Such actions also show that the properties of the congruence are not fully 
understood, which results in incorrect application of some properties (using 
wrong mathematical transformations). Thus, the students refer to false 
arguments, which is a critical thinking mistake. 
The reasoning presented by 19 students contains the following errors 
(the number in parentheses indicates how many student solutions the error has 
occurred): 

•  use of incorrect mathematical transformations (5); 

• application of the scheme (mathematical methods) without 
understanding it (4); 

• the use of empirical checks as a basis for justifying divisibility in 
general cases (1); 

• not showing all steps of proof (1); 

• calculation error (1). 
The errors in the students' answers testify to the incorrect presentation 
of the proofs, the use of unjustified arguments and the making of wrong 
decisions. Moreover, it can be assumed that the student, when returning such 
(incorrect) solution, considered it correct, which may also indicate an incorrect 
evaluation of the evidence. 
The indicated difficulties concerning critical thinking were demonstrated 
by the students when solving a standard task requiring the presentation 
of a mathematical proof. 
It is worth emphasizing that even in incorrect solutions, the respondents tried 
to explain how they came to present the evidence. No errors were found 
in taking the assumptions into account in the student solutions. Thus, there are 
elements of critical thinking that did not pose difficulties to the respondents 
in this task. 
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Task 2 results 

In task 2, the students had to prove that the numbers in the form √8𝑛𝑛 + 3 are 
irrational for every natural n. This is not a routine task, but the methods 
by which this proof can be made were practiced during the arithmetic course. 
The students had much more trouble with this task. Only 2 students (out of 19) 
provided correct evidence. They applied the evidence indirectly, presented 
the justifications correctly and explained the reasoning used. 
Every third respondent (7/19) did not attempt to complete the task, while 
10 people presented reasoning that cannot be considered correct. Further 
analyses will concern these 10 solutions.  
Most of these 10 students used deductive proof when doing this task, three 
people did the proof indirectly and one was a combination of deductive and 
indirect reasoning. Unfortunately, in half of these arguments (5), 
the justifications were based on empirical calculations (see figure 4). 
The examples calculated for n = 1, 2, 3 were used to draw general conclusions. 

Figure 4: Empirical justification taken as proof. 

This shows a misunderstanding of the essence of the mathematical proof, 
and thus shows a lack of critical thinking in correct proof evaluation. 
The type of reasoning used in this task reflects the fact that students performing 
a non-routine task much more often (7 people) create their own problem-solving 
strategy. Only 3 people used the method presented in the course based on the 
analysis of square residuals. Interestingly, 3 out of 7 people using a different 
method referred to the strategies known earlier, related to the presentation 
of a rational number in the form of a quotient of two whole numbers. 
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Unfortunately, regardless of the adopted strategy, these 10 solutions cannot 
be considered correct. 
It is worth noting that out of these 10 students, 4 provided only part of the 
reasoning, of which 3 presented fragments are correct, contain good 
justifications and explanations, but their authors were not able to prove further 
elements of the proof. This is evidence of the critical thinking of these people, 
as they did not apply false arguments or erroneous generalizations. 
The good side of all the answers is that the students take the assumption into 
account, and they tried to explain the presented reasoning. Thus, these areas 
of critical thinking did not pose any difficulties to the respondents in this task. 
However, difficulties appeared in critical thinking in assessing the correctness of 
the evidence and the arguments used (7 people).  
The reasoning presented by 10 students contains the following errors: 

• use of incorrect mathematical transformations (6); 

• use of empirical calculations as a basis for drawing general conclusions 
(5); 

• use of a false argument (6); 

• not all stages of the proof are shown – a fragment of proof was given 
(4). 

The main problem with critical thinking was the use of unjustified or wrong 
arguments. Examples of invalid arguments used by students: 

• 11, 19, 27 do not have a rational root, so no matter how much 8 we add, 
it will always give us an irrational number. 

• 8n is even, 3 is odd, so 8n + 3 is odd for any 𝑛𝑛 ≥ 1, and the root of the odd 
number is irrational. 

The students presented a general conclusion not based on deductively justified 
rationale, but on examples or erroneous arguments. This is a misunderstanding 
of the idea of a mathematical proof, and thus a difficulty in critical thinking in 
proof and argument evaluation. 
CONCLUSIONS 
Research has shown that students of mathematics have some difficulty in critical 
thinking in correctly evaluating evidence and arguments. Difficulties appeared 
both in the performance of a typical and non-standard task, but they were of 
a slightly different nature. 
In the case of a typical task, more than half of the respondents completed 
it flawlessly. The students applied the previously learned strategy, considered 
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assumptions, and presented explanations. Unfortunately, there were solutions 
that used previously known schemes without understanding them, which 
resulted in incorrect mathematical operations. Thus, incorrect arguments were 
used. 
The non-routine task was much more difficult. Every third student did not do it, 
and only 2 people presented the correct evidence. In the case of an unusual 
problem, students not only used the learned strategies, but also searched for their 
own new solutions. Unfortunately, there were erroneous justifications in these 
solutions. The most common problem in critical thinking was the use of false 
arguments (incorrect assessment of the truthfulness of arguments) and the use of 
empirical justifications as the basis for demonstrating general conclusions 
(incorrect assessment of the truthfulness of evidence). 
The results of the study conducted are consistent with the research conducted 
by Harel and Sowder (2007) on understanding the correctness of evidence. They 
showed that students often used empirical schemes to provide evidence. They 
also often did not know what characteristics of the argument should 
be acceptable in mathematics. Current research has confirmed these difficulties 
and, in addition, pointed to their correlation with the lack of critical thinking 
in these areas. 
It is worth emphasizing that there were elements of critical thinking in which 
the respondents did not show difficulties, such as: explaining reasoning, taking 
assumptions into account, and applying learned strategies. Unfortunately, they 
show difficulties in assessing the correctness of evidence and arguments. 
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ONE TASK – DIFFERENT SOLUTIONS 
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University of Rzeszow, Poland 
 

The aim of mathematics education is not only to equip the student with the 
necessary mathematical knowledge and skills that can be useful in everyday life; 
strong emphasis is put on developing creative and critical thinking. This can be 
achieved by setting various tasks to stimulate students’ creativity. Discovering 
the rules by the students and finding dependencies between them in which there 
is no pre-imposed solution favours the development of critical and creative 
thinking. In this paper, the results of students’ work on such a task are 
presented. Students followed different approaches to the same problem, showing 
a wide spectrum of solutions.  
INTRODUCTION 
In recent years a lot of effort has been put into improving the educational 
system. The changes which were made concerned not only the way the system 
was organized, but also affected the curriculum of teaching. The changing 
reality in which we are living forces a change in the approach to education. 
Mathematical education faces new challenges these days. The goal is not only to 
equip the student with the right mathematical knowledge of concepts and 
properties, which is important, but there is also something else. It is important to 
equip the student with skills which are useful in real life (da Ponte, 2008; 
Krygowska, 1985, 1986). Learning and teaching mathematics is primarily 
understood as learning to think, act and communicate mathematically 
(Arzarello, 2016). In addition to substantive knowledge, the students should also 
have a whole range of mathematical skills, such as the ability to analyse and to 
make hypotheses, to argument, to have justification ability, and to have creative 
and critical thinking. Especially critical and creative thinking is particularly 
important (Oldridge, 2015). It seems that this approach was important for those 
who are preparing a new core curriculum in the Polish educational system. 
Changes in the curriculum put the main emphasis in the teaching of mathematics 
focused on the development of thinking. The idea is to educate in such a way 
that the student will be a self-thinking person (MEN, 2017). Therefore, an 
important goal for the teachers is to promote critical thinking by suitable 
activities. Students who can think critically grow into lifelong problem solvers. 
Critical thinking with students means that they can take information and analyse 
it, draw conclusions, formulate opinions, reflect on their work, and approach 
problems in a systematic way.  
Another issue is how the teaching-learning process is organised. The essential 
aspect of this is the significant role of the student in discovering his or her own 
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mathematical knowledge. The teacher should have a role of an observer and 
provide some help for the student. Student’s self-discovery of knowledge has 
much more measurable effects. 
THEORETICAL FRAMEWORK 
Building up the students’ mathematical knowledge is a long and complex 
process. It consists of a number of factors. An important element here is the 
students’ own experience. The more experience they have the better cognitive 
process the gain. 
In mathematics education, two fields are mainly distinguished: arithmetic and 
geometry. Both are interdependent and interpenetrate and complementary to 
each other, although they have different roots and approaches. The world of 
arithmetic is ultimately structured, governed by clear rules. The individual 
records and symbols used in this world are equally read by all. The situation is 
different in the world of geometry. As Hejny and Jirotkova (2006) write: 

The world of geometry is a community of individuals or small families and there is 
a large diversity in the linkages between them. From the didactic point of view, 
arithmetic is suitable for developing abilities systematically, and geometry is more 
suitable for abilities such as experimenting, discovering, concept creation, 
hypothesizing and creating mini-structures. (p. 394) 

Thus, geometry is a good starting point for developing mathematical thinking 
and a creative approach. Especially if we combine geometric ideas with the 
search for regularity. Studying regularity, discovering rules and dependencies is 
one of the ways to develop students’ mathematical thinking. In literature one can 
find descriptions of research in discovering and generalizing of noticed rules 
(Carraher, Martinez, & Schliemann, 2008; García Cruz, & Martinón, 1997; 
Littler & Benson, 2005a, 2005b; Mason, 1996; Orton & Orton, 1999; Stacey, 
1989; Zazkis & Liljedahl, 2002a, 2002b;). Solving tasks related to noticing and 
discovering regularity has a lot of advantages. It stimulates the development of 
the students’ thinking and creativity, it also teaches the right approach to: 
analysis, hypothesis, verification. The search for regularity is one of the methods 
of solving problems. Swoboda (2006) writes about it: 

… noticing the regularity is a skill desired by all means. Activities in which a child 
is to notice the regularity, act according to the rule – are those stimulating his 
mental development. They are also the basis of mathematical thinking at each level 
of mathematical competence. (pp. 51-52) 

The tasks related to discovering the rules are interesting and full of challenges 
for the students. They are also a source of satisfaction for them (Gruszczyk-
Kolczyńska, 2001; Urbańska 2003). Used tasks connected with searching and 
noticing dependency and regularity could support the development of students’ 
reflective, critical thinking. On the other hand, this kind of thinking - critical and 
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2. How many matches and squares will 
be in the 6th and 7th grids.

1. Draw the fourth and fifth grids. Give 
the number of matches used to create 
each grid and the number of squares 
you see in each grid.

No of grid 1 2 3 4 5
Number of 
matches
Number of 
squares

3. Is it possible to create a grid with 
the same number of matches as the 
number of squares? Justify your 
answer.

4. Do you see any correlation between 
the number of the grid and the number 
of matches and the number of squares?
If yes, try to write which one.

reflective thinking - can significantly support the development of mathematical 
thinking, and in particular algebraic thinking. 
METHODOLOGY OF RESEARCH
The study described in this paper was carried out as part of a master’s thesis by 
a student of mathematics at the University of Rzeszow (Pikor, 2021). This study
concerned the generalization skills of primary school students from grades 4-8.
Thirty-four students (grade 4: 12 students, grade 6: 12 students, grade 8: 10 
students) participated in this study. It was conducted during one meeting in each 
class. The research material consisted of students’ written works and 
observations during the research.
In this paper I am presenting the general results from all the classes. However, 
I particularly focus on the work of students from the fourth grade. My goal was 
to analyze the strategies used by these students during solving the tasks. I was 
interested in what way they were looking for solutions and what dependencies 
they managed to find there. Hence, the research questions were:

• What work strategies did the fourth-grade students use? 
• What dependencies did they find in the task? 
• Did the way of working on the task allow students to see the dependencies 

and make a generalization?
The research tool was a worksheet with the following tasks:

Figure 1: The research tool.
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The tasks presented on the worksheet did not impose a method of solution. The 
students had complete freedom in choosing the method of proceeding and 
interpreting the content of the task. Two possibilities were considered as the 
correct solution. It was possible to count only unit squares, i.e., squares with 
a side length of one match. Then the sequence describing the number of squares 
obtained by the student would look like this: 1, 4, 9, 16, 25, 36, 49, … etc. 
Therefore, they were squares of consecutive natural numbers (here: numbers of 
consecutive grids). In the second approach, it was possible to count all the 
squares present in the grid, i.e., those with the side of one match, two matches, 
three matches, etc. Then the obtained sequence describing the number of squares 
would look like: 1, 5, 14, 30, 55, 91, 140. Here, in order to obtain the result, one 
had to add the next squares of natural numbers to the first grid in the series. Both 
solutions were treated as correct. As for the number of matches, only the 
analysis of the results entered in the table made it possible to notice the 
appropriate relationship and discover the rule. To calculate the number of 
matches, you had to add successive multiples of 4 to the previous number (e.g., 
for grid 2: 4 + 8, for grid 4: 4 + 8 + 12). Hence, the general rule was as follows: 
the number of matches used to build the grid number n is the sum of the 
consecutive natural numbers from 1 to n multiplied by 4, which can be written 
as 2n (n + 1).  
THE RESEARCH RESULTS 
The analysis of the research material allowed to distinguish several strategies 
used by students to calculate the number of squares in a given grid (regardless of 
which class they were in): 
A – unit square – students counted only squares with the side of 1 match 
B – all squares – students counted all possible squares that were visible in 
a given grid (i.e., 1×1, 2×2, 3×3, etc.) 
C – biggest square and unit squares – students took into account a large square 
and creating it the unit squares  
D – others – different approaches of students, e.g., different for even numbered 
grids and different for odd-numbered grids  
Students usually calculated the number of matches by counting them one at 
a time on each grid. The results obtained as a result of the analysis of student 
papers showed that the dominant approach was to count unit squares. In 
addition, the students tried to see the relationship between the number of 
squares, the number of matches and the grid number. However, the noticed 
dependencies did not always lead them to the general rule. The aggregate results 
of the surveys of all the students taking part in them are presented in the table 
below:  
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 Strategy 
Number of 

squares 
Number of 

matches Noticed 
dependences 

Generalization 
A B C D Corr. Incor. Corr. Incor. 

4 50% 25% 25% 0% 67% 33% 50% 50% 17% 0 

6 80% 17% 25% 8% 75% 25% 75% 25% 60% 30% 

8 30% 30% 30% 10% 90% 10% 90% 10% 50% 30% 

Table 1:  Results from preliminary research. 

As we can see from Table 1, all students participating in the study undertook to 
solve the tasks from the worksheet. In addition, most of the first two tasks were 
completed correctly (more than 80% of students gave the correct number of 
squares in individual grids, and 75% - the correct number of matches). The 
students tried to see the relationship between the number of squares, the number 
of matches and the grid number. However, they had a lot of difficulties in 
generalizing the observed dependencies and writing it down in the form of 
a general rule.  
EXAMPLES OF STUDENTS’ WORK 
Fourth-grade students had the least experience in algebra, hence their approach 
to the solution was the most intuitive. Below I am presenting an analysis of the 
selected works done by the students from the fourth grade. 
Example 1 
Student S1 tried to solve all the tasks. The result of his work is shown in Figure 
2. 
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Figure 2: Example of work of student S1. 

Analyzing the solutions presented by this student, we can see that in the case of 
the number of squares, he used a strategy: the biggest square and unit squares. 
This is evidenced by the recorded calculations for the 6th and 7th grids: 
6×6+1=37 and 7×7+1=50. This approach may indicate that the student has 
noticed that the entire grid has the shape of a square. On the side of a large 
square there are as many small ones as the number of the grid. Hence, one large 
square is divided into n×n smaller, unitary ones. Such perception is strongly 
related to the visual aspect of the task. Perhaps the visual aspect was the 
dominant one here. The student consistently applied the noticed dependence in 
the further part of the task. When counting the number of matches for individual 
grids for the first task, the student used the help of drawings. He counted ‘on 
foot’, marking each counted match, which can be seen in the drawings of the 
grids. This method worked well with the first five grids. Moving on to the 
second task, the student began to analyze the successive numbers and noticed 
that the values were increasing by 8, 12, 16, 20 consecutively. Hence, he 
concluded that the number of matches in the 6th grid would increase by 24, and 
in the 7th – by 28. He wrote this discovered relationship in an additional table: 
84+28=112. The lines on the matches from the first column and the first row 
visible in the grid drawing No. 7 may indicate that the student was checking the 
correctness of his hypothesis – the converted elements are 28 matches. The 
discovery of this relationship was possible due to the fact that while drawing 
subsequent grids, the student noticed that each subsequent one is created by 
adding one row and one column to the previous one. The experience gained 
during the creation of subsequent illustrations resulted in the discovery of the 
arithmetic relationship between individual numbers in the ‘number of matches’ 
line. The student attempted to answer the remaining questions. However, due to 
the lack of adequate knowledge in the field of algebra, he was unable to write 
down the observed dependencies in the form of a general formula. He only 
noticed that: “a grid is a square composed of small squares, and for one square 
you need four matches”. This is, in a sense, a justification for the rule he used in 
the task. 
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Example 2 
The student S2 focused his work primarily on the visual aspect of the task. The 
most important thing for him was fairly accurate mapping of the girds, hence 
paying attention to the proportions, colours or knots that are matchheads. When 
starting to draw, he first tried to draw a square correspondingly larger than the 
previous grid, and then divided it into smaller ones. For this student, it was 
important to count the unit squares of which the individual grids are composed. 
He also noticed that the number of squares in each row and column of the next 
grid is the same as its number. Hence, the number of squares is the number of 
the grid multiplied by itself. These results were also entered in the individual 
boxes of the table: 1, 4, 9, 16, 25. Quite surprising in the case of this student is 
the answer to the question about the number of matches. It seems suggestive to 
include the first two numbers ‘4’ in the table. This may have resulted in the 
discovery of a relationship: the number of matches in a given grid is the same as 
the number of squares in the next grid. And the geometric relationship 
associated with the number of squares was easier to notice, hence the student 
first calculated the number of squares, and only then typed the number of 
matches on its basis. The consequence of this behavior can be seen in the saved 
solution to task 2: “in grid 6 there will be 49 matches”. For the student, the 
discovery of these dependencies was so important that he did not see the need to 
verify them. 

 
Figure 3: Example of work of student S2. 
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This approach may indicate that for this student the main goal was to draw more 
grids. The very way of working on the task – drawing whole squares at once and 
dividing them into smaller ones – did not give much chance of noticing many 
dependencies. The series-column system obtained in this way imposed a way of 
counting squares (a reference to the chocolate multiplication model, 
a connection with counting the square area). The very understanding of the 
concept of a square in this situation seems quite narrow: the student treats the 
square as an independent figure that can be ‘filled’ with a larger shape. 
Example 3 
The S3 student used method B in her work – that is, all possible squares. She 
analyzed the subsequent grids very carefully. She noticed that there are squares 
of different dimensions in them. She emphasized this fact by outlining squares 
of the same dimensions with the same colour. In this situation, the total number 
of squares in a given grid is the sum of the squares of consecutive natural 
numbers from 1 to the grid number. This discovery was also recorded with the 
appropriate actions in task 2. Nothing was accidental about this child's work. 
The girl noticed that subsequent grids are created by drawing one row and one 
column. She was aware that in order to count the number of matches to be 
arranged, she did not need to count all the elements on individual grids, but only 
the ‘added’ ones. The result obtained in this way is enough to add to the number 
of matches from the previous grid and in this way, we get the number of 
matches used to build a given grid.  

 
Figure 4: Example of work of student S3. 
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Confirmation of the use of such a strategy is the drawing made for grid No. 6 
and 7. Actually, it is in a sense a ‘complement’ to the drawing of the grid No. 5. 
The student did not feel the need to draw the entire grid. She drew only those 
elements that would be added to grid No. 5 to obtain grid No. 6 and No. 7 from 
it in turn. In addition, the girl wrote down her calculations, thus confirming the 
strategy which was used by her. This way of working shows that the student 
thought over the whole solution very carefully. She was able to notice different 
dependencies in the task. The ability to extract different squares from a given 
grid indicates that the concept of a square is well developed by her and 
understood in an abstract level. A square is not a concrete figure, but one that 
satisfies certain properties. Here it is a quadrangle with the sides of the same 
length. 
SUMMARY 
For the students taking part in the study, especially those from the fourth grade, 
the tasks set before them were a challenge. However, they were able to deal with 
them quite well. They made an attempt to solve all the tasks from the work card 
with a great success. Based on the results, we can see that:   

• The experience of building subsequent grids resulted into discovering 
dependencies, allowing to see the relationship between the number of 
matches and the number of squares in neighbouring grids.  

• The students understood the concept of a square differently – for some of 
them it was an abstract concept, they were able to see different squares in 
one grid, for others it was a concrete concept, and a square had to be 
clearly visible and separated.  

• Depending on the adopted strategy, students were able to discover 
different rules. The quickest discovered geometric relationship was the 
one related to the number of squares in the strategy A or C (that is, that 
the number of squares is the number of the grid multiplied by itself). This 
was strongly related to the visual representation of the task.   

All students started their work with the concept of a square as a concrete object. 
Sometimes it was a large square divided into smaller ones (like strategy C), and 
sometimes small ones arranged into a large square (like strategy A). The visual 
representation of the task and the focus on the way of drawing subsequent grids 
could suggest some solutions to the students. Sometimes it was not helpful for 
them, it even made it difficult to look at the task in a different point of view. 
Just counting the number of squares or the number of matches for individual 
grids did not result in the discovery of the appropriate rule. For this, it was 
necessary to analyze these results or analyze how to build subsequent grids.  
If there was a reflection and critical thinking on the obtained results, there were 
also attempts to formulate dependencies (as in the case of S1 and S3). The lack 
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of verification of the hypotheses and focusing only on providing the results 
resulted in the lack of finding appropriate relationships (as in the case of S2). 
Therefore, it is worth paying attention to the ability to critically approach your 
actions. Physical experiences also proved to be very important. They definitely 
made it easier to see the dependencies. This is consistent with Hejny’s theory of 
building up the students’ mathematical knowledge (Hejny, 2004).   
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In this quantitative study, we investigated whether formal reasoning and the 
spatial ability of high school students is linked with their level of geometrical 
thinking. A questionnaire was completed by 203 students attending Grade 9, 
Grade 10, and Grade 11 in public schools in Greece. The results of the 
conducted analyses revealed that the students’ geometrical thinking was 
statistically significantly positively correlated with their spatial ability and 
formal reasoning. Moreover, considering grade of attendance, geometrical 
thinking and spatial ability statistically significantly differed, while formal 
reasoning marginally did not statistically significantly differ. 
INTRODUCTION 
The strong presence of mathematics in the modern curricula seems to be linked 
with the assumption that learning mathematics is positively linked with various 
aspects of critical thinking and that it “develops general thinking skills that are 
useful through life” (Attridge & Inglis, 2016, p. 3). However, it was not until 
relatively recently that researchers attempted to specify the qualities of the 
hypothesised positive links (Inglis & Attridge, 2016). Critical thinking refers to 
both “the ability to reason well and the disposition to do so” (original emphasis; 
Bailin & Siegel, 2003, p.182). Considering mathematics, critical thinking is 
linked with the employment of appropriate formal reasoning (both in the 
generation and the evaluation of a mathematical argument), as well as with 
mathematical problem solving (Jablonka, 2014). Geometry historically lies at 
the heart of mathematics, as it was co-developed with arithmetic to facilitate the 
human societies to cope with everyday difficulties –and beyond– successfully 
and more efficiently (Moutsios-Rentzos & Spyrou, 2015).  
Geometrical problem solving requires the solvers’ spatial ability: the ability to 
“formulate mental images and to manipulate these images in the mind” (Lean & 
Clements, 1981, p. 267), also referring to “an individual's skill in perceiving 
fixed geometric/spatial relations and in applying mental transformations such as 
rotation or reconfiguration to existing spatial relations” (MacLeod et al., 1986, 
p. 141). Aspects of spatial ability is at work when a solver faces a geometrical 
problem; to mentally transform a figure, to selectively isolate parts of the figure 
and the relationships of its parts, to deduce numerical information based on 
figural relationships and vice versa etc. Duval (2006) notes that “a “geometrical 
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figure” always associates both discursive and visual representations, even if only 
one of them can be explicitly highlighted according to the mathematical activity 
that is required” (p. 108). At the same time, geometrical problems require the 
ability to apply formal reasoning rules to orchestrate the aforementioned 
complex information and to deductively produce mathematically valid 
arguments. 
In the various educational systems, Geometry has been associated with the 
introduction of the modern deductive-axiomatic structure of mathematics and 
with the notion of mathematical proof. In Greece, Geometry, and in particular 
Euclidean Geometry (partially due to historical, sociocultural reasons), has held 
a major place in the mathematics curriculum: from pre-school education to high 
school. The last decade, it appeared that Geometry was not treated in the 
curriculum as essential as other mathematical topics, which raised the concerns 
of the Greek mathematicians (including the Hellenic Mathematical Society). 
Nevertheless, in the latest 2021 comprehensive reform of the mathematics 
curricula from ages 4 to 18 years old (piloted this academic year and planned to 
be implemented in the following academic year), the importance of Geometry 
has been elevated by its being strongly present throughout the school grades; 
even in the curriculum of the last high school grade (I.E.P., 2021). 
Consequently, it is reasonable to pose questions about the broader benefits of 
learning Geometry, about the nature of geometrical thinking, as well as about its 
links with other aspects of reasoning. Such questions are scientifically relevant 
and educationally timely. In this study, we draw upon the van Hiele (1986) 
theory of geometrical thinking levels, to investigate its development across three 
different Grades: the last Grade of the Greek Gymnasio (middle school) and the 
first two Grades of the Greek Lykeio (high school). Considering that spatial 
ability and formal reasoning are essential in the students’ successfully 
progressing through the different van Hiele levels, we include in our 
investigations aspects of the students’ spatial ability and of their formal 
reasoning skills. 
GEOMETRICAL THINKING, SPATIAL ABILITY AND FORMAL 
REASONING 
The mathematical object, being a mental object, may be communicated through 
its representations, but it is not identified with any of them; it emerges through 
the relationships amongst its representations (Duval, 2006). The geometrical 
object is a mathematical object, characterised by the fact that “in geometry it is 
necessary to combine the use of at least two representation systems, one for 
verbal expression of properties or for numerical expression of magnitude and the 
other for visualization” (Duval, 2006, p. 108). Following these, Moutsios-
Rentzos et al. (2014) stress that the complexity of the geometrical object may 
prove to be particularly challenging for the students, as the co-existence 
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symbolic and visual registers may be linked with different levels of 
generalisation for each register. 
In this study, we acknowledge the complexity and the difficulties the students 
face when reasoning about geometrical objects and relationships, by explicitly 
attempting to consider two of the aspects that are at work in geometrical 
thinking: spatial ability and formal reasoning. For this purpose, we adopt the 
perspective of Pierre van Hiele and Dina van Hiele-Geldof, who conceptualised 
geometrical thinking to develop in a hierarchy of five levels (Burger & 
Shaughnessy, 1986; Hoffer, 1981): 1) Visualization or Recognition; reasoning 
“primarily by means of visual considerations of the concept as a whole without 
explicit regard to properties of its components” (Burger & Shaughnessy, 1986, 
p. 31), 2) Analysis; reasoning by employing the properties of the geometrical 
object, but not the relationships amongst those properties, 3) Abstraction (or 
Ordering); the student “logically orders the properties of concepts, forms 
abstract definitions, and can distinguish between the necessity and sufficiency of 
a set of properties in determining a concept” (Burger & Shaughnessy, 1986, p. 
31), 4) Deduction; reasoning formally within an axiomatic system, 5) Rigor; 
reasoning about different axiomatic systems and different geometries. It should 
be added that Clements and Battista (1992) noted that young students show 
aspects of reasoning of the first level (recognition), which they suggest 
constitute another level (pre-recognition): students at this level reason based on 
some of the visual characteristics of a geometrical object, which does not allow 
them to differentiate between different ‘visually-close’ objects (e.g., square and 
parallelogram). 
The interplay between the symbolic and the figural, along with the qualities of 
the reasoning employed are at the heart of the Van Hieles’ theory. Hence, it 
seems reasonable to consider in our investigations those qualities, starting with 
the students’ ability to mentally manipulate geometrical figures, their spatial 
ability. Spatial ability appears to be challenging to be defined as it is 
conceptualised to include a variety of factors, which may be differentiated 
between dynamic and static (Buckley et al., 2018). The main body of the related 
research seems to focus on the static spatial factors (linked with static stimuli 
e.g., a drawing), though the dynamic spatial factors (linked with moving stimuli 
e.g., a moving picture) are also investigated. In this study, we focus on the static 
spatial factors, which are directly linked with the type of representations mostly 
employed in middle school and high school Geometry. Some of the spatial 
factors identified, include McGee’s (1979) discussion about spatial visualisation 
(including the ability to mentally rotate or invert elements; e.g., the Paper-
Folding Test) and spatial orientation (including the ability to visualise an object 
from diverse viewpoint; e.g. the Cube Comparison Test), spatial relations (the 
ability of mentally rotate two-dimensional objects e.g. various card tests; 
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Lohman, 1979), spatial factors referring to speed and flexibility (Carroll, 1993) 
etc.  
Considering the need for appropriately applying formal logic rules to produce 
a valid argument in geometry, we focused on deductive reasoning and, in 
particular, on conditional inferences: on verbal expressions “If..., then…” 
(including modus ponens, modus tollens, logical fallacies) and on versions of 
the Wason Selection Task (e.g., Wason, 1968).  
Following these, in this study, we address the following questions:  

1) What is the development of geometrical thinking, spatial ability, and 
formal reasoning as the students progress from Grade 9 to Grade 11?  

2) What is the relationship of geometrical thinking levels with spatial ability 
and formal reasoning?  

METHODS AND PROCEDURES 
The participants of the study were chosen to be at Grade 9 (the last grade of 
middle school; Gymnasio), Grade 10 and Grade 11 (the first two grades of high 
school; Lykeio). Overall, 203 students attending public schools in the region of 
North-Eastern Greece participated in the study (see Table 1). 

 Boys   Girls  Total  
 f %  f % f % 

Grade 9 38 40.0  40 37,0 78 38.4 
Grade 10 29 30.5  35 32,4 64 31.5 
Grade 11 28 29.5  33 30,6 61 30.1 
Total 95   108  203  

Table 1: The participants of this study. 

The rationale of this choice was that at Grade 9 the curriculum devotes two out 
of the four hours (per week) of mathematics to Geometry and at the same time 
this grade is the last grade of compulsory education in Greece. In Lykeio, 
Geometry is for the first time an autonomous course with the same amount of 
the curriculum time allocated (two hours per week). In Gymnasio, the 
curriculum includes basic geometric concepts of planar Euclidean Geometry; for 
example, elements of the triangle and types of triangles, congruency and 
similarity of triangles etc. The same topics are re-introduced in Lykeio; this time 
following a Euclidean pseudo-axiomatic format (with definitions, theorems, 
deductive reasoning, proofs etc). 
In this quantitative study, the data were collected through a three-part 
questionnaire. The first part of the questionnaire focussed on the level of 
geometrical thinking. We used a version of the questionnaire developed by 
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Usiskin (1982); translated and adapted for Greek middle school and high school 
students by Tzifas (2005). For the purposes of the study, we used only the items 
referring to first four Van Hiele levels. Twenty items (five for each level) assess 
the students' geometric thinking, with the correct answers scored as follows: 1 
point Level 1, 2 points for Level 2, 4 points for Level 3, and 8 points for Level 
4. This sums to a maximum of 75 points. The second part identified the spatial 
ability of the students through nine items: five items investigating spatial 
relations and in particular the analysis and synthesis of figures (Hidden Figures 
task and Form Board task, drawing upon Kospentaris, 2011), and four items 
focussing on mental rotations (drawing upon Vandenberg & Kuse, 1978). Each 
correct answer was assigned 1 point, summing up to a maximum of 9 points. 
Finally, the third part investigated the students’ reasoning with the conditional 
inference: verbal expressions (4 items) and Card Selection Task (12 items, 
drawing upon Moutsios-Rentzos, in preparation; see Figure 1). Each correct 
answer was assigned 1 point, summing up to a maximum of 12 points.  

 
Figure 1: Sample item of the version of the Selection Task in our study. 

The statistical analysis was conducted with SPSS 27, including Pearson 
correlations and ANOVAs (Games-Howell test for between group 
comparisons). 
RESULTS 
In Table 2, we summarise the overall students’ geometrical thinking, spatial 
ability, and formal reasoning, as well as the respective scores for each grade. It 
should be noted that the students’ geometrical thinking was within the range of 

Imagine you're working on the quality control of a toy factory that makes a card game. 
Each card in the game has a shape on one side and a color on the other. 
 
The purpose of your work is to ensure that all cards that will enter the game will be subject 
to the rule: 

If a card has a circle painted on one side, then the other side of the card is yellow. 
 
In order to be able to do your work faster, you need to be certain which cards satisfy the rule 
(in which case they will be put in the game box), so you can only check the ones you are not 
sure about. 
The production machine displays four ('4') cards at a time. 
 
What will you do for the card below? 

 
Choose one of the following answers: 
A. I know it will get into the box, without turning it over. 
B. I know it won't get into the box, without turning it over. 
C. I have to turn it to make sure, whether it is put in the box or not. 
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points of van Hiele Level 3. Their mean score was 26.5, while the points for 
each level being are respectively 5, 10, 20, 40. Nevertheless, the mean score of 
all three grades was found to be below 35 (which is the sum of the points of the 
first three levels), which is in line with the literature (Burger & Shaughnessy, 
1986; Usiskin 1982). Moreover, the students appeared to have difficulties in 
coping with given tasks. The mean score of the students’ spatial ability was 
found to be 4.0 (out of the maximum 9) and of their formal reasoning 5.3 (out of 
the maximum 12). The students’ difficulty was also present when focussing on 
each grade separately. 

 M 25% 50% 75% Min Max 
All Grades (N=203) 26.5 16 22.0 33 1 75 

Geometrical thinking  26.5 16 22.0 33 1 75 
Spatial ability 4.0 2 3.0 6 0 9 
Formal reasoning 5.3 3 5.0 7 1 11 

Grade 9 (NG9=78) M 25% 50% 75% Min Max 
Geometrical thinking  19.1 12 18.0 23 1 71 
Spatial ability 3.3 2 3.0 5 0 9 
Formal reasoning 4.8 3 4.0 6 1 9 

Grade 10 (NG10=64) M 25% 50% 75% Min Max 
Geometrical thinking  30.6 16 29.0 45 1 75 
Spatial ability 4.6 2 4.0 7 0 9 
Formal reasoning 5.5 3 5.0 8 1 10 

Grade 11 (NG11=61) M 25% 50% 75% Min Max 
Geometrical thinking  31.7 21 29.0 41 2 73 
Spatial ability 4.2 2 4.0 6 0 9 
Formal reasoning 5.8 3 5.0 8 1 11 

Table 2: Geometrical thinking, spatial ability, and formal reasoning. 

We investigated the role of grade in the students’ scores with three ANOVAs 
(see Table 3). The conducted analyses revealed statistically differences with 
respect to grade in the students’ geometrical thinking and their spatial ability. 
The change in their formal reasoning was found to be borderline statistically not 
significant (P=0.052), though it should be mentioned that the difference in the 
formal reasoning score between Grade 9 and Grade 11was one correct answer.  
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df Mean Square F P
Geometrical thinking 2 3478.585 14.861 <0.001

200 234.077
Spatial ability 2 33.138 4.805 0.009

200 6.897
Formal reasoning 2 18.577 3.005 0.052

200 6.181

Table 3: Geometrical thinking, spatial ability, and formal reasoning: Grades 9 to 11.

The results of the between group comparisons (Games-Howell test) analyses are 
diagrammatically outlined in Figure 2. It was revealed that for both constructs, 
the statistically significantly difference was located to Grade 9 and the fact that 
it was found to be lower than both or one of the other grades. It is hypothesised 
that this may be related to the way that geometry and mathematics in general is 
taught in high school in comparison with middle school, and/or an accumulated 
effect of being mathematically enculturated more time. However, it seems that 
the additional effect of Grade 11 seems not to be statistically significant.

Figure 2: Geometrical thinking and spatial ability: between grades comparisons.

Subsequently, we investigated the relationships amongst the three constructs by 
calculating their overall correlations. In line with the literature (e.g., Buckley et 
al., 2018; Xie at al., 2020), all three constructs were found to be statistically 
significantly positively correlated (see Table 4), which was also evident when 
focussing on each grade separately.

Spatial ability Formal reasoning
Geometrical thinking r 0.593 0.490

P <0.001 <0.001

Table 4: Geometrical thinking, spatial ability, and formal reasoning: correlations.
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In order to gain deep understanding about these findings, we investigated the 
links of the scores in the different van Hiele levels with spatial ability and 
formal reasoning (see Table 5). The results of the conducted analysis showed 
positive statistically significant correlations for all the van Hiele levels. 
However, considering the qualitative differences amongst the four levels and the 
different scores in the three grades, we further pursuit this finding by re-running 
the analysis for the three grades. It was revealed that in Grade 9, formal 
reasoning was statistically significantly positively linked only with van Hiele 
Level 3, whilst no statistically significant correlations were found with the other 
levels. The students who managed to score comparatively higher in this level 
were also scoring higher in formal reasoning. It is posited that this may be 
related to the fact that being successful with the questions at this level requires 
deductive reasoning skills. Nevertheless, in the following grades, this special 
link appears to be broadened, which may be due to the fact that the students are 
scoring higher in all constructs, which results to a broader positive link with 
their spatial ability and their formal reasoning. 

 
vH Level 1 
Visualisation 

vH Level 2 
Analysis 

vH Level 3 
Abstraction 

vH Level 4 
Deduction 

All grades (N=203)     
Spatial ability r 0.528 0.565 0.500 0.438 

P <0.001 <0.001 <0.001 <0.001 
Formal reasoning r 0.300 0.466 0.449 0.360 

P <0.001 <0.001 <0.001 <0.001 
Grade 9 (NG9=78)     

Spatial ability r 0.534 0.383 0.416 0.286 
P <0.001 0.001 <0.001 0.011 

Formal reasoning r 0.220 0.101 0.278 0.204 
P 0.053 0.379 0.014 0.073 

Grade 10 (NG10=64)     
Spatial ability r 0.483 0.630 0.529 0.580 

P <0.001 <0.001 <0.001 <0.001 
Formal reasoning r 0.268 0.581 0.570 0.551 

P 0.032 <0.001 <0.001 <0.001 
Grade 11 (NG11=61)     

Spatial ability r 0.499 0.544 0.449 0.295 
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P <0.001 <0.001 <0.001 0.021 
Formal reasoning r 0.349 0.528 0.394 0.164 

P 0.006 <0.001 0.002 0.205 

Table 5: Van Hiele levels, spatial ability, and formal reasoning. 

CONCLUDING REMARKS 
In this study, we add to the existing body of research by concurrently 
investigating the links between geometrical thinking, spatial ability, and formal 
reasoning. First, we investigated the development of the students’ scores for the 
three constructs across the three grades. The findings suggested that the students 
were on average on Level 3 (“Abstraction”), whereas their spatial ability and 
formal reasoning were below or at par with the hypothetical half of the potential 
maximum. Moreover, it seemed that there was a leap between Grade 9 and 
Grade 10, whereas the students’ advancing to Grade 11 did not seem to 
statistically significantly add to the identified scores. This may be linked with 
the fact that, there is a qualitatively significant change in the way that the 
content is delivered as the students progress to Lykeio (Grade 10): deductive, 
drawing upon definitions, axioms, theorems etc. Hence, it is posited that it may 
be this change of delivery, rather than the higher level of mathematical 
complexity of the content taught in Grade 11, that is linked with the identified 
differences.  
Regarding the links amongst the three constructs, we hypothesised that 
geometrical thinking would be positively linked with spatial ability and in 
particular with the lower van Hiele levels, whilst formal reasoning was expected 
to be linked with higher van Hiele levels. When considering the whole sample, 
statistically significantly positive links were found amongst spatial ability, 
formal reasoning, and all the van Hiele levels. When focussing on each grade 
separately, spatial ability and geometrical thinking remained statistically 
significantly positively linked. Nevertheless, considering formal reasoning and 
geometrical thinking within the different grades, a stark difference in the noted 
pattern was revealed for Grade 9: a specific to Level 3 (“Abstraction”) positive 
link was found, but not in other levels. The students of this grade are in 
relatively lower geometrical thinking level in this grade (M=19.1; with 15 being 
the sum of the first two levels), while they answered correctly only one out of 
the five Level 3 questions (MG9=1.4). Thus, it is hypothesised that for these 
students being more successful in the task of the more demanding level is 
strongly linked with being more successful in the formal reasoning tasks. 
However, we posit that in Lykeio, this peculiarity disappears as the way of 
delivering and/or an accumulated educational effect appears to reinforce the 
broad positive links between geometrical thinking, spatial ability and formal 
reasoning. 
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Consequently, considering the limitations of the sample, we argue that this study 
added to our knowledge about the complexity of the links amongst the three 
constructs, both with respect to the peculiarities of the Greek educational system 
and beyond. Our current research is focussed on broadening the sample size and 
its qualitative characteristics (thus, allowing our further investigating specific 
aspects of the noted links; for example, geometrical thinking levels with specific 
Wason task items and conditional inference items), whilst qualitative studies 
employing a systemic perspective are designed to gain deeper understanding 
about the temporal development of the identified relationships.  
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In this paper we explore the issue of examining and shaping critical thinking in 
secondary school students. The research was conducted to analyse the students’ 
ability to overcome a fast decision-making system influenced by intuition when 
solving mathematical tasks. The research tool used tasks geared towards 
provoking fast and faulty answers. A total of 46 people were interviewed. 
Preliminary answers were provided to several research questions as a result of 
the study. The number of respondents who overcame the fast decision-making 
system increased in each successive stage of the study, despite it dominating the 
first stage of the study. Task hints provided to the students played a significant 
role in activating critical thinking. A conclusion is drawn that critical thinking, 
used to overcome a faulty decision-making system, can be shaped and effectively 
taught through the use of task hints. 
INTRODUCTION 
Critical thinking is a key skill in everyday human life and a skill that should be 
intensively shaped in students, also during mathematics lessons. Our study 
addresses this issue from a particular perspective, showing one possibility for 
preparing instruction with secondary school students that is oriented toward 
developing critical thinking by overcoming the imposition of incorrect and quick 
responses.  
DECISION-MAKING SYSTEM MODELS 
System 1 and System 2 in cognitive psychology 
Our study refers to the interrelationship between reasoning and intuition in 
decision-making. Kahneman (2011) presented a model of human cognition 
based on two modes or ‘systems’ of thinking: System 1(S1) and System 2(S2). 
The author defines it as follows: 

System 1 operates automatically and quickly, with little or no effort and no sense of 
voluntary control. 
System 2 allocates attention to the effortful mental activities that demand it, 
including complex computations. The operations of System 2 are often associated 
with the subjective experience of agency, choice, and concentration. (Kahneman, 
2011, p. 22) 

Leron and Hazzan (2006) stress that these modes operate in different ways, are 
activated by different parts of the brain, and have different evolutionary origins 
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(S2 being evolutionarily more recent and, in fact, largely reflecting cultural 
evolution). In describing how S1 works, Kahneman (2011) points out, among 
other things, that: 

Several of the mental actions in the list are completely involuntary. You cannot 
refrain from understanding simple sentences in your own language or from 
orienting to a loud unexpected sound, nor can you prevent yourself from knowing 
that 2 + 2 = 4 or from thinking of Paris when the capital of France is mentioned. 
(Kahneman, 2011, p. 23) 

Dual process theory vs. mathematics education 
Many researchers are exploring the relationships between the development of 
cognitive psychology and mathematics education. Leron and Hazzan (2006), for 
example, described the dual-process theory (DPT) for the field of mathematics 
education and made a comparative summary on intuition vs. analytical thinking 
in mathematics education, based, among others, on Fischbein (1987) and Vinner 
(1997), and in psychology. Their analysis was summarized in Figure 1. 

 
Figure 1: A comparison of terminology between mathematics education and dual-

process theory (Leron & Hazzan, 2006, p.112). 

They stress the similarity between S1 on the one hand and intuition on the other, 
which can be seen in the left column of Figure 1. 

Examination of the mathematics education literature shows that the definition and 
function of intuition in it are also similar to those of S1. Both are characterized by 
immediacy, high accessibility, automaticity and effortlessness. Also both are 
considered mostly useful and reliable under normal everyday conditions but are 
prone to errors under more complex and abstract conditions, especially due to 
distraction by irrelevant external clues of high accessibility. Here, for example, 
there are a few quotes from two important books on intuition in mathematics and 
science education: 

Intuitive knowledge is immediate knowledge; that is, a form of cognition which 
seems to present itself to a person as being self-evident. [...] In all these 
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instances, one deals with apparently immediate forms of cognition. (Fischbein, 
1987, p. 6; italics in the original) 

(Leron & Hazzan, 2006, pp. 111-112) 

The second similarity the authors consider is between the self-monitoring 
function of S2 and the same part of metacognition. They stress: 

However, as can be seen from the figure, both S2 and metacognition consist of 
more that this monitoring, or self-regulating, function, though those additional parts 
are different in the two frameworks.  
The third similarity is in the use of the term “cognition”; however, this is only 
a partial similarity, which is expressed in the left half of the figure. In the cognitive 
psychology literature, cognition encompasses all thought processes, indeed all 
information processing. This includes S1 (including unconscious processes) and S2 
(including the monitoring component). In mathematics education the use of 
“cognition” varies somewhat. Most seem to include intuition within cognition, as 
the above quotes from Fischbein demonstrate, but compare this with the position of 
Vinner (1997) who seems to reserve cognition for analytical thinking only. (Leron 
& Hazzan, 2006, p. 113) 

The last statement is described by Vinner (1997) in the following words: 
[. . .] much effort is devoted to find cognitive interpretations for many types of 
behavior for which, perhaps, a different type of interpretation is more suitable. 
Furthermore, much didactic effort is invested in ‘cognitive corrections’ where 
perhaps a different type of correction would be more effective. By saying this, I am 
not denying the importance of cognitive research. I am asserting, however, that not 
every event in a mathematics learning can be explained in cognitive terms, and that 
it is a fallacy to assume that the cognitive approach is adequate for almost every 
situation in mathematics learning. (Vinner, 1997, pp. 97-98) 

Vinner (1997) defined pseudo-analytic processes in which students superficially 
select elements in the problem and apply a procedure relevant for a typical 
question due to superficial similarity with previous problems. The pseudo-
processes are “simpler, easier, and shorter than the true conceptual processes” 
(Vinner, 1997, p. 101), thus many students unconsciously apply them. 
In our study we used psychological terminology (S1 and S2) because we have 
been able to resolve whether cognition (analytical thinking) or metacognition 
(self-monitoring) would account for overcoming the intuition that activates S1. 
METHODOLOGY 
Aim of the study 
The main aim of the study is to find out whether secondary school students, after 
reading the content of the given task, manage to overcome the action of the 
intuitive system S1 that suggests an incorrect answer and, as a result, activate 
the S2; and whether, by giving clues to the tasks, we can teach independent 
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activation of the S2 system in students. More precisely, the aim of the study is to 
try to acquire preliminary answers to the following questions:  

(1) After reading the selected task, does S2 system spontaneously switch on 
in the students? 

(2) Can the analogous tasks affect the responses in stage II of the study when 
compared with the results from stage I? 

(3) Are students able to overcome S1 and activate S2 on their own after being 
prompted? 

Research tool 
As a research tool especially prepared tasks were chosen, expecting to provoke 
quick and incorrect answers, thus activating S1. The tasks did not exceed the 
level of mathematical requirements of elementary school according to the Polish 
curriculum. Similar tasks can be found on the internet, where they are called 
puzzles and it is emphasised that they are at an elementary level, but “most 
adults will fall for them!”. 
The questionnaire was divided into three parts. Tasks from the first part of the 
questionnaire were designed to check which system: intuitive or rational, 
students switch on spontaneously when solving them under time-limited 
conditions. Then, in part II of the questionnaire there was a set of analogical 
tasks, imposing the same solution scheme and provoking the possibility of 
making an analogical error as in tasks from part I. Analogical tasks, by contrast, 
were set in a different context. They were designed to test whether students' 
answers would be consistent and similar to those in Part I. In Part III of the 
questionnaire, each student received feedback on the correctness of his or her 
solutions and was given a hint in turn for each incorrectly solved task from Part 
II. This part was to check whether the hint would be effective and at the same 
time whether it would activate critical thinking in the students.  
Both Part I and Part II consisted of a total of 6 tasks, two analogous tasks each in 
six categories (A-F). The contents of these tasks are given below. 
A. Required activation of reductive reasoning 

(I). Task1. The movement speed of a certain object was registered on measuring 
instruments. It was noted that its speed doubled every two hours. After 64 hours, it 
reached 640 km/h. How much time elapsed when it reached 160 km/h? (author: W. 
Błasiak, Research Group of Cognitive Didactics operating at the Pedagogical 
University of Krakow) 
(II). Task 1. The pond is overgrown with duckweeds. Every two days, its area 
doubles. The whole pond became overgrown in 64 days. How many days passed 
when ¼ of the pond was overgrown?  (Sajka & Rosiek, 2015) 
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B. An imposed proportion that is not true 
(I). Task 2. 5 machines make 5 objects in 5 minutes. How long will it take for 50 
such machines to make 50 items? (https://brainly.pl) 
(II). Task 2. If five cats eat five mice in five minutes, how many cats does it take to 
eat one hundred mice in one hundred minutes? (www.matemaks.pl) 

C. Use of fractions 
(I). Task 3. Eric drinks a barrel of juice in 6 days and George drinks it in 3 days. If 
they both drink the juice from one barrel - each at his own pace - how long will it 
take them to empty the barrel? (www.matemaks.pl) 
(II). Task 3. Marek mowed a lawn in 3 hours, while Kamil mowed the same lawn in 
2 hours (at the same growth rate of grass). How long would it take them to mow the 
lawn together? (own) 

D. Application of a system of equations - differential comparison 
(I). Task 4. A baseball bat and a ball cost 101 PLN in total. The bat costs 100 PLN 
more than the ball. How much does the ball cost? (www.wiemy.to ) 
(II). Task 5. A hat and a feather cost 110 PLN in total. The hat costs 100 PLN more 
than the feather. How much does the feather cost? (Pisarski, 2017, p. 6) 

E. Use of percentages while imposing an incorrect proportion 
(I). Task 6. Before drying, the kiwi weighed 100 grams and was 80% water. After 
drying, the kiwi contains 50% water. How much does the kiwi weigh after drying? 
(own) 
(II). Task 4. The watermelon weighed 3 kg before drying and contained 99% water. 
After drying, it contained 98% water. How much did the watermelon weigh after 
drying?  (Pisarski, 2017, p. 7) 

F. Stereotypical description (disinformation noise) attached to the data 
(I). Task 5. The wedding reception was attended by 200 people. Among the 
participants there were 10 people who came without an accompanying person. From 
the group of all the guests, a person with the nickname Andy was drawn. Andy is 40 
years old, single, does not like to go out with friends, is a typical homebody. In his 
free time, he likes reading books. Which is more likely: Andy coming with or 
without a companion? 
(II). Task 6. 10,000 people participated in a study. The participants included 4 men 
and 9996 women. A random person with the nickname Jo was selected from this 
group. Jo is 23 years old and graduating from a polytechnic institute. She likes to go 
out with her friends on Friday nights to listen to loud music and drink beer. Which 
is more likely: Jo being a man or a woman? 

The hints for the tasks in Part II were as follows: 
1. How many days did it take for ½ of the pond to be overgrown?  
2. How much time does it take for one cat to eat one mouse?  
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3. How much of the plot does Marek mow in an hour? And how much does Kamil 
mow?  
4. There is a constant proportion of flesh in a watermelon which does not change its 
volume. What percentage of the watermelon is flesh?  
5. What is the total cost of a hat and a feather? Check your solution.  
6. Is all the information given in the task relevant? How many women and men 
participated in the study? 

Study procedures 
The research involved 46 students from two classes of a secondary school in 
Krakow, Poland. The students solved the tasks from Parts I and II independently 
at school during the mathematics lesson in the presence of the mathematics 
teacher and the researcher, noting the solutions and answers on the printed study 
sheets (at the end of the school year, shortly after returning from long-term 
remote learning, in June 2021). 
Part I of the survey was conducted during an earlier lesson, 15 minutes before 
the end of the lesson, while Parts II and III were conducted during a full 
consecutive lesson of mathematics (45 minutes). This format was kept for 
organizational reasons, as one lesson might have been too short to conduct all 
three parts of the survey. We wanted the students to have enough time in solving 
the tasks in Parts II and III, in which the slow S2 system was to be activated, so 
that time pressure would not affect the results. Part I of the study, on the other 
hand, as it was performed in the final minutes of previous lesson, was expected 
to be all the more rushed due to the short time available, which was in line with 
the objectives of the study. We assumed activation of the fast decision-making 
system (S1) in the first approach to solving the tasks. 
After solving the tasks from Part II and collecting the results on a separate 
answer sheet, Phase III of the study began. In order to improve the organization 
of the test, it was made available individually through a Microsoft Forms form. 
In this form, questions from stage II were repeated, but in the form of multiple 
choice tasks, with different answers given, from which the student selected the 
answer (s)he obtained (among the answers, the ‘other answer’ was included, in 
case the wrong answers suggested by us did not include all the students’ 
answers). In this way, students individually checked the correctness of their 
answers. If the student’s chosen answer was correct, he or she was redirected to 
the next Stage II task; if the answer was incorrect, the student was given a hint 
for the task. After reading the hint, the student once again attempted to solve the 
task and tried to answer the question correctly, thus activating the critical 
thinking (S2). The student then wrote changes in his solution to the task on the 
answer sheet (s)he had received earlier. The users of the hints then rated their 
usefulness on a 5-point scale. 
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All respondents completed Part III unhurriedly, before the end of the second 
lesson period.
SELECTED RESULTS
The results overview from each stage of the study are shown in Figure 2.

Figure 2: Correct answers (n=46) in the context of the task category (A-F) and the 
stage of the study (I-III).

The percentage of all correct answers in the entire Part I of the survey is 44%, 
which is less than half, in Part II it is already above half, 52% to be exact, and in 
Part III it was 74%. 
It can be clearly stated that the results of Part III were by far the best. On the 
other hand, the results in Part II were better than in Part I in terms of their 
general correctness, but they differed significantly in individual tasks. 
In four types of tasks analogous to those in Part II, students achieved better 
results than in Part I of the study (types B, C, D, F), but in two types of tasks (A 
and E) results in Part II were slightly worse
In stage I the best and at the same time the same result was achieved by students 
in type B and D, obtaining more than half of the correct answers (26 people, 
57%). In stage II in both types of tasks the number of correct answers has 
increased even more, at the same time task II.5 (D) has achieved the best result 
of part II, namely 33 correct answers (73%).
The task with information noise (type F) turned out to be the task with exactly 
50% of correct answers in Part I, and in Part II the analogous task achieved 
a significantly better result of 32 (70%) correct answers. The hint to this task 
made this task achieve the best result in Part III in the whole set of tasks - 41 
(89%) correct answers.
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By far the most difficult tasks were tasks from category E about drying kiwis 
and watermelon, with the task from Stage II of the study (II.4) being the most 
difficult in both sets, receiving only 5 correct answers. The hint to this task made 
its solvability quadruple, to 46%. 
The second most significant, nearly doubling of correct answers (from 17 to 32), 
was the hint to the category A task with the need for reductive reasoning. These 
were the second most difficult tasks for students in this set. 
In the remaining tasks of III stage, the increase in correct answers appeared to be 
proportional.  
The effectiveness of the hints was not fully appreciated in the subjective 
evaluation of the students who used them (see Table 1). The hint for category D 
task received the best rating from the students (mean 4.15), but it resulted in an 
increment of only 7 correct answers, while the hint for category E task resulted 
in an increment of 16 correct answers and the students rated it average (mean 
3.07). The hint to Task A resulted in an increment of 15 correct answers and was 
also appreciated by students - mean 3.52. 
Category task hint A B C D E F 
Students’ rating 3.52 2.87 2.95 4.15 3.07 3.29 

Table 1: Average rating of hints effectiveness (scale 1-5). 

RESULTS’ ANALYSIS AND DISCUSSION 
The analysis of the results obtained from the conducted research allowed to 
obtain preliminary answers to the posed research questions. 
(1) After reading the selected task, does S2 system spontaneously switch on in 
the students?  
We assume that this question can be answered positively only in those situations 
in which the student gives the correct answer. A detailed answer to this question 
is therefore provided by Figure 2.  
It is worth noting the students’ first approach to the research tasks. In stage I, the 
students achieved an average of 44% correct answers, so the students obtained 
less than half of the correct answers. However, we can look at the data 
optimistically and conclude that the students, despite the short working time, in 
total as many as 122 times independently and spontaneously overcame the 
imposing S1 of decision-making in a given task and initiated critical thinking. 
The best answers were given to the tasks in categories B and D, in which the 
vast majority (26 persons, 57%) coped with giving the correct answer. It can be 
concluded that these students were able to immediately activate S2 system while 
working on these tasks. The second stage of the study confirms this ability - in 
both types of tasks in Part II the number of correct answers increased even more. 
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Overall, in stage II of the study, students spontaneously and independently beat 
the imposing S1 144 times, and as many as 204 times in part III of the study. 
(2) Can analogous tasks affect responses in stage II of the study when compared 
with the results from stage I? 
Analogue tasks from Part I of the study may have supported the activation of the 
rational system in the students in the tasks from Part II in the categories B, C, D, 
F, because in these categories the students obtained better results in the analogue 
tasks. The second factor of obtaining better results in Part II in these categories 
could have been the organization of Part II of the study and the awareness of a 
large amount of time to solve the tasks and the greater concentration of the 
students at the beginning of the lesson. A factor related to a different task 
context also cannot be excluded.  
(3) Are students able to independently overcome S1 and activate S2 on their 
own after being prompted? 
The answer to this question is positive. Figure 2 shows vividly how the number 
of correct answers increased after launching the hints (from Part II to Part III), 
where the number of correct answers increased by a total of 60. The most 
spectacular role was played by the hints to the most difficult tasks, which at the 
same time were even more difficult for students than the corresponding tasks in 
Part I. The solvability of one task increased four times (category E) and the 
other two times (category A). 
SUMMARY 
The overall tone of the presented study is positive in our opinion, as the number 
of respondents who activated S2 increased in each successive stage of the study, 
despite the fact that in stage I, they were dominated by S1. Recall that this 
averaged increase is of the order of 44%(I) - 52%(II) - 74%(III). Thus, the 
solvability of tasks increased by 30 percentage points and reached a satisfactory 
level of ¾ correct answers.  
At this point we would like to emphasize one more fact - before the study was 
conducted on a group of secondary school students, a preliminary study was 
conducted on a group of university students of the final year of the teacher’s 
mathematical master's degree. The correct answer to the watermelon task (E) 
was given by only one student, who commented as follows: 

I have now managed to solve the task correctly, but I think only because I once 
encountered a similar task in the game ‘Wild Logic’. Back then, I didn’t have 
a piece of paper and pencil at my disposal. After all, it was a game, not a school 
assignment. I gave a quick, seemingly logical answer and it turned out to be wrong. 
I saw the correct answer, but I didn't understand at the time where it came from. 
I didn’t delve into the topic without the paper and focused on the subsequent 
puzzles. I now associated this type of task, although I did not know the solution or 
even the exact content and answer from the game. I knew there was a trap there, but 
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I had nothing to compare and use the analogy with. I approached the task with great 
caution and made a drawing at the beginning and did all the calculations very 
slowly. After completing the calculations, I was not sure if I was sure everything 
was correct. After all, I had already made a mistake once during the game. After 
checking it slowly and carefully three times, I became convinced that everything 
was correct. 

The university student’s feedback emphasizes the importance of realizing the 
error associated with giving a quick and intuitive answer and points out the key 
role of self-monitoring in achieving success in the task. The lived experience of 
this situation effectively taught the student to activate S2 in a similar task 
situation. 
This opinion reinforces the most important conclusion of the preliminary 
research presented in this chapter: Activating S2 can be effectively taught, and 
one way to do so is to provide effective task hints that activate critical thinking 
in students. 
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